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1. Introduction

The concept of “sensitivity” has different interpretations depending on the area in
which this term is used. This suggests that the so-called sensitivity theory is multidisci-
plinary (see, for example, [1–3]). Despite this, the general meaning of this term is as follows.
Sensitivity is understood as some property of a model or a system that is responsible for the
variability of the output data by changing its initial parameters. In this paper, sensitivity
and its analysis will be considered in the framework of the study of some examples of
stochastic systems and processes, which describe their behavior.

Sensitivity analysis (SA) originates from the study of queuing theory models. One of
the earliest results concerning the insensitivity of the characteristics of queuing systems to
the shape of service time distributions was obtained in 1957 by B. Sevast’yanov. In [4], he
proved the insensitivity of the Erlang formulas to the shape of service time distribution
with a fixed mean value for loss queuing systems with Poisson input flow.

The theorem proposed and proved by Sevast’yanov served as a starting point in the
creation of sensitivity theory within the framework of the queuing theory. Many scientists
have made a significant contribution to the development of this theory, i.e., B. Gnedenko,
I. Kovalenko, V. Ivnitzkii, V. Kalashnikov, D. Konig, F. Kelly, and others. Furthermore, there
are some review articles on this topic (see, for example, [5,6]).

In 1976, I. Kovalenko [7] found the necessary and sufficient conditions for the insensi-
tivity of the stationary reliability characteristics of a redundant renewable system with an
exponential lifetime and general distribution of components’ repair time. These conditions
consist of a sufficient number of repair units, which means the possibility of immediate
restoration of any failed component. The sufficiency of this condition for the case of general
distributions of both life and repair time was found in 2013 by V. Rykov [8] with the help of
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the theory of multidimensional alternative processes. However, these results are invalid in
the case of a limited number of repair units for failed components’ restoration.

A significant contribution to the insensitivity study of the stationary state probabil-
ities of various queuing systems and networks, including single-line, multi-line, closed,
and open-loop ones, was made by V. Ivnitzkii (see [9,10] for an example). The develop-
ment of such models has led to the study of systems and networks with several types
of demands [11], different types of customers, for example, a network with “negative”
customers [12], temporarily non-active customers [13]. On the other hand, the development
of Sevast’yanov’s theory led to the study of some generalized semi-Markov processes
and their steady-state probabilities’ insensitivity [14,15]. Moreover, there are a number of
investigations devoted to SA of some queuing systems and their measures of the service
time distribution. The latest research is presented in [16–19].

In the framework of the sensitivity study of reliability characteristics of stochastic
systems, the behavior of systems and processes is often considered in the cases of rare
failures or quick recovery. A number of studies on this subject confirm the asymptotic
insensitivity of the characteristics of queuing systems to the shape of the repair-time
distribution in the case of rare failures or fast recovery [20–22].

Any functioning system has many indicators of performance and reliability. In ad-
dition, it must be operational for a long time as well as resistant to external or internal
factors. Therefore, the reliability study of the system in the context of its stability to the
changes in some initial information is a primary task in any applied problem. The purpose
of SA, which was discussed above, is to identify the influence of the initial data on the
behavior of the whole system. The consequence of this goal may be a set of recommenda-
tions for engineers and developers in the context of improving the reliability of the model
under study.

This article is devoted to the sensitivity investigation of a repairable k-out-of-n sys-
tem [23]. Such a system has many applications in management, engineering, telecommuni-
cation and many other areas. For example, one of the crucial applications in this area is
the reliability study of high-altitude unmanned rotor-craft platforms [24]. The multi-rotor
architecture of such a platform allows a platform with n rotary-wing engines to stay opera-
tional even after k engines fail. In this paper, it is supposed that a component’s lifetime is
exponentially distributed, and repair time is arbitrarily distributed. Within the framework
of such a problem statement, time-dependent probabilities, as well as steady-state proba-
bilities of the system, are considered. Although a theoretical study of these characteristics
has already been carried out, a numerical analysis, as well as a thorough SA, have not
been performed. Since analytical results do not give a complete picture of system behavior,
numerical analysis is an integral part of the sensitivity study. The sensitivity of reliability
characteristics is investigated not only in the case of rare failures and quick restoration
but also in the shape of the repair-time distribution. As an additional parameter for SA,
the coefficient of variation, which is defined as the ratio of the standard deviation to the
mean, was taken. This indicator is useful in practice since it shows the stability of reliability
parameters relative to their average value. Moreover, due to its definition, the coefficient of
variation is independent of the unit of measurement.

Currently, there are no clear recommendations in the literature for conducting an SA
of stochastic systems. In [2], a general procedure for variance-based SA is presented. Thus,
the present article is devoted to filling this gap. The main contribution and novelty of this
investigation consist in the following:

- A general procedure based on well-known research methods in reliability and queu-
ing theories for performing an SA of reliability characteristics of the type of initial
information is proposed;

- The reliability and sensitivity study of a k-out-of-n system is carried out according to
the methodology; at the same time, this technique can be applied to other stochastic
reliability models;
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- Despite the fact that SAs have already been conducted in the study of k-out-of-n
system’s reliability characteristics, novel results of the sensitivity study are obtained.

In the current paper, a modified Kendall’s notation 〈Mk<n|GI|1〉 to describe the system
under consideration is used. Symbols “〈 〉” denote a closed system, i.e., a system with a
fixed constant number of unreliable components. M in the first position corresponds to
the exponential distribution of a component’s lifetime, GI means (general independent)
arbitrary distribution of the components’ repair time. The last position corresponds to the
number of repair units.

The paper is organized as follows. Section 2 contains a general procedure for perform-
ing an SA, which is applied in further sections. In Section 3, for a k-out-of-n system, some
notations, assumptions, and problem settings are established. Section 4 deals with time-
dependent system state probabilities for the calculation of which method of supplementary
variables [25] is used. In Section 5, the stationary probabilities are presented in the closed
form in terms of the Laplace transform of the repair-time distribution. Sections 4 and 5
are accompanied by numerical and graphical examples for 2-out-of-6 and a 3-out-of-6 sys-
tems. Moreover, the steady-state probabilities are considered under both rare failures and
quick restoration conditions for the 3-out-of-6 system. The paper ends with a discussion, a
conclusion, and some future research directions.

It is important to note that the current article is a continuation of previous research and
an extended version of the reports at the 25th International Conference on Distributed Com-
puter and Communication Networks: Control, Computation, Communications (DCCN-
2022) (https://dccn.ru/, accessed on 26 January 2023) and the 21st International Con-
ference named after A. Terpugov Information technologies and mathematical modelling
(ITMM–2022) (http://itmmconf.ru/, accessed on 26 January 2023). Some analytical results
used in the paper were obtained in [21,26]; therefore, some presented theorems contain
only the main steps of the proofs with references to already published results.

2. General Procedure for SA Performance

The main contribution of the article consists in drawing up the specific recommen-
dations for conducting SA and proposing an appropriate procedure. As a demonstration
of the sensitivity study, a k-out-of-n model is used, and sensitivity of its reliability char-
acteristics to the type of initial information is investigated. The general procedure for SA
performance is presented in Figure 1.

Built a mathematical/simulation model

Obtain t.d.s.s.p./s.s.p./reliability function or any 
interested characteristics 

Save results

Determine model’s parameters

Fix life and repair time distribution and their 
coefficients of variation

All experiments 
are carried out

no Present results graphically 
and draw conclusions about 

sensitivity

yes

Figure 1. The general procedure for SA performance.

https://dccn.ru/
http://itmmconf.ru/
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Depending on the study being conducted, some steps of this procedure may be in
a different sequence or skipped. The implementation of the proposed procedure on an
example of a mathematical model of a repairable k-out-of-n system is discussed below in
Sections 3–5.

3. Problem Setting, Notation, Assumptions

Figure 1 proposes the procedure for performing an SA. The first step is building a
mathematical model. Consider a homogeneous repairable k-out-of-n (1 ≤ k ≤ n) system
that has one repair unit. Such a system consists of n components and may be described
in two ways, depending on the definition of the parameter k, as follows. The parameter k
may represent the number of components in the system that must work in order for the
entire system to work, referred to as a k-out-of-n: G system. Or k may represent the number
of components in the system that must fail before the entire system fails, referred to as
a k-out-of-n: F system. The article will deal with the k-out-of-n: F system, omitting the
symbol “F”.

Since both components and the whole system can be restored, many restoration
scenarios are possible. This article deals with the following procedure. A failed component
is restored at some random time, after which it works again, and other failed components
are repaired one-by-one. At that, the order in which the failed components are repaired
corresponds to the FCFS (first come first service) model, and the first failed component
is restored first. The failure of any k component leads to the system failure and their
simultaneous restoration during some random time. After that, the entire system works as
a new one. Another scenario of such a system is considered in [27].

Introduce some assumptions about the shape of a component’s life and repair time
distributions. Suppose that:

• The lifetimes of system components are independent and exponentially distributed
with parameter α and mean time a = α−1;

• According to the system structure, all n components work simultaneously; that is, the
system is in a hot redundancy, and therefore, the intensity of one system’s components
failure, i.e., when i components of n fail, is

λi = (n− i)α, i = 0, k− 1;

• The repair times for any failed components are independently identically distributed
(i.i.d.) random variables (r.v.’s) Bi (i = 1, 2, . . . ) with common cumulative distribution
function (c.d.f.) B(x) = P{Bi ≤ x}which is absolutely continuous, and the probability
density function (p.d.f.) is b(x);

• The repair times for a failed system are also i.i.d. r.v. Fi (i = 1, 2, . . . ) and their
corresponding c.d.f. is F(x) = P{Fi ≤ x} and p.d.f. is f (x);

• The instantaneous repairs are impossible, and their mean times are finite,

B(0) = F(0) = 0, b =

∞∫
0

(1− B(x))dx < ∞, f =

∞∫
0

(1− F(x))dx < ∞;

• Corresponding Laplace transforms (LTs) of p.d.f.’s b(t) and f (t) are

b̃(s) =
∞∫

0

e−stb(t)dt, f̃ (s) =
∞∫

0

e−st f (t)dt.

The state space of the system is denoted by E = {0, 1, 2, . . . , k− 1, k}, where

• 0 means that all the components are working; not one is repaired,
• i means that i components out of n (1 ≤ i ≤ k− 1) fail; one of them is repaired with

r.v. B, and others (n− i) operate,



Mathematics 2023, 11, 1100 5 of 18

• k means full system failure and its repair with r.v. F, after which the system becomes a
new one.

To perform a reliability analysis, describe the system behavior as a random process
J = {J(t), t ≥ 0} on the space set E:

J(t) = j, j ∈ E, if the system is in state j in time t.

Suppose that J(0) = 0.
In this paper, we consider the calculation of time-dependent system state probabilities

(t.d.s.s.p.’s)
πj(t) = P{J(t) = j}, j ∈ E,

steady-state probabilities (s.s.p.’s)

πj = lim
t→∞

P{J(t) = j}, j ∈ E,

availability coefficient
Kav = ∑

0≤i≤k−1
πi = 1− πk,

as well as consider the properties of their asymptotic insensitivity to the shapes of system
component’s repair time distributions, including the case of rare failures and quick restoration.

4. Time-Dependent System State Probabilities
4.1. Markovization Method

The second step in SA calculates t.d.s.s.p.’s of the 〈Mk<n|GI|1〉 system. For this, the
method of supplementary variables (one of the Markovization methods) is proposed. This
method was firstly introduced by Cox and traditionally used in studies of various stochastic
systems. In our case, as a supplementary variable, consider the elapsed repair time of a
failed component or a failed system. Thus, denote by

Z(t) = {J(t), X(t)}t≥0

a two-dimensional process, where J(t) is defined as above, and X(t) means the elapsed
repair time of the failed component or the whole system failure. Due to the method used,
the process Z(t) is a Markov one with discrete-continuous states space Ē = {0, (i, x) | i =
1, k, x ∈ R+}, where

• 0 means that there is no failed component, all the components are working,
• (i, x), i = 1, k means that i components have failed and the elapsed repair time of the

failed component or the whole system failure equals x;
• (1, 0) means that one of the system’s components has failed, after which its repair

immediately begins; or one of the two failed elements has been repaired, its elapsed
recovery time is reset to zero, after which repair of the second failed component
immediately begins;

• (i, 0) means that from i, i = 2, k− 1 failed components, one has been repaired, after
which the corresponding repair time is reset to zero and repair of the other failed
component immediately begins;

• (k, 0) means that the k-th failure has occurred (failure of the k-th component), after
which the repair of one and the failed component stops, and restoration of all failed
elements begins simultaneously.

Denote the t.d.s.s.p.’s of the process Z(t),

• π0(t) = P{J(t) = 0}—the probability of a working state of all system components at
time t;

• πi(t; x)dx = P{J(t) = i; x < X(t) ≤ x + dx}—the joint probability that at time t there
are i failed components, among which one is repaired with the elapsed repair time in
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the interval x and x + dx, i = 1, k. Remember that with i = k, there is a simultaneous
restoration of all failed components.

Further calculations will be based on the following events and the corresponding
probabilities.

• The probability that during time ∆ one of the system’s component will fail, provided
that it has worked x units of time, is equal to

P{x ≤ A < x + ∆ | A ≥ x} = P{x ≤ A < x + ∆}
P{A ≥ x} =

=
A(x + ∆)− A(x)

1− P{x < A} =
a(x)∆ + o(∆)

1− A(x)
=

αe−αx∆ + o(∆)
e−αx = α∆ + o(∆). (1)

• The probability that starting from the considered moment in time ∆, one of the system’s
components will be repaired, provided that it was repaired x amount of times, is

P{x ≤ B < x + ∆ | B ≥ x} = P{x ≤ B < x + ∆}
P{B ≥ x} =

=
B(x + ∆)− B(x)

1− P{x < B} =
b(x)∆ + o(∆)

1− B(x)
= β(x)∆ + o(∆). (2)

• The probability that starting from the considered moment in time ∆, the system will
be repaired, provided that its failed element was under repair x amount of times, is

P{x ≤ F < x + ∆ | F ≥ x} = P{x ≤ F < x + ∆}
P{F ≥ x} =

=
F(x + ∆)− F(x)

1− P{x < F} =
f (x)∆ + o(∆)

1− F(x)
= φ(x)∆ + o(∆). (3)

Thus, the corresponding transition graph is shown in Figure 2. Here, the description of
the instant start of the repair after the completion of the previous one (from the description
of states space Ē) corresponds to the transitions from states (i, 0) to (i, x), i = 1, k− 2, k.
Moreover, β(x) = b(x)

1−B(x) and φ(x) = f (x)
1−F(x) are conditional components’ and system’s

repair densities, given elapsed repair time x, respectively.

0

( )x

( 2,0)k 

(1, )x ( 1, )k x

(2,0)

( )x ( )x

(2, )x

( )x

1

0
1k 

2 2k 

(1,0) ( ,0)k

( , )k x

φ(x)

Figure 2. Transition graph of the process Z(t), which described the behavior of a k-out-of-n model.

Based on the presented transition graph and using the description of probabilities
(1)–(3), one can compose a system of Kolmogorov forward partial differential equations for
the t.d.s.s.p.’s calculation.
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Theorem 1. T.d.s.s.p.’s of the process Z(t) are followed from the system of Kolmogorov forward
partial differential equations,

d
dt

π0(t) = −λ0π0(t) +
∫ t

0
β(x)π1(t, x)dx +

∫ t

0
φ(x)πk(t, x)dx,(

∂

∂t
+

∂

∂x

)
π1(t, x) = −(λ1 + β(x))π1(t, x),(

∂

∂t
+

∂

∂x

)
πi(t, x) = −(λi + β(x))πi(t, x) + λi−1πi−1(t, x), i = 2, k− 1,(

∂

∂t
+

∂

∂x

)
πk(t, x) = −φ(x)πk(t, x),

(4)

jointly with the initial

π0(0) = 1, πi(0; x) = 0, i = 1, k, ∀x ≥ 0, (5)

and boundary conditions

π1(t, 0) = λ0π0(t) +
∫ t

0
β(x)π2(t, x)dx,

πi(t, 0) =
∫ t

0
β(x)πi+1(t, x)dx, i = 2, k− 2,

πk−1(t, 0) = 0,

πk(t, 0) = λk−1πk−1(t).

(6)

Proof. The general idea of the proof is as follows. The obtained system of differential
Equations (4) is based on the construction of the system of finite difference equations by
the usual method of comparison of the corresponding process state probability changes on
infinitesimal small-time epochs t and t + ∆t.

π0(t + ∆) = P{J(t + ∆) = 0} = (1− λ0∆)π0(t) +
∫ t

0
β(x)dx π1(t, x)∆ +

∫ t

0
φ(x)dx πk(t, x)∆ + o(∆),

π1(t + ∆, x + ∆)dx = P{J(t + ∆) = 1; x + ∆ < X(t + ∆) < x + ∆ + dx} = (1− λ1∆)(1− β(x)∆)π1(t, x) + o(∆),

πi(t + ∆, x + ∆)dx = P{J(t + ∆) = i; x + ∆ < X(t + ∆) < x + ∆ + dx} =

= (1− λi∆)(1− β(x)∆)πi(t, x) + λi−1πi−1(t, x)∆ + o(∆), i = 2, k− 1,

πk(t + ∆, x + ∆)dx = P{J(t + ∆) = k; x + ∆ < X(t + ∆) < x + ∆ + dx} = λk−1∆πk−1(t, x) + (1− β(x)∆)πk(t, x) + o(∆).

Then, transforming these expressions and passing then to the limit ∆t→ 0, we obtain
the system of differential Equation (4).

The initial conditions (5) follow from the assumption that, at the beginning of the
system operation, all its components are operational.

Similarly, by comparing the probabilities of the process states between t and t + ∆,
when the additional variable takes values close to zero, we obtain the first two and the last
boundary conditions from (6),

π1(t + ∆, ∆)dx = λ0π0(t)∆ +
∫ t

0
β(x)dx π2(t, x)∆ + o(∆),

πi(t + ∆, ∆)dx =
∫ t

0
β(x)dx πi+1(t, x)∆, i = 2, k− 1,

πk(t + ∆, ∆)dx = λk−1

∫ ∞

0
πk−1(t, x)∆dx + o(∆).

An additional boundary condition for the probability πk−1(t, 0) from (6) follows from
the fact that the process Z(t) is never in the state k− 1 with elapsed recovery time equal to
zero (see Figure 2).
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The algorithm of the solution of the systems (4)–(6) can be found in [26], where the
method of characteristics was proposed. In [28], the calculation of t.d.s.s.p.’s of the same
model is presented with the help of the theory of decomposable semi-regenerative processes
(DSRP). These methods made it possible to obtain t.d.s.s.p.’s in terms of LT of repair time.

Using the obtained results for a 2-out-of-n system, consider some numerical examples
to show the insensitivity of their time-dependent characteristics to the shape of the repair
time-distribution and its coefficient of variation.

4.2. Numerical Example, Sensitivity

The solution methods mentioned above make it quite easy to obtain non-stationary
characteristics of the process in terms of the LT of repair time. However, calculating the
inverse LT of a complex function is not a trivial task, even for many mathematical software
products. Consider the example below, which does not require large computational efforts
to calculate the time-dependent characteristics of a k-out-of-n system. The issue of compu-
tational implementation of the inverse LT is not raised, and readers are invited to consider
it on their own.

Consider as an example a 2-out-of-n system. Its t.d.s.s.p.’s in terms of the LT of repair
time are

π̃0(s) =
s + λ1

s(s + λ1) + λ0(1− b̃(s + λ1))(s + λ1(1− f̃ (s)))
,

π̃1(s) =
λ0(1− b̃(s + λ1))

s(s + λ1) + λ0(1− b̃(s + λ1))(s + λ1(1− f̃ (s)))
,

π̃2(s) =
1
s
· λ0λ1(1− b̃(s + λ1))(1− f̃ (s))

s(s + λ1) + λ0(1− b̃(s + λ1))(s + λ1(1− f̃ (s)))
.

Note, if the repair time of the components and a system is exponentially (Exp) dis-
tributed, the following remark holds.

Remark 1. If B(t) ∼ Exp(b−1) and F(t) ∼ Exp( f−1), the t.d.s.s.p.’s have the following form,

π̃0(s) =
(1 + f s)(1 + b(s + λ1))

s(1 + f s)(1 + b(s + λ0)) + bs(1 + f (s + λ0))
,

π̃1(s) =
bλ0(1 + f s)

s(1 + f s)(1 + b(s + λ0)) + bs(1 + f (s + λ0))
,

π̃2(s) =
b f λ0λ1

s(1 + f s)(1 + b(s + λ0)) + bs(1 + f (s + λ0))
.

(7)

This result coincides with that obtained with the construction of a simple birth and death process,
which is described by the following system of Kolmogorov differential equations,

d
dt

π0(t) = −λ0π0(t) + b−1π1(t) + f−1π2(t),

d
dt

π1(t) = −(λ1 + b−1)π1(t) + λ0π0(t),

d
dt

π2(t) = − f−1π2(t) + λ1π1(t).

For the third step of SA, determine the model’s parameters as well as the repair time
distribution and its coefficient of variation. Suppose that n = 6. An example of a 2-out-of-6
model corresponds to a mathematical model of high-altitude telecommunication platforms
based on tethered unmanned aerial vehicles [24].

Let mean lifetime a = 1, and the repair time has an Erlang distribution (Erl(l, θ))

with p.d.f. f (t) =
θl

Γ(l)
tl−1e−θt, t > 0. Corresponding means are b and f , and coefficients
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of variation are vb and v f . During this section, indexes b and f are denoted parameters
of components’ and system’s repair times, respectively, as well as LT b̃(s) and f̃ (s) for
components’ and system’s repair times, are respectively,

b = lb · θ−1
b , vb =

√
lb/lb, b̃(s) =

(
θb

s + θb

)lb
,

f = l f · θ−1
f , v f =

√
l f /l f , f̃ (s) =

(
θ f

s + θ f

)l f

.

According to these notations, the following can be calculated,

lb = v−2
b , θb = (bv2

b)
−1,

l f = v−2
f , θ f = (bv2

f )
−1,

with further substitution of fixed means and coefficients of variation of different re-
pair times.

For components’ and system’s repair times, consider various combinations of Erlang
distribution with different coefficients of variation. In each example, mean times and
coefficients of variation are fixed, and through them, according to the formulas above,
the corresponding distribution parameters are calculated. Figure 3 demonstrates the first
example and the next step in the SA procedure.

Figure 3. T.d.s.s.p.’s of 〈M2<6|Erl|1〉 system (b = f = 1) with different values of coefficients of
variation of components vb and system v f repair time.

The description of Figure 3 is the following:

• The legend of the figure denotes the types of lines of different probabilities; a simple
line corresponds to probability π0(t), a dashed line corresponds to probability π1(t),
and a dot–dash line corresponds to probability π2(t);

• Black color corresponds to b = f = 1, vb = v f = 1 (coinciding with Formulas (7) from
Remark 1);

• Blue color corresponds to b = f = 1, vb = v f = 0.5;
• Red color corresponds to b = f = 1, vb = 0.5, v f = 1;
• Green color corresponds to b = f = 1, vb = 1, v f = 0.5.
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Figure 3 shows similar behavior of the curves; they are very close to each other despite
the different values of vb and v f . At the same time, at the interval t = [0.3, 1.2], one can
note a special contribution of the coefficient of variation of the system repair time v f . For
example, the blue and green probability curves for π2(t) lie above the black and red ones
and are non-monotonic. Nevertheless, as t increases, the differences between the curves
disappear and the characteristics pass into a stationary regime.

As the second example, consider the case when system’s repair time is twice that of
the component repair one, f = 2. This situation is presented in Figure 4. All notations are
the same from the previous case,

• The legend of the figure denotes the type of line of different probabilities; a simple
line corresponds to probability π0(t), a dashed line corresponds to probability π1(t),
and a dot–dash line corresponds to probability π2(t);

• Black color corresponds to b = 1, f = 2, vb = v f = 1;
• Blue color corresponds to b = f = 1, vb = v f = 0.5;
• Red color corresponds to b = 1, f = 2, vb = 0.5, v f = 1;
• Green color corresponds to b = 1, f = 2, vb = 1, v f = 0.5.

Figure 4. T.d.s.s.p.’s of 〈M2<6|Erl|1〉 (b = 1, f = 2) with different values of coefficients of variation
of components vb and system v f repair time.

In this example, we observe the same behavior of the curves as in the first experiment
regarding the influence of v f on t.d.s.s.p. If the coefficient of variation v f is less than
vb, the behavior of the curves on a small interval t changes, and the characteristics are
non-monotonic.

Both examples show that the different values of vb and v f do not affect t.d.s.s.p.’s
behavior with increasing t. It can be concluded that the system’s time-dependent character-
istics are insensitive to the coefficient of variation of both repair times. Moreover, as t→ ∞,
t.d.s.s.p. tend to their stationary values and turn to s.s.p.’s.

This section demonstrates the procedure of SA performed on an example of a 2-out-
of-6 system for t.d.s.s.p.’s. In the next section, an SA of s.s.p.’s of a k-out-of-n system
is presented.
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5. Steady-State Probabilities

A stationary system’s characteristics can be calculated as a limit transition from LT of
time-dependent probabilities,

πi = lim
s→0

sπ̃i(s).

However, another way is also possible. Consider again arbitrary k and n.

5.1. System of Balance Equations and Its Solution

Since the process Z(t) is a Harris one with a positive atom in the state 0, it has a
stationary regime, and therefore, as t −→ ∞, its t.d.s.s.p.’s tend to corresponding s.s.p.’s,

π0 = lim
t→∞

π0(t), πi(x) = lim
t→∞

πi(t, x), i = 1, k.

The graphical results of the previous example also confirm this fact.
It means that the process Z(t) has a stationary probability distribution for which the

stationary regime differential equations (balance equations) hold with a corresponding
transition in the systems (4)–(6). Thus, one can write down the following system,

λ0π0 =
∫ ∞

0
β(x)π1(x)dx +

∞∫
0

φ(x)πk(x)dx,

d
dx

π1(x) = −(λ1 + β(x))π1(x),

d
dx

πi(x) = −(λi + β(x))πi(x) + λi−1πi−1(x), i = 2, k− 1,

d
dx

πk(x) = −φ(x)πk(x),

(8)

jointly with boundary conditions

π1(0) = λ0π0 +
∫ ∞

0
β(x)π2(x)dx,

πi(0) =
∫ ∞

0
β(x)πi+1(x)dx, i = 2, k− 2,

πk−1(0) = 0,

πk(0) = λk−1

∫ ∞

0
πk−1(x)dx.

(9)

The application of the method of constant variation to expressions (8) and (9) gives
the following result.

Theorem 2. The s.s.p.’s of the process Z(t) in terms of LT of components’ repair time in point λi,
b̃(λi), i = 1, 2, and mean system’s repair time f have the form

π0 = λ−1
0

[
C1

(
1 +

λ1

λ1 − λ2
b̃(λ1)

)
− C2b̃(λ2)

]
,

π1 = C1
1− b̃(λ1)

λ1
,

πi = Ci
1− b̃(λi)

λi
+ S(i− 1)

1− b̃(λi−1)

λi−1
, i = 2, k− 1,

πk = Ck · f ,

(10)
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where

Ci = Ci+1b̃(λi+1) + S(i)b̃(λi)− S(i− 1), i = 2, k− 2,

Ck−1 = −S(k− 2),

Ck = λk−1Ck−1

(
1− b̃(λk−1)

λk−1
− 1− b̃(λk−2)

λk−2

)
,

S(i) =
i

∑
j=1

(−1)i−j+1

(
i

∏
m=j

λm

λj − λm+1

)
Cj,

(11)

and C1 is calculated according to the normalization condition ∑i∈E πi = 1.

Proof. The general idea of the proof consists in the application of the method of constant
of variation. In this way, probabilities πi(x), i = 1, k have the following form,

π1(x) = C1e−λ1x(1− B(x)),

πi(x) = Ci(x)e−λix(1− B(x)), i = 2, k− 1,

πk(x) = Ck(1− F(x)),

(12)

where function Ci(x) follows from the substitution of the obtained expression for π1(x)
into the solution of the heterogeneous equation of the system for πi(x),

Ci(x) = Ci +
i−1

∑
j=1

(−1)i−j+1

(
i

∏
m=j

λm

λj − λm+1

)
Cje−(λi−1−λi)x.

Using boundary conditions (9) and expressions (12), one can obtain all the constants
Ci, i = 2, k. The completion of the theorem is the calculation of the probability π0 from the
first equation of (8), followed by the application of the normalization condition ∑i∈E πi = 1
to calculate the final constant C1.

Expressions (10) and (11) show that s.s.p.’s depend on the shape of components’ repair
time distribution, while the system’s repair time is presented as the mean value, which is
distribution-independent.

For numerical and sensitivity analysis, consider the application of Theorem 2 on the
example of a 3-out-of-6 model. Such an example corresponds to a mathematical model of
an automated system for remote monitoring of an underwater pipeline [29] and is useful in
the reliability study of such a technical system.

The s.s.p.’s for the 3-out-of-6 system with inverse substitution λi = (n − i)α, i =
0, k− 1 have the following form,

π1 =
6
5
· 1− b̃(5α)

1 + 5b̃(5α)− 5b̃(4α)
π0, π2 =

3
2
· 1 + 4b̃(5α)− 5b̃(4α)

1 + 5b̃(5α)− 5b̃(4α)
π0,

π3 =
6α f (1 + 4b̃(5α)− 5b̃(4α))

1 + 5b̃(5α)− 5b̃(4α)
π0,

π0 =
10(1 + 5b̃(5α)− 5b̃(4α))

37 + 60α f − 25b̃(4α)(5 + 12α f ) + 2b̃(5α)(49 + 120α f )
,

(13)

and the availability coefficient is

Kav = 1− π3 =
37 + 98b̃(5α)− 125b̃(4α)

37 + 60α f − 25b̃(4α)(5 + 12α f ) + 2b̃(5α)(49 + 120α f )
. (14)
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Remark 2. Note that, analogous to Remark 1, if B(x) = 1− e−xb−1
, the result corresponds to the

probabilities obtained by a simple birth and death process,

π0 =
20α2b2 + 4αb + 1

120α3b2 f + 74α2b2 + 10αb + 1
, π1 =

24α2b2 + 6αb
120α3b2 f + 74α2b2 + 10αb + 1

,

π2 =
30α2b2

120α3b2 f + 74α2b2 + 10αb + 1
, π3 =

120α3b2 f
120α3b2 f + 74α2b2 + 10αb + 1

,

Kav =
74α2b2 + 10αb + 1

120α3b2 f + 74α2b2 + 10αb + 1
.

(15)

5.2. Sensitivity Analysis: Rare Failures

The s.s.p.’s from Theorem 2, as well as the Formulas (13) and (14) derived from it, are
presented in terms of the LT of repair time distribution of the system components. Thence,
the evident dependence of these probabilities on the shape of the repair-time distribution
is observed. On the other hand, some earlier papers show that with “rare” failures, the
shape of such a distribution does not affect the reliability measures. This property is called
insensitivity. In this section, we consider the behavior of the s.s.p.’s and their insensitivity
under the rare failures condition.

For the considered model, the rare failures should be understood as the low failures’
intensity with respect to the fixed mean repair time. Thus, suppose that α → 0, which
consequently leads to the following result.

Applying the Taylor series up to the second order of α,

b̃(λi) ≈ 1− bλi +
b2λ2

i
2

, i = 1, 2,

with substitution ρ1 = αb and ρ2 = α f from (13) and (14), the following expressions hold,

π1 ≈
6ρ1(2− 5ρ1)

2− 5ρ1(2− 9ρ1)
π0, π2 ≈

30ρ2

2− 5ρ1(2− 9ρ1)
π0,

π3 ≈
120ρ2

1ρ2

2− 5ρ1(2− 9ρ1)
π0, π0 ≈

2− 5ρ1(2− 9ρ1)

2 + ρ1(2 + 15ρ1(3 + 8ρ2))
,

Kav ≈
2 + 2ρ1 + 45ρ2

1
2 + ρ1(2 + 15ρ1(3 + 8ρ2))

.

(16)

Consider some further numerical examples for the SA performance of s.s.p.’s of the
3-out-of-6 model in terms of the shape of the repair time distribution as well as its coefficient
of variation vb = v.

The following distributions are used for the repair time:

• Erlang (Erl = Erl(l, θ)) with notations as above;
• Gnedenko–Weibull (GW = GW(k, λ)), for which

b(t) =
k
λ

(
t
λ

)k−1
e−(t/λ)k

, t > 0, b̃(s) =
k

λk

∫ ∞

0
e−st−(t/λ)k

tk−1dt,

b = λ · Γ
(

1 +
1
k

)
, v =

√
λ2 · Γ(1 + 2/k)− b2

b
;

• Uniform (U = U(â, b̂)), for which

b(t) =
1

b̂− â
, t ∈ [â, b̂], b̃(s) =

e−âs − e−b̂s

s(b̂− â)
, b =

â + b̂
2

, v =
1

â + b̂
·

√
(b̂− â)2

3
.
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Note that if v = 1, Erl and GW distributions pass to the exponential one with the
mean time b. Then, the s.s.p.’s coincide with the Formula (15) from Remark 2.

Suppose b = 1, v = 0.5, 1, 2, and mean system’s repair time f = 2. Since s.s.p.’s
do not depend on the shape of the system’s repair time distribution F(x) but only on the
mean f , the corresponding coefficient of variation is not fixed. The mean lifetime of system
elements a = 0.1, 20, and then the failure intensity α = a−1 decreases. Figure 5 shows the
graphical representation of the dependence of the coefficient of availability Kav from the
mean lifetime of system elements for different repair time distributions, as well as the case
of rare failures (in the legend, it is defined as Approx.).

Figure 5. Kav of a 3-out-of-6 system under the rare failures’ scenario with different repair time
distributions B(t) and coefficients of variation v.

This figure shows that over the entire interval a under consideration, all curves become
very close to each other despite the different values of v. As a ≈ 10, the curve corresponding
to the asymptotic expression (16), which is defined as Approx., merges with other ones
that correspond to 〈M3<6|Erl|1〉 and 〈M3<6|GW|1〉models and 〈M3<6|U|1〉models with
v = 0.5.

On the other hand, as v = 1, 2 in the 〈M3<6|U|1〉model, the corresponding curves of
Kav reach other ones slower. Table 1 presents the availability coefficient with increasing a.
According to the table, even as a = 200, the coefficient of availability Kav of the 〈M3<6|U|1〉
model with v ≥ 1 does not show the absolute accuracy with other ones and with the case
of rare failures.

Nevertheless, the results indicate the insensitivity of the stationary characteristics
of the k-out-of-n system to the shape of the repair time distribution and the value of its
coefficient of variation.

Table 1. Kav of 〈M3<6|GI|1〉 system under rare failures.

a = 20 a = 40 a = 80 a = 200

〈M3<6|M|1〉 v = 1 0.9825 0.9971 0.9996 0.9999

Approx. (16) 0.9866 0.9982 0.9998 0.9999

〈M3<6|U|1〉 v = 0.5 0.9864 0.9980 0.9997 0.9999
v = 1 0.9198 0.9606 0.9802 0.9920
v = 2 0.8958 0.9476 0.9735 0.9893

〈M3<6|Erl|1〉 v = 0.5 0.9865 0.9980 0.9997 0.9999
v = 2 0.9761 0.9950 0.9992 0.9999

〈M3<6|GW|1〉 v = 0.5 0.9774 0.9951 0.9991 0.9999
v = 2 0.9863 0.9979 0.9997 0.9999
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5.3. Sensitivity Analysis: Quick Restoration

On the other hand, the sensitivity of the system’s stationary characteristics in the case
of quick restoration is also of interest. Suppose now that the mean lifetime a is fixed for
all repair time distributions, a = 1. As distributions of the repair time, the above ones are
also used.

Suppose f = 2 · b, the coefficients of variation of components’ repair are the following,
v = 0.1, 0.5, 1, 5, 10. As a model parameter, consider the value,

ρ =
a
b
=

restoration rate
failure rate

,

which can be interpreted as a relative rate of the system’s components recovery. The results
of this example are shown in Figure 6.

Figure 6. Kav of a 3-out-of-6 system under quick components’ repair scenario with different repair
time distributions B(t) and coefficients of variation v.

The description of Figure 6 is the following:

• The legend of the figure denotes the type of line of different coefficient of variation v;
a simple line corresponds to v = 0.1, a dashed line means v = 0.5, a dot–dash line is
for v = 1, a dotted line is for v = 5 and a dashed with two dots means v = 10;

• Blue color corresponds to 〈M3<6|Erl|1〉;
• Red color corresponds to 〈M3<6|GW|1〉;
• Brown color corresponds to 〈M3<6|U|1〉.

According to Figure 6, the considered distributions of repair time show a similar
behavior of availability curves as v ≤ 1. That is, in the case of quick restoration, as ρ
increases, v ≤ 1 system’s stationary characteristics are asymptotically insensitive to the
shape of the repair-time distribution as well as its coefficient of variation with fixed mean
repair time and corresponding v. As v > 1, the curves’ behavior is different. At small ρ, as
v = 5, 10 in 〈M3<6|Erl|1〉 and 〈M3<6|GW|1〉, model curves of Kav rather quickly tend to
1 and as ρ ≈ 10, they take values close to other curves.

Furthermore, the coefficient of availability Kav of the 〈M3<6|U|1〉model shows slower
convergence to 1 as v > 1. In can be concluded that for small ρ (and large b), the system’s
characteristics are sensitive both to the shape of the repair-time distribution and to the
value of the coefficient of variation v at a fixed mean b.

Table 2 presents Kav for large ρ for some cases of repair-time distributions and their
coefficients of variation. Since all curves of Kav show very close results to v ≤ 1, the table
contains calculations only for one case of the repair-time distribution (Erl) as v ≤ 1.
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Table 2. Kav of 〈M3<6|GI|1〉 system under quick restoration.

ρ = 20 ρ = 40 ρ = 80 ρ = 200

〈M3<6|M|1〉 v = 1 0.9825 0.9971 0.9996 0.9999

〈M3<6|Erl|1〉 v = 0.1 0.9883 0.9983 0.9998 0.9999
v = 0.5 0.9865 0.9980 0.9997 0.9999
v = 5 0.9784 0.9933 0.9983 0.9998

v = 10 0.9879 0.9955 0.9985 0.9997

〈M3<6|GW|1〉 v = 5 0.9796 0.9944 0.9987 0.9998
v = 10 0.9863 0.9958 0.9988 0.9998

〈M3<6|U|1〉 v = 5 0.8618 0.9681 0.9949 0.9996
v = 10 0.8053 0.9208 0.9826 0.9986

Table 2 proves, as ρ → ∞ and v > 1, the system’s availability tends to 1 slower.
However, as ρ = 200 Kav ≈ 0.9999 for all repair time distributions and v > 1. The
results provided in Table 2 and Figure 6 indicate the presence of asymptotic insensitivity of
the system’s stationary characteristics to the shape of the repair time distribution and its
coefficient of variation at a fixed mean and ρ→ ∞.

6. Discussion and Conclusions

In this article, the general procedure for sensitivity analysis performance is introduced
and proposed for a reliability study of technical systems and mathematical models corre-
sponding to them. The presented procedure is universal, since it can be successfully applied
to many mathematical models to carefully study the influence of their initial parameters on
the target characteristics.

The proposed study, and SA itself, covers a wide range of practical tasks in technical
issues. For example, it is useful in the following situations.

1. Usually, information about life and repair time distributions of components of a real
technical system is unknown. If corresponding statistical data are available, the first
moments of these times (mean and variance) can be estimated. However, in the
absence of such information, one can only make assumptions about this. In such
situations, SA is necessary for understanding the system operation and the impact of
its input data on the system behavior.

2. The impact of the initial parameters on system performance is not always obvious.
The conclusions followed from SA can serve as recommendations to engineers and
developers in the framework of improving the reliability of a technical system.

In the example of the repairable k-out-of-n system, the SA procedure is discussed,
and the probabilistic characteristics of its reliability of this model are investigated. The
paper considers the k-out-of-n system with exponential lifetime and arbitrary repair time
distribution, and the sensitivity of its reliability measures to repair-time distribution and its
coefficient of variation. According to SA methodology, the following steps were conducted,
and new results were obtained.

Step 1. The method of supplementary variables, which helps to study t.d.s.s.p.’s and
s.s.p.’s, was used and applied to study the k-out-of-n system.

Step 2. The sensitivity of t.d.s.s.p.’s with the Erlang distribution of repair time to its
coefficient of variation was studied on the example of the 2-out-of-6 model. Numerical
analysis showed insensitivity of these characteristics to the value of the coefficient of
variation of both components’ and system’s repair time as t→ ∞. On the other hand, as
t→ ∞, t.d.s.s.p.’s tend to their stationary values and turn to s.s.p.’s.

Step 3. An explicit form of s.s.p.’s of the k-out-of-n model in terms of LT of the repair-time
distribution was presented. Numerical experiments showed asymptotic insensitivity of s.s.p.’s
of the 3-out-of-6 system to the shape of the repair-time distribution, its coefficient of variation
under rare failures, and quick restoration conditions of the system’s components.
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Further research will continue studies of a k-out-of-n system in the direction of reli-
ability and sensitivity analysis, including the dependencies of a system’s failure on the
location of failed components; a load-sharing k-out-of-n system in which a component’s
failure influences the increase in load of the other components remaining operational and
therefore decreases their residual lifetime.
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The following abbreviations are used in this manuscript:

i.i.d. independent and identically distributed
r.v. random variable
c.d.f. cumulative distribution function
p.d.f. probability density function
LT Laplace transform
t.d.s.s.p. time-dependent system state probability
SA sensitivity analysis
s.s.p. steady-state probability
Exp exponential distribution
Erl Erlang distribution
GW Gnedenko–Weibull distribution
U Uniform distribution
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