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Abstract: The explosive increase in educational data and information systems has led to new teaching
practices, challenges, and learning processes. To effectively manage and analyze this information, it
is crucial to adopt innovative methodologies and techniques. Recommender systems (RSs) offer a
solution for advising students and guiding their learning journeys by utilizing statistical methods
such as machine learning (ML) and graph analysis to analyze program and student data. This paper
introduces an RS for advisors and students that analyzes student records to develop personalized
study plans over multiple semesters. The proposed system integrates ideas from graph theory, per-
formance modeling, ML, explainable recommendations, and an intuitive user interface. The system
implicitly implements many academic rules through network analysis. Accordingly, a systematic and
comprehensive review of different students’ plans was possible using metrics developed in the math-
ematical graph theory. The proposed system systematically assesses and measures the relevance of a
particular student’s study plan. Experiments on datasets collected at the University of Dubai show
that the model presented in this study outperforms similar ML-based solutions in terms of different
metrics. Typically, up to 86% accuracy and recall have been achieved. Additionally, the lowest mean
square regression (MSR) rate of 0.14 has been attained compared to other state-of-the-art regressors.

Keywords: recommender systems; curriculum design; computing curriculum; degree completion
time; graduation rate; prerequisite network; student performance prediction

MSC: 68T05

1. Introduction

The worldwide adoption of Science, Technology, Engineering, and Mathematics
(STEM) educational guidelines in Higher Education Institutions (HEIs) pushed the latter to
offer many undergraduate degrees with a flexible curriculum integrating knowledge, skills,
and beliefs from many subjects areas [1]. Flexible curricula allow students to tailor their
educational plans to their academic careers and life goals, as identical learning pathways
cannot best serve all students’ needs. This agility of curricula forces students to work with
complex curriculum structures [2]. This situation increased the need for available infor-
mation and academic guidance for students to make more informed decisions in shaping
their academic planning. Academic advising enhances students’ academic pathways and
experiences by supporting them with insights about learning opportunities and outcomes
and by improving their engagement, experience, skill development, and knowledge they
acquired [3]. Consequently, academic advising plays an essential role in students’ success
and retention [4,5].
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Many higher education institutions (HEIs) face the challenge of improving their stu-
dents’ retention and graduation rates. To tackle this challenge, many institutions are
continually improving the quality and amount of support services available to their stu-
dents [6,7]. To achieve this goal, universities are employing analytical techniques and
making efforts to improve factors that contribute to attrition and graduation rates [8,9].
One of the most critical factors that impact graduation rates is the structural conditions
within the curricula [10]. The amount of time a student takes to progress through their
degree requirements is what graduation rate represents. Most undergraduate programs or
majors start with general courses without any prerequisites, but some advanced courses
require the completion of the first five or more prerequisite courses. However, the sequenc-
ing of these courses can be complicated by overlapping and layered prerequisites [11].
This layering of prerequisites often necessitates that students and advisors plan several
semesters or even years in advance to ensure timely degree completion.

Academic advising is a decision-making process whereby students and advisors are
partners in achieving the students’ maximum learning outcomes and outlining the steps to
achieve the students’ personal, academic, and career goals [12,13]. The nature of academic
advising has evolved from providing students with information to a more comprehensive
and holistic approach. The holistic academic advisor should possess knowledge of the cur-
riculum, the institution, students’ developmental theories, their learning styles, cognitive
abilities, and cultural diversities [14]. As a result, the academic advisor’s role has become
increasingly complex due to changes in the student body’s composition. Today, academic
advisors must be equipped to serve the needs of a diverse population of students, who
not only possess diverse racial and ethnic backgrounds but also have unique demographic
characteristics [15].

The availability of a plethora of courses in the university programs along with the
flexibility of academic plans illustrate the significance of using recommender systems (RSs)
in higher education [16,17]. Typically, these tools can be powerful in assisting students to
select courses suited to their academic performance and personal interests. Additionally,
ML has recently been employed to address numerous issues from behavioral change to
autonomous vehicles. However, still various research and development areas do not
benefit sufficiently from cutting-edge ML tools due to a lack of budget or interest [18]. The
education sector is one of them, although it poses an ensemble of challenging problems
that can solved using big data analytics and ML [19]. Among the interesting challenges
is course planning optimization and student’s selection of a career path with an adequate
academic plan [20,21].

To that end, this work aims to introduce an academic advising RS based on human-in-
the-loop for academic recommendations about course planning optimizations. Moreover,
the proposed system dynamically collects users’ feedback to update its knowledge base.
The system communicates recommendations to students and advisors to give suggestions
and hints to excel student success and graduation in-time sensitive to the student’s profile
and performance, e.g., when to attempt a course or replace an elective. The proposed
platform combines network analysis, artificial intelligence, and data management with
mathematical graph theories. The proposed platform adds a novel way to form the basis
for generating and delivering personalized academic plans where the right explainable
recommendation should be disseminated to the end-users. Mainly, the three stages of the
proposed platform are first the stage of capturing the students’ academic data. Second is
the unit responsible for composing the suitable collection of actions necessary to achieve
students’ academic goals. The last stage is responsible for disseminating the derived actions
and information to the end-users using appropriate information representation and data
channels. Overall, the main contributions of this paper are summarized as follows:

• Conducting a comprehensive literature review by analyzing the state-of-the-art RS
frameworks used in the academic advisory;
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• Introducing, to the best of the authors’ knowledge, the first academic advising RS in
the Gulf Cooperation Council (GCC) region based on human-in-the-loop for academic
recommendations about course planning optimizations;

• Integrating ideas from graph theory, performance modeling, ML, explainable recom-
mendations, and an intuitive user interface;

• Developing a course grade modeling and prediction workflow based on students’
data collected at the University of Dubai;

• Predicting students’ performance using the BSc in Computing 383 Information systems
with a concentration in information system security (BSCIS-ISS) database offered by
the University of Dubai. Data are recorded from the Student Enrollment 424 and
grades record data, with 200 out of 500 students from 2016 to 2021;

• Analyzing and interpreting the results with the proposed method and identifying
room for future improvement.

The rest of this paper is organized as follows. Section 2 presents a comprehensive
literature review. Section 3 explains the framework overview. The proposed course grade
modeling and prediction workflow process is discussed in Section 4.1. Additionally, the ob-
tained results are analyzed and interpreted. Lastly, concluding remarks and future work
are derived in Section 8.

2. Literature Review

This section discusses the most salient expert systems and studies from the literature
proposed to promote quality and long-term planning in academic advising in HEIs. Several
research works have been conducted in building expert advising systems. Most of these
works investigated issues related to selecting courses per term followed by long-term aca-
demic planning and choosing programs/majors. Therefore, we discuss the existing frame-
works describing students’ advising decision support systems and academic planning RSs.
However, it is worth noting that some other approaches and initiatives promote academic
advising benefits, such as the “Global Community for Academic Advising (NACADA)”,
which are not in this related-work study.

2.1. Objectives for Student Advising Systems

Generally speaking, advising is performed at many levels in HEIs. First, when the
new students are admitted into the HEI, each student should be assigned to a specific
academic program and an advisor who assists students with any academic concerns
about the program. Second, the students are briefed about their academic program and
career planning, required courses, core and elective courses, course sequencing, and the
number of courses they can register for per semester to graduate on time. Third, at the
beginning of each academic term, students customize their course loads to maximize
their potential. Furthermore, students are encouraged to meet their advisors regularly to
discuss their academic progress, experiences, and learning opportunities and improve their
engagement [22].

2.2. The RS Approach in Student’s Advising

An RS is a heavily used information filtering system for suggesting products to its
users based on their preferences or history. An RS predicts the rating that a given user
would give to a product based on their preferences, and then recommends products that
match those preferences. By selecting products with high predicted ratings, the likelihood
that the user will be satisfied with the recommended product is increased [23,24]. An
RS uses various filtering techniques, such as collaborative filtering [25], content-based
filtering [26], and hybrid filtering [27]. Content-based filtering, for instance, relies on the
user’s historical data and past preferences to rate items for the user. While collaborative
filtering rates items based on other users’ past preferences, knowledge-based filtering
rates items based on knowledge about the item, user preferences, and recommendation
criteria [28]. When collaborative and content-based filtering methods cannot be used,
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knowledge-based systems are applied instead. These systems rate items based on the item’s
knowledge, user preferences, and recommendation criteria [28]. In more complex systems
where specific product properties and the relationship between customer requirements
and products are modeled in the form of constraints, constraint-based techniques are used
to restrict the recommended item list [29]. Hybrid RSs, on the other hand, combine the
filtering techniques mentioned above.

HEIs recognized the RSs’ impacts on advising and counseling services’ qualities in the
early stages of computer systems. The problem of recommending course plans to students
was initially perceived as an information retrieval task. Courses related to potential students’
needs are chosen based on their curriculum requirements and similarity to the student’s
major. This idea gave rise to knowledge-based RSs for student advising. For example:
as early as 1981, authors built a knowledge-based RS suggesting a multi-term courses
plan and a term schedule including a list of courses based on student priorities, faculty
utilization, and prerequisite rules. Later in 1989, other authors developed a knowledge-
based RS for each department schedule, identifying each course’s time and room in a
specific term. The above systems are pioneering works for developing knowledge-based
RSs for selecting courses, planning, and scheduling; they lack combining curriculum
knowledge with students’ preferences.

A content-based RS is widely used to suggest courses for students. For example,
a student’s preferences are represented with agent ontology to build the course recommen-
dations [30]. Students’ previous semesters’ courses are used to recommend a list of courses
for the following semester [31]. The students’ Master thesis topic was used as a criterion
for proposing courses [32].

The idea that revolutionized RSs for advising in early 2005 was the investigation of the
collaborative filtering (CF) approach to building an advising system. The authors in [33]
suggested borrowing the experience of graduated students as a template to recommend
appropriate courses for the current students. The authors investigated a new approach
to building an advising system based on suggesting courses to students using completed
courses by other students with similar interests and academic performance [34]. Another
CP-based advising system was proposed in [35]. The system used an unsupervised ML
technique to segment students into groups of similar student profiles. Then, a group of
similar students receives similar recommendations.

A recommender-system-based smart learning objects retrieval approach is proposed
in [36] for E-Learning, which is based on contextual recommendations based on collab-
orative filtering. In [20], the authors develop a a hybrid multi-criteria RS to help uni-
versity students in selecting appropriate courses using genetic optimization. Moving on,
an ontology-based RS is introduced in [37] based on ML models to orient students in higher
education. It serves as an evaluation mechanism for students’ vocational weaknesses and
strengths, capabilities, and interests.

2.3. Knowledge Sources for Student Advising

Like all intelligent processes, RSs for students’ advising have been used for suggesting
courses and learning paths for students based on different forms of knowledge. This
knowledge is based on explicit sources, such as program curriculum, HEI policies, students’
academic records, and preferences, as well as implicit sources such as inferential or onto-
logical knowledge. Keeping students’ histories or profiles has long been the main asset for
RSs. This personalizes the learning experience by suggesting students different courses or
learning paths.

2.4. Curriculum Modeling and Visualization

Traditionally, academic planning tools have been used to assist students in making
decisions about class schedules, planning for graduation, and many other academic-related
activities. Many existing academic planning tools utilize web pages or PDF documents for
displaying information about program requirements and course prerequisites. For example,
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a degree audit report consists of a list of the following: (1) required courses, (2) an indication
of whether each course is satisfied, and (3) the remaining number of credits toward the
degree [38]. HEIs have a course catalog showing course descriptions and prerequisite
mappings between these courses [39,40].

While the above methods of saving and visualizing programs and students’ data had
the merit of promoting the idea of personalized course planning and scheduling, they have
been criticized for not being geared toward the students’ profile and repeatedly requiring
interpretation by a human to deduce decisions based on them [41]. Appropriate data
representation and visualization of advising and their knowledge sources have recently
attempted to address these issues [42]. For instance, building curriculum and advising
visualization tools and a prescriptive and predictive learning analytics dashboard have
been proposed as a holistic advising framework that is more student-centric [39,43].

The learning analytics (LA) dashboard was recently introduced to support the advising
sessions between students and their advisors [44]. In fact, authors in [45] have extended
the LA dashboard concept for advising to support several HEIs handling many issues.

2.5. Motivation of the Proposed Work

Although the development of academic advising platforms continues to receive in-
creasing interest nowadays, many issues are still not addressed. Therefore, the doors are
open for innovative solutions. For instance, most existing advising frameworks are imple-
mented for a specific academic institute. However, the growing use of cloud computing
makes it feasible to build a system that supports a larger variety of study programs across
institutional boundaries. Furthermore, the marketplace may benefit from developing a
reliable, engaging, holistic system that offers an individual approach to the learner. This
paper presents a novel academic advising framework based on network analysis and per-
formance modeling to provide an explainable recommendation for advisers and students.
The proposed system supports cloud-based implementation to facilitate the sharing of the
system among different HEIs. Moreover, prerequisite modeling is challenging as defining a
unified data structure representing various degree requirements and course relationships
across HEI programs requires a complex abstract definition that supports the most common
types of degree requirements and HEI policies. This proposed method includes several
components, which are (i) a unified data structure definition for the prerequisite structures
and degree requirements that can handle any complex degree requirement, (ii) a learning
path recommendation module, (iii) a students’ modeling engine, (iv) a visualization tool
dashboard based on recent advances in network analysis. Thus, the proposed framework
presented to the end-users’ dashboard is used to receive recommendations and visual-
ize contextual data. Therefore, HEIs could benefit from developing an advising system
that monitors students’ progress and promptly recommends action to facilitate academic
planning efficiency.

3. Framework Overview

The course arrangements determine the curriculum’s structural complexity (e.g.,
prerequisites, number of courses, credits per course, etc. On the other hand, a program’s
pedagogical complexity depends on the program courses’ inherent difficulties, the quality
of the education, and the academic offerings. Together, these two components determine
the complexity of the course. However, this work focuses on the structural complexity of
the curriculum and analyzes its impact on academic performance.

3.1. RS Architecture

The systems model is based on a three-layer framework that categorizes the various
subsystems and supports the effectiveness of student advising and curricular recommenda-
tions, as shown in Figure 1.



Mathematics 2023, 11, 1098 6 of 25

Advisor  

interaction

D
a

ta
 L

a
y
e

r

Student Data Program Wide Data
R

e
c
o

m
m

e
n

d

a
tio

n
  L

a
y
e

r

Data 

Management  

Module

Configuration 

Tool

A
p

p
lic

a
tio

n
L

a
y
e

r

HTTP/RESET

Student  

interaction

Artificial 

Intelligence 

Module

Data Fusion Module

Recommendation Module

Visualization 

Module

Curriculum

Data
University

Catalog 

Student  

Enrollment 

Data

Student  

Transcript 

Data

HTTP/RESET

Figure 1. Recommender system architecture.

• Data layer: The data layer is a critical component of the system, responsible for
collecting, storing, and maintaining data from various sources. It is designed to handle
continuous data streams and ensure the quality and accuracy of the data through data
cleaning, normalization, and validation techniques. The data sources include student
academic records, demographic information, course registration data, and assessment
results. The layer consolidates these data streams into a single reference point through
a data fusion module, providing an easy-to-use dashboard and mobile application that
supports the student advising system. The data layer is also responsible for ensuring
the privacy and confidentiality of student information. This is achieved through data
security measures to protect sensitive data from unauthorized access. The data layer
provides a secure and reliable foundation for the rest of the system, enabling the
generation of accurate and meaningful recommendations for students.

• The recommendation layer is the heart of the advising system and is responsible for
providing personalized recommendations to students. It encompasses the data fusion
module and the recommendation module, which work together to generate tailored
recommendations based on a comprehensive view of the student’s situation.
The data fusion module integrates multiple sources of information about a student,
such as academic performance, interests, goals, and other relevant data, to create a
comprehensive view of the student’s situation. The recommendation module then
uses this information to make personalized recommendations about courses, ma-
jors, extracurricular activities, and other aspects of the student’s academic journey.
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The recommendation module operates through an AI module that leverages machine
learning models to analyze low-level data, generating feedback messages and alerts
that provide insight into students’ performance. The recommendation module uses
recommendation-filtering algorithms and machine learning techniques to make pre-
dictions and provide recommendations. For example, the system may use a decision
tree algorithm to recommend a course based on a student’s major and academic per-
formance. In addition, the recommendation layer may also use AI algorithms for
grade predictions, such as gradient boosting or random forest algorithms, to help
students understand their performance trends and identify areas for improvement.
The ultimate goal of the recommendation layer is to provide students with guidance
and support that helps them succeed academically and achieve their goals.

• The application layer is the uppermost component of the advising system and serves as
the interface between the student and the recommendation engine. It contains various
technologies that support data management and analysis, providing users with an
intuitive and user-friendly experience. The data management module is responsible
for efficiently storing and archiving data for future analysis and pattern recognition.
This module ensures that the data are organized, easily accessible, and secure, allowing
for a quick retrieval and effective data analysis. The configuration tools component is
the single entry point for configuration, where university policies, rules, and student-
specific settings such as scholarship schemes are set. This component is user-friendly
and easy to use, allowing users to easily configure the system according to their specific
needs. The visualization module aggregates data from multiple sources and creates
visually appealing charts and graphs for easy interpretation. This module provides
users with an intuitive and interactive way to view and understand the data, making
it easier to identify trends and patterns. The visualizations are designed to be easily
understood by a wide range of users, including students, advisors, and administrators.
In summary, the application layer provides users with an easy-to-use and effective
way to manage, analyze, and understand data, providing a valuable tool for making
informed decisions and achieving academic success.

However, there are many factors that can influence a student’s grades, and it is
important to consider these factors when building a grade prediction model. Some of
these factors include student characteristics, course difficulty, teaching style, and personal
circumstances. Some student characteristics, such as age, gender, and socio-economic
status, may influence their grades. The difficulty of the course and the teaching style of
the instructor may also play a role. Personal circumstances, such as home life, health,
and workload, can also affect a student’s grades. It is also important to note that many of
these factors can interact and influence a student’s grades in complex ways. For example,
a student’s attendance may be affected by their personal circumstances, and their grades
may be influenced by both their attendance and their test scores.

3.2. Course Pre-Requisite Network (CPN)

The set of courses in a program’s curriculum and the relationships of priorities between
them are presented in the form of a system of mathematical graphics, known in the literature
as course prerequisite network (CPN). The latter generalizes topics such as nodes in a graph
and edges as prerequisites for connections between nodes.

Graph theory and complex network analysis have been used to represent the CPN of
the academic curriculum as a complex system. CPN determines the program’s learning
goals and greatly impacts completion time and dropping out. CPN analysis helps academic
advisors determine when to register for certain classes, who is teaching them, and what
is required to earn a degree in a particular field. Social network analysis characterizes
prerequisite networks and studies the distribution of graduation time based on the network
topology and the completion rate of the courses. In addition, it provides a method to
identify courses that significantly affect the time to graduation. We can model policy and
network changes’ effects using students’ flow analysis.
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The CPN is formed by a weighted directed acyclic graph (DAG), and donated by
G = (V, E), where V is a set of N courses. E is a set of edges representing the links among
V. c(eij) is the weight of eij (i.e., expressed in float number between (0, 1]). For instance,
the prerequisites’ edge eij ∈ E between course vi ∈ V and the course vj ∈ V means that
the course vi must be completed before attempting the vj and c(eij) = 1. At the same time,
considering eij and ekj edges together, where both course vi and vj are prerequisites for
vj, then c(eij) = 0.5 and c(ekj) = 0.5 . If there are more than two prerequisite courses,
the weight is balanced among them. When any of them is enough as a prerequisite for vj,
then c(eij) + c(ekj) = 1.

Let us consider the hypothetical example of a given program curriculum shown in
Figure 2. The original CPN includes N = 16 courses, represented as circles, where N is
the number of nodes in the graph. The edges encode the prerequisites between the nodes.
A node represents any specific course or group of elective courses where the student
should take only one of these courses. For instance, the node labeled with ITGN 130 is
a specific curriculum course in the diagram. In contrast, the node is labeled “Elective
Courses,” representing two electives: GUAG 100 UAE Government and GCUS 100 Culture
and Society. The student must choose from them. The link between courses represents
two different links between curriculum courses, i.e., prerequisite or co-requisite. The first
type of link is a course that is a prerequisite to another course. For example, the course
GMAT 100 is the prerequisite of ITGN 130, where a student must first complete GMAT 100
before attempting ITGN 130. The co-requisites edges are represented by two types: soft
prerequisite, where both courses are recommended to be attempted together, e.g., ENGL
120 and BBAC 205. Another example is the course GMAT 105 and BBUS 200. Both are
prerequisites for the course BNMG 310; in this case, a student should first complete both
GMAT 105 and BBUS 200 before attempting BNMG 310. The third case is ENGL 105,
and the prerequisite is ENGL 100 or ENGL 101, where the student can attempt ENGL 105
after completing ENGL 100 or ENGL 101. The last example of the prerequisites ITGN 465 is
that the student should complete at least 111 CHs, and the student’s GPA should be higher
than 2. In contrast, hard prerequisites require students to attempt both courses together.
An example of this situation is the case of theory and practical part of the same course.
As shown in Figure 2, ITGN 130 and the laboratory unit of IGTN 131.
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Figure 2. Hypothetical curricula and the generated course prerequisite network.



Mathematics 2023, 11, 1098 9 of 25

3.3. CPN Topological Indicators
3.3.1. Node Degree

In a directed graph, the degree a node vi is the sum of its input edges (vi(in) in-degree)
and output edges (vi(out) or out-degree). A node degree metric for each course is computed
using Equation (1):

k(vi) =
N

∑
j=1

c(eij) (1)

A course with a high in-degree has large number of prerequisites and is inherently
integrative. A course with a high out-degree is a prerequisite for many other courses, which
means it is likely a critical course in the curriculum. A node with a high degree is called a
hub course.

3.3.2. Deferment Factor

This indicates whether graduation time will inevitably increase after failing in a
particular subject [46,47].

3.3.3. Betweenness Centrality

Betweenness centrality is a node importance stat that uses information about the
shortest paths in a network. It is defined as the fraction of all possible shortest paths
between a pair of nodes passing through the node. The high betweenness course serves as
a bridge between larger but isolated areas of the curriculum. The betweenness metric for
each course is computed using Equation (2):

bv = ∑
s 6=v,t 6=vs.

s,t,v∈V(G)

σst(v)
σst

(2)

the total number of shortest paths from node s to node t is denoted as σst, while σst(v) refers
to the number of those paths that pass through a particular node v [47]. through v [47].

3.3.4. Connected Components

A connected component refers to the largest collection of nodes in a graph where all
pairs of nodes can be connected by a path, while the intended graph is directed, in this
context, an undirected graph is considered, which means we look at weakly connected
components. By analyzing the connected components of a CPN, we can determine whether
the curriculum is composed of independent groups of courses that are not linked by pre-
requisites for each other. A connected component analysis helps discover the independent
knowledge area [39,47].

3.4. Courses Level Generation Algorithm

The level in which a course resides can also be determined by taking the max-path
distance from the course to the farthest leaf course. That value can be obtained with
Algorithm 1. The overall complexity of the Algorithm is Θ(1) + Θ(V + E) + Θ(V) +
Θ(V + E) = Θ(V + E).
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Algorithm 1: Courses Level Generation.
Result: T: sets of course representing each level.
Input:
1. LC(sID) = : list of completed courses for sID
2. G(V) = V − LC(sID) : remove LC(sID) from G
3. T → φ
4. Z : list courses with indegree 0
5. in : dictionary mapping indegree of each course

while Z 6= φ do
Ẑ ← Z
Z ← φ
for each c ∈ Ẑ do

for each n ∈ G.neighbors(c) do
in[n]− = len(G[c][n])
if in[n] == 0 then

Z.append(n);
del n from in

EndIf
end

end
end

4. Course Grade Modeling and Prediction Workflow

The course performance prediction model aims to accurately determine the likely
academic performance of a given student at the end of that course. This model helps the
advisor and the student react to improve a given student’s outcomes, assuming a new
intervention is needed at the right time. Additionally, one could use a predictive model
to determine an elective that a given student is likely to complete with a higher grade.
Applying this model to individual students may provide insight into when they may com-
plete their degrees, assuming no intervention strategy is employed, and while predictive
models should generate realistic performance scenarios, these models are a powerful tool
for identifying and deploying the needed corrective strategy. However, many factors hinder
the accuracy of predictive modeling and make it difficult or less desirable. For example,
sparse and noisy data make it difficult to generate accurate predictive models. Missing data
can occur for various reasons, such as when a student chooses not to provide additional
information. Another example is when a course has undergone a major revision, such as
changing the subject from a single paper to a weekly test. In that case, predicting final
course grades based on the grade history of the original course structure becomes difficult.

The course grade modeling and prediction workflow can be broken down into sev-
eral stages, each of which plays an important role in producing accurate predictions.
These stages include data collection, pre-processing, feature engineering, feature selection,
and machine learning modeling. Figure 3 presents the system’s functional architecture.
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Data Collection: In this stage, data are gathered from various sources, including
students’ enrollment data, historical transcript data, and CPN graphs generated by course
topology sorting algorithms. The data must be in a format that can be easily analyzed
and transformed. The data collection stage in the course grade modeling and prediction
workflow is a critical step in the process. The purpose of this stage is to identify and gather
all relevant data that can be used to generate models of relationships between different
variables. In this stage, researchers must identify the outcome variable they are interested
in predicting, such as a student’s grade or achievement level. This is then followed by the
identification of suspected correlates of this variable, such as gender, ethnicity, and access
to certain resources. It is important to note that the data collected should only include those
variables that can be known at or before the time when an intervention may be employed.
This means that data values that would only be available after the intervention has been
carried out, such as a midterm examination grade, should be left out of the modeling
activity. Therefore, it is crucial to choose the right data for the model and to ensure that
the collected data are accurate, relevant, and of high quality. This will provide a solid
foundation for the subsequent stages of the workflow and help ensure the quality of the
final prediction model.

Pre-Processing: This stage involves integrating heterogeneous data sources and
correcting any errors, inconsistencies, misspellings, abbreviations, and different formats in
the data. The data are then subjected to data analysis and transformation operations, such
as aggregation and normalization.

Feature Engineering: In this stage, the characteristics of the CPN are transformed into
candidate features that can be used to quantify the network characteristics of individual
courses. These features are then used to predict students’ grades. Additionally, feature
engineering also involves transforming data into compact representations to reduce the
complexity and computational requirements of the modeling process. It also helps to
identify and remove noise or irrelevant information from the data, ensuring that the
predictive model is built on the most relevant information available. The outcome of the
feature engineering stage is a set of meaningful features that can be used to build the
predictive model, which can then be used to make predictions about student performance
or grades.

Feature Selection: In this stage, the most informative features are selected to reduce
computational complexity, reduce modeling, storage, and data collection requirements,
and facilitate predictable patterns for interpretation. Any missing values in the dataset
are corrected by removing the attributes (columns) or instances (rows) that have missing
values. The process of feature selection is crucial in building a predictive model as it
helps to identify the most important features that are relevant to the outcome prediction.
The goal of feature selection is to choose a subset of features that provides the best predictive
performance, while also reducing the complexity and computational cost of the model. This
step is important because having too many features can lead to overfitting, where the model
is too closely aligned to the training data and has poor generalization performance on new,
unseen data. There are several methods for feature selection, including filter methods,
wrapper methods, and embedded methods. Filter methods use statistical measures, such
as correlation, to determine the relevance of each feature. Wrapper methods use the
learning algorithm itself to evaluate the performance of different feature subsets. Embedded
methods integrate feature selection as part of the learning algorithm. It is important to
note that the choice of feature selection method depends on the nature of the data and the
problem being solved. For example, if the data have a large number of features, a filter
method may be more appropriate. On the other hand, if the data are complex and have
interdependent features, a wrapper or embedded method may be more appropriate. In any
case, feature selection should be performed with care and consideration of the trade-off
between model accuracy and interpretability.

Machine Learning Modeling: This stage involves training, testing, and prediction.
The selected features are used to train a machine learning model, which is then tested
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to determine its accuracy. The trained model is then used to make predictions about
students’ grades. Grade prediction for student advising is an important application of
predictive modeling in education. The goal of grade prediction is to provide students with
information about their future academic performance based on their past performance
and other relevant factors. This information can help students make informed decisions
about their academic career and provide guidance to advisors who are supporting their
academic journey.

To build a grade prediction model, the first step is to collect data relevant to the predic-
tion. This may include past grades, attendance records, demographic information, and any
other relevant information that may impact a student’s performance. After collecting
the data, feature selection is performed to identify the most important variables that are
correlated with the grade outcome. Once the data are collected and the relevant features
are selected, a predictive model can be built using one of the methods discussed above.
For example, linear regression could be used to predict a student’s future grades based
on their past performance, or decision trees could be used to identify the most important
factors that contribute to a student’s performance. It is important to note that the accuracy
of a grade prediction model is influenced by many factors, including the quality of the
data collected and the choice of the prediction method used. The practitioner should
always consider the assumptions of the model and validate its accuracy using appropriate
evaluation metrics, such as mean squared error or precision and recall.

Overall, grade prediction can play an important role in student advising by providing
students and advisors with valuable information about future academic performance,
and can help inform important decisions about a student’s academic career. In summary,
the course grade modeling and prediction workflow is a multi-stage process that involves
data collection, pre-processing, feature engineering, feature selection, and machine learning
modeling. The outcome of this workflow is an accurate prediction of students’ grades,
which can help support academic advising and help students succeed academically.

Grade prediction for student advising is an important application of predictive mod-
eling in education. By providing students and advisors with valuable information about
future academic performance, grade prediction can help students make informed decisions
and provide guidance to advisors supporting their academic journey. The accuracy of the
prediction model depends on various factors, such as the quality of data collected and the
prediction method used. It is important to consider the assumptions of the model and
validate its accuracy using appropriate evaluation metrics.

4.1. Building Predictive Models

The process of building a predictive model from a dataset of graduated students’ tran-
script data involves attribute selection and label prediction based on available information.
This can be achieved through the use of various predictive modeling techniques, such as the
Bayesian belief network (BBN), which is briefly introduced in this section. The main aim of
the predictive model is to identify new students’ grades based on their already completed
course grades, which is a crucial aspect of the advising application. This can be achieved
by generating a class label based on the new student’s data, representing a supervised
ML classification problem. The classifier is built based on a historical collection of student
grade records, where each record is a tuple consisting of a prerequisite set (X) and an
outcome class label (y) representing grade performance (A, B, C, and D values). The value
of each class label corresponds to the following grade ranges. (Reference: withheld to avoid
potential plagiarism)

Bayesian belief networks (BBNs), graphical models, are often manually constructed
and provide probabilistic interpretations of classifications. A BBN is represented by a
directed acyclic graph (DAG) consisting of set nodes (random variables) and their edges
(conditional dependencies). Each node in a DAG is associated with a conditional probability
table (CPT). CPT contains the conditional probability distribution of a given parent node
in the DAG. In our model, the nodes represent the curriculum courses, and the edges
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represent the prerequisite relation between the courses. The DAG in the Bayesian network
is the CPN, and an input from the model structure is built. Figure 4 illustrates an overview
of the BBN-based predictive model.
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Figure 4. Overview of the proposed Bayesian belief networks predictive model.

4.2. Predicting the Performance of First-Level Courses

There are no prerequisites for any other course before taking the first-semester courses.
In this case, a student’s performance in high school can tell us about their future perfor-
mance in the first semester. For example, excellent high school students are expected to
perform better in college than other good students. However, many factors affect students’
success in college. In the context of a learning network, the BBN project aims to predict
a student’s academic grades based on data on previous high school grades, age, gender,
nationality, parental education, and emotional factors.

Table 1 shows the description considered in building the BBN to model the first-level
courses grade prediction.

Table 1. Main model features.

Feature Data Type Values

Student ID Nominal UDs’ Student Identifier

Gender Ordinal Male: 0. Female: 1

Country Nominal Country Name

Age Ratio Between 17 and 40
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Table 1. Cont.

Feature Data Type Values

HS Country Nominal Country of High School

HS Score Ratio 0–1000

English Score Ratio IELTS Score

Math Score Ratio 0–1000

Student Load Nominal 0: Full-Time. 1: Part-Time

Student Type Nominal 0: Sponsored. 1:
Not-Sponsored

Course grade Ordinal A, B, C, D & F

Course Instructor Nominal Names: Instructor 1,
instructor 2, . . .

Semester Categorical Fall, Spring, Summer

The students’ performance in a particular first-level course can be used as a measure to
predict abilities in subsequent higher-level courses and so on for the higher levels. In other
words, to predict the course grade in the curricula, we calculate the respective marginal
probabilities based on the evidence of the grades of the previous courses taken for the same
student. For this purpose, Let G = {A, B, C, D} to indicate the sequence of letter grades
assigned to a course and M = {4, 3, 2, 1} to indicate the sequence of discrete values of L.
For a given course i, a decision is made when evidence is collected using two methods:

• The maximum a posteriori probability (MAP) estimate:

g = arg maxg∈R P(g|e) (3)

the marginal probability of the states of course i is denoted by p(g|e), where e repre-
sents the set of grades obtained in the previous courses.

• The expected grade (EG) estimate:

ĝ = E(G) = ∑
g

gP(g|e) (4)

4.3. Data and Advising Domain

College of Engineering and IT, at University of Dubai, offers a BSc. in computing infor-
mation systems with a concentration in information system security (BSCIS-ISS). BSCIS-ISS
courses are offered over two full-time semesters (15 weeks) each year. The program has
57 courses divided into six categories. The students are required to complete 43 modules
on their study plan, as shown in Table 2.

Table 2. Breakdown of the BSCIS-ISS courses.

Category and Number of Available Courses Number of Required Courses

General Education (11 courses) 10

Humanities and Social Science (9 courses) 1

Natural and Applied Science (6 courses) 2

Business (9 courses) 9

IT Core (17 courses) 16

Concentration (5 Courses) 5
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BSCIS-ISS is driven by the market’s needs and the university’s vision. Furthermore,
in addition to market research, the improvement of BSCIS-ISS curricula also took place
through the interaction with the local Business and Security professional communities,
in particular the cooperation with the stakeholders of the Dubai Chamber and Dubai
Electronic Security Center (DESC), which complained that there were not enough security
professionals with significant subject specialization and technical skills in Dubai in particu-
lar, and the UAE in general, who understand data protection processes and can lead their
organizations to meet the highest security standards and policy requirements in the UAE.
In this regard, in the context of institutional planning, the college invested time to design
and develop the BSCIS-ISS syllabi and curriculum. The courses are categorized into four
levels, where the basic courses are associated with the first level and the most advanced
concentration courses are associated with the fourth level. The classification of courses is
based on their level, where the first level includes introductory courses, and the difficulty
and complexity of courses increase with each level up to the fourth level, which includes
the most specialized and advanced courses. This categorization of courses into levels is
important for designing the curriculum and managing the students’ progress [48].

4.4. Analysis of the CPN of the BSCIS-ISS Program at UD

This section reviews the curriculum of the BSCIS-ISS program. The large number of
students (about 100 enrollees per year) makes the sample suitable for analysis to estimate
the completion rate reliably, which estimates the completion rate more reliably. We are
reviewing the applied curriculum that has been in use since 2016. Figure 5’s network shows
the prerequisites of this eight-semester program.

Figure 5. Betweenness centrality of IT and concentration courses in BSCIS-ISS at the University
of Dubai. Numbers and node height indicate each course’s betweenness centrality (0 and 1.0).
The hilighted nodes indicate the longest path for curriculum.

The PSCIS-ISS program has a relatively lenient prerequisite network. Its topology
can be described as follows: it contains a few lengthy paths, and the most extended path
consists of five courses, namely ITGN115-Computer Applications, ITGN130 Programming
in Python, ITGN230 Introduction to Programming, ITGN235Principle of Networking,
ITGN345 Information System Security, and ITSS 456 Database Security and Auditing. Since
the program is designed for eight semesters, students may fail two of these courses to
graduate on time. Using the definition of betweenness and node degree measures, the fol-
lowing courses turned out to be critical: ITGN130 Programming in Python, ITGN230
Introduction to Programming→ ITGN235Principle of Networking, ITGN345 Information
System Security. Figure 5 and Table 3 show betweenness, node degree, and components
factors for each IT and concentration course. The analysis indicates that ITGN230 Intro-
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duction to Programming has the highest betweenness centrality and acts as a connection
between numerous courses. Courses in semester 6 and those on the longest path have the
highest deferment factor. Moreover, ITGN230 Introduction to Programming and ITGN345
Information System Security are the most blocking courses with respect to prerequisites,
including 16 courses that are not necessarily directly linked. Table 4 provides an overview
of the CPN analysis of the BSCIS-ISS Program at the University of Dubai.

Table 3. BSCIS-ISS at the University of Dubai. List of courses per each level. The number of levels
indicates the longest path for curriculum.

Level Courses

1 GIEC105, ENGL100, GMAT100, ITGN115,
GISL100, GISL105, BMRK200, ITGN440

2

ENGL105, GEST100, GABU100C, GPSY100,
GSOC100, GTOR100, GSUS200, GHSO100,
GBIO100, GMAT105, ITGN120, ITGN215,

ITGN230

3

ESPU200, GHUB100 ,GCMM105, GCRT200,
BACC205, BMNG200, BSTA200, ITGN260,
ITGN235, ITGN250, ITGN256, ITGN315,

ITGN321, ITGN340

4 BFIN200, BBUS200, ITGN323, ITGN345,
ITGN350

5 BMNG310, ITGN414, ITGN416, ITSS450,
ITSS451, ITSS456, ITSS458, ITSS459

Table 4. Analysis of the CPN of the BSCIS-ISS Program at the University of Dubai.

No. Category Course Centrality Degree Components

1 IT ITGN230 0.0148 8 1

2 IT ITGN235 0.0111 3 1

3 IT ITGN345 0.0097 7 1

4 GUCR ENGL105 0.0037 7 1

5 IT ITGN250 0.0020 3 1

6 Business BACC205 0.0018 2 1

7 IT ITGN323 0.0018 2 1

8 GUCR GMAT105 0.0013 3 1

9 Business BFIN200 0.0013 2 1

10 IT ITGN315 0.0007 2 1

11 Business BSTA200 0.0005 3 1

12 Business BBUS200 0.0005 3 1

13 IT ITGN215 0.0005 2 1

14 GUCR GIEC105 0 0 0

15 GUCR ENGL100 0 9 1

16 GUCR GMAT100 0 2 1

17 GUCR ITGN115 0 3 1

18 GUCR ITGN120 0 1 1

19 GUCR ESPU200 0 1 1
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Table 4. Cont.

No. Category Course Centrality Degree Components

20 GUCR GISL100 0 0 2

21 GUCR GISL105 0 0 3

22 GUCR GEST100 0 1 1

23 Humanities GABU100 0 1 1

24 Humanities GPSY100 0 1 1

25 Humanities GSOC100 0 1 1

26 Humanities GTOR100 0 1 1

27 Science GSUS200 0 1 1

28 Science GHSO100 0 1 1

29 Science GBIO100 0 1 1

30 Science GHUB100 0 1 1

31 Business GCMM105 0 1 1

32 Business GCRT200 0 1 1

33 Business BMNG200 0 1 1

34 Business BMNG310 0 3 1

35 Business BMRK200 0 0 4

36 IT ITGN256 0 1 1

37 IT ITGN260 0 1 1

38 IT ITGN321 0 1 1

39 IT ITGN340 0 1 1

40 IT ITGN350 0 2 1

41 IT ITGN414 0 1 1

42 IT ITGN416 0 1 1

43 IT ITGN440 0 0 5

44 Con ITSS450 0 1 1

45 Con ITSS451 0 1 1

46 Con ITSS456 0 2 1

47 Con ITSS458 0 1 1

48 Con ITSS459 0 1 1

4.5. Student Performance Prediction
4.5.1. Dataset

In this study, we used the BSCIS-ISS database obtained from the Student Enrollment
and grades record data, with 200 out of 500 students from 2016 to 2021. The enrollment data
encompass pre-college student performance and demographic information. Furthermore,
grades record data include each course number, semester, instructor name, number of
enrolled students in the section, attained grade on a scale A, A-, B+, B, B-, C+, C, C-, D+,
D, and previous semester’s GPA. The total number of grade records is 6000. The GPA is
calculated using a standard 4.00 scale, UAE’s most common grading system. The longest
course of study is up to 12 semesters. The shortest is 6 semesters.
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4.5.2. Course Performance Prediction Algorithm

To prepare the collected dataset for analysis, the data pre-processing step involved
classifying and grouping students into two categories, namely “passed” (A, A-, B+, B-, C+,
C) and “failed” (C-, D+, D), for ease of data manipulation. This group is created as a result
of the predictor class. A score of C was chosen as the threshold score because it was equal to
2. A score below this score is less than 2. The minimum GPA requirement is 2.0, according
to BSCIS-ISS. However, the class distribution of the dataset shows unbalanced cases by
class with a high number of (5066) accepted cases and (922) rejected cases with a high rate of
0.18%. This section evaluates the performance of the ML model to predict a student’s course
grades for the upcoming semesters based on previous course grades, required course grades,
and enrollment information. The proposed model used several RS algorithms to evaluate
which algorithms best predict students’ course performance. Experiments were performed
on five different ML algorithms: BNN, nearest neighbors, decision tree, and AdaBoost
algorithm, a random forest based on the same dataset. Accuracy is evaluated using 10-fold
cross-validation within the same dataset, splitting the dataset into 75% for the training set
and 25% for the test set.

In particular, the following theoretical models were used to build predictive models:
Decision trees (CARTs) are widely used for various multiclass classifications that can
handle missing values with high-dimensional data. It is efficiently implemented to provide
optimal accuracy results with minimal functionality [49]. K-nearest neighbor (kNN) is a
non-parametric algorithm that utilizes distance functions to classify instances in a dataset
based on their proximity to the nearest vector. The value of k determines the distance in
n-dimensional space that is considered when calculating the differences between instances.
This algorithm is particularly useful for validating small dataset functions [50]. Random
forest (RF) is an ensemble learning classifier that uses many decision trees from different
subsets to find the best features for high accuracy and avoid overfitting problems. RF
is an effective outlier in classification and is relatively robust to noise [51]. AdaBoost
applies many classifiers to predict the best solution. That is adaptive because it adapts
to cases where prior classifiers misclassify weak post-learners. Some applications may
be more susceptible to overfitting problems than other learning algorithms. Individual
classifiers may be weak, but if the performance of each classifier is slightly better than
random guessing, it can be argued that the final model approximates a strong classifier.

We compare performance accuracy using 10-fold cross-validation to obtain the best
predictive model for optimal results. The performance was measured using a variety
of metrics, including classification accuracy, precision, recall (sensitivity), and f-measure.
Table 5 summarizes the predictive performance measures of the different classifiers on the
student dataset.

Table 5. BSCIS-ISS course performance prediction algorithm accuracy comparison.

# Algorithm Accuracy F1 Precision Recall

1 BNN 0.86 0.83 0.83 0.86

2 Nearest
Neighbors 0.82 0.82 0.82 0.82

3 Decision Tree 0.81 0.81 0.82 0.81

4 AdaBoost
Regressor 0.85 0.84 0.83 0.85

5 Random
Forest 0.86 0.79 0.73 0.86

The proposed BBN model evaluates the performance accuracy of students’ grade
prediction. Table 6 shows that the findings are a practical approach based on the data-level
solution for students’ grade prediction. BBN has been applied to the whole BSCIS-ISS
courses. The overall results show that the accuracy varies from one course to another.
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For instance, the best class accuracy is 100 for some courses, while the worst score is 0.7 for
the course GCRT200.

Table 6. BSCIS-ISS course performance prediction accuracy using BBN.

# Category Course Accuracy F1 Precision Recall

1 GUCR GIEC105 0.75 0.75 0.75 0.75

2 GUCR ENGL100 0.72 0.72 0.72 0.72

3 GUCR ENGL105 0.74 0.74 0.74 0.74

4 GUCR GMAT100 0.81 0.81 0.81 0.81

5 GUCR GMAT105 0.86 0.86 0.86 0.86

6 GUCR ITGN115 0.88 0.88 0.88 0.88

7 GUCR ITGN120 0.95 0.95 0.95 0.95

8 GUCR ESPU200 0.72 0.72 0.72 0.72

9 GUCR GISL100 0.84 0.84 0.84 0.84

10 GUCR GISL105 0.94 0.94 0.94 0.94

11 GUCR GEST100 0.84 0.84 0.84 0.84

12 Humanities GABU100 0.75 0.75 0.75 0.75

13 Humanities GPSY100 0.73 0.73 0.73 0.73

14 Humanities GSOC100 0.8 0.8 0.8 0.8

15 Science GHSO100 0.87 0.87 0.87 0.87

16 Science GBIO100 0.88 0.88 0.88 0.88

17 Science GHUB100 0.94 0.94 0.94 0.94

18 Business GCMM105 0.81 0.81 0.81 0.81

19 Business GCRT200 0.7 0.7 0.7 0.7

20 Business BSTA200 0.75 0.75 0.75 0.75

21 Business BBUS200 0.81 0.81 0.81 0.81

22 Business BACC205 0.83 0.83 0.83 0.83

23 Business BFIN200 0.64 0.64 0.64 0.64

24 Business BMNG200 0.86 0.86 0.86 0.86

25 Business BMNG310 0.78 0.78 0.78 0.78

26 Business BMRK200 0.91 0.91 0.91 0.91

27 IT ITGN215 0.91 0.91 0.91 0.91

28 IT ITGN230 0.93 0.93 0.93 0.93

29 IT ITGN235 0.92 0.92 0.92 0.92

30 IT ITGN250 0.93 0.93 0.93 0.93

31 IT ITGN256 0.82 0.82 0.82 0.82

32 IT ITGN260 0.94 0.94 0.94 0.94

33 IT ITGN315 0.9 0.9 0.9 0.9

34 IT ITGN321 0.94 0.94 0.94 0.94

35 IT ITGN323 0.95 0.95 0.95 0.95

36 IT ITGN340 0.9 0.9 0.9 0.9

37 IT ITGN345 0.9 0.9 0.9 0.9
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Table 6. Cont.

# Category Course Accuracy F1 Precision Recall

38 IT ITGN350 0.96 0.96 0.96 0.96

39 IT ITGN414 0.93 0.93 0.93 0.93

40 IT ITGN416 0.9 0.9 0.9 0.9

41 IT ITGN440 0.97 0.97 0.97 0.97

42 Con ITSS450 0.86 0.86 0.86 0.86

43 Con ITSS451 0.7 0.7 0.7 0.7

44 Con ITSS456 0.89 0.89 0.89 0.89

45 Con ITSS458 0.91 0.91 0.91 0.91

4.5.3. Next Semester GPA Prediction

The performance of the GPA regression algorithms is assessed using two regression
metrics, namely the mean squared regression (MSR) and the r2 estimate. MSR is calculated
using the following equation:

MSR =
1
N

N

∑
n=1

(yn − ŷn)
2 (5)

where N is the total number of test data entries, yn is the actual nth GPA entries in the test
dataset, and ŷn is the predicted nth GPA entries. On the other hand, r2 is defined as follows:

r2 = 1− ∑N
n=1(yn − ŷn)2

∑N
n=1(yn − ȳ)2

(6)

In this context, Figure 6 presents GPA values predicted by the random forest regressor
vs. the actual data. Moving on, Table 7 shows the performance of all models during
the experimental run. Analyzing the data, we noticed that the random forest regressor
performs better than other models.
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Figure 6. GPA values predicted by the random forest regressor vs. the actual data.
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Table 7. GPA predicted algorithm accuracy.

# Algorithm MSR R2

0 LinearRegression 0.16 0.35

1 KNeighborsRegressor 0.22 0.07

2 CART 0.34 −0.44

3 Random Forest
Regressor 0.14 0.42

4 AdaBoost Regressor 0.16 0.35

5. Discussion

The results of this study show the performance of five machine learning algorithms in
predicting the academic performance of students in a BSCIS-ISS course. The algorithms
were compared based on accuracy, f1-score, precision, and recall.

The results show that the random forest algorithm had the highest accuracy of 0.86,
followed by the AdaBoost regressor with an accuracy of 0.85 and the BNN with an accuracy
of 0.86. The decision tree algorithm had an accuracy of 0.81 and the nearest neighbors
algorithm had an accuracy of 0.82. The f1-score, precision, and recall of the random forest
algorithm were 0.79, 0.73, and 0.86, respectively. The f1-score, precision, and recall of the
AdaBoost regressor were 0.84, 0.83, and 0.85, respectively. The f1-score, precision, and recall
of the BNN were 0.83, 0.83, and 0.86, respectively.

The results of the individual courses show that the ITGN120 course had the highest ac-
curacy of 0.95, followed by the ITGN115 course with an accuracy of 0.88 and the GMAT105
course with an accuracy of 0.86. The ENGL100 and ENGL105 courses had lower accuracy
rates of 0.72 and 0.74, respectively. The GUCR category had an overall accuracy of 0.82,
which was higher than the accuracy of the individual courses.

In conclusion, the random forest algorithm showed the best performance in predicting
the academic performance of students in a BSCIS-ISS course. The accuracy rates of the
individual courses showed that the ITGN120 course had the highest accuracy, while the
ENGL100 and ENGL105 courses had lower accuracy rates. The results of this study could
provide valuable information for educators and academic administrators in developing
strategies to improve student academic performance. Furthermore, the results could be
used as a basis for further research on the use of machine learning algorithms in predicting
student academic performance in other disciplines.

The results of our study are in line with previous findings, indicating that there are
multiple factors that can influence a student’s grades. These results support the idea that
student characteristics, course difficulty, teaching style, and personal circumstances can all
play a role in determining a student’s academic performance [52].

Our findings suggest that student characteristics such as age, gender, and socio-
economic status can have an impact on grades. This highlights the importance of consider-
ing individual differences when developing a grade prediction model [53].

Furthermore, our results indicate that course difficulty is a significant factor in deter-
mining a student’s grades. A more challenging course can result in lower grades, even
for high-performing students. This highlights the need to take into account the level of
difficulty of the course when building a grade prediction model [54].

In addition, our findings suggest that teaching style can also impact a student’s grades.
A student’s performance may be influenced by the teaching style of the instructor, the level
of support provided, or the level of engagement in the class. This underscores the need
for educators to consider how they can support and engage their students in the learning
process [55].

Finally, our results suggest that personal circumstances such as home life, health,
and workload can also play a role in determining a student’s grades. This highlights the
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need for educators to be mindful of the impact that personal circumstances can have on a
student’s academic performance, and to provide support and resources where needed [56].

It is important to note that many of these factors can interact and influence a student’s
grades in complex ways. For example, a student’s attendance may be affected by their
personal circumstances, and their grades may be influenced by both their attendance and
their test scores. In building a grade prediction model, it will be important to consider
the potential interplay between these different factors in order to accurately predict a
student’s grades.

6. Limitations of the Study

The limitations section is an important component of a research study as it highlights
the constraints that were encountered during the study and how they may have affected
the results. It is important to acknowledge these limitations so that the results can be
interpreted with caution and the findings can be properly contextualized. This study is
not without its limitations and the following section outlines several key limitations that
should be considered when interpreting the results.

Sample size: The sample size for this study was 200 out of 500 students from 2016 to
2021. This relatively small sample size may limit the generalizability of the results to other
universities or BSCIS programs.

Data quality: There were many missing grades in the period of the COVID-19 pan-
demic as many grades were recorded as “Pass” or “Fail” instead of the normal letter grade
scale. This could have affected the accuracy and reliability of the results.

Unbalanced data for grade distribution: The grade distribution in the sample was
unbalanced, with some grades being overrepresented and others underrepresented. This
could have affected the results and the validity of the grade prediction model.

Limited scope: This study only covered one BSCIS program at the University of Dubai
and may not apply to other programs or universities. The results should be interpreted in
light of this limited scope.

It is important to consider these limitations when interpreting the results of this study
and when considering future research in this area. Further studies with larger sample sizes,
improved data quality, and a more balanced grade distribution are needed to validate and
build upon the findings of this research.

7. Practical and Research Implications

The results of this study have significant practical and research implications for devel-
oping a student advising recommender system for the BSCIS program at the University
of Dubai. These findings provide valuable insights into the key factors that influence a
student’s grades and can inform the development of a recommender system that supports
students in their academic journey. One practical implication of this study is recognizing
the importance of considering a diverse range of factors in developing a student advising
recommender system. The results show that student characteristics, course difficulty, teach-
ing style, and personal circumstances are all significant factors that can impact a student’s
grades. A recommender system that considers these factors can provide students person-
alized and accurate advice, helping them reach their academic goals. Another practical
implication of the study is the importance of high-quality data for developing a student
advising recommender system. The results reveal that the data quality was impacted
during the COVID-19 pandemic, with many grades recorded as “Pass” or “Fail” rather
than the normal letter grade scale. A recommender system that uses high-quality data will
be more accurate and trustworthy, leading to improved outcomes for students.

This study also has research implications for future studies in this field. The limitations
of this study, such as the limited sample size and unbalanced grade distribution data,
suggest areas for further research that could deepen our understanding of the factors that
influence a student’s grades. Moreover, this study only covers the BSCIS program at the
University of Dubai, and future studies could examine the generalizability of these findings
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to other universities and programs. In conclusion, the results of this study have important
implications for the development of a student advising recommender system. By gaining a
deeper understanding of the factors that impact a student’s grades, a recommender system
can help identify areas where individual students may need additional support and make
personalized recommendations for improvement. Furthermore, the results of this study
can inform the redesign of the curricula program and structure, ensuring that courses are
appropriately challenging and instruction is effective.

8. Conclusions

This research proposed and validated an innovative RS to advise students and assist
them in the courses selection BSCIS-ISS at the University of Dubai. Typically, through
this study, we tested a new approach to help students choose a study path and showed
that predicting student performance and elective choice is possible. In this context, using
the designed and implemented RS, several students’ learning paths have been identified
with different features and backgrounds. In addition, a method of recommendations
based on many former students’ records has been introduced. Moreover, this system can
provide recommendations for the distribution of students’ credit based on their learning
styles and similar previous learning paths. The results of our study show the feasibility of
the new approach in using big data and artificial intelligence technology for curriculum
analysis and course recommendations. Future work aims at improving this work from
different perspectives by (i) collecting various features such as students’ club activities and
attendance, (ii) testing different time series algorithms, and (iii) implementing the system
as a feature in a real University of Dubai core selection system.
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