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Abstract: A mathematical model has been developed and a numerical study of vapor bubble growth
as a result of acoustic evaporation of an encapsulated perfluorocarbon droplet in a viscoelastic liquid
is presented. The viscoelasticity of the droplet shell and the carrier liquid is taken into account
according to the Kelvin–Voigt rheological model. The problem is reduced to solving a system of
ordinary differential equations for the radius and temperature of the bubble, the radius of the
droplet and the shell together with the thermal conductivity equation for the internal liquid. Spatial
discretization of the thermal conductivity equation is carried out using an implicit finite difference
scheme. ODEs are solved by the fifth order Runge–Kutta method with an adaptive computational
step. To check the correctness of the numerical calculation in a particular case, the theory has been
compared with known experimental data. The influence of the shear modulus of the shell and the
carrier liquid, and the shell thickness on the radial dynamics of a vapor bubble inside an encapsulated
droplet in an external viscoelastic liquid is demonstrated.

Keywords: mathematical model; acoustic field; perfluorocarbon drop; vapor bubble; viscoelastic
shell and liquid; phase transition
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1. Introduction

Recently, the study of emulsions with phase transitions, which have the following
feature, has been of great interest. Under the action of ultrasound, vapor bubbles are formed
inside the liquid droplets. This process is known as acoustic droplet vaporization [1]. The
use of these emulsions has great potential in biomedicine [2,3], because, unlike conventional
gas microbubbles, liquid droplets can be quite small and can easily flow through thin
capillaries. For example, when using echographic imaging, liquid droplets flowing through
the vascular system of tumors can evaporate and be used as contrast agents to image the
internal structure of the tumor [4]. Perfluorocarbon droplets, such as decafluorobutane
C4F10, octafluoropropane C3F8 and dodecafluoropentane C5F12 are usually used as liquid
droplets [5–7]. The choice of these substances is due to the fact that they remain metastable
at physiological temperature and cannot evaporate spontaneously. Their evaporation
requires acoustic energy.

The paper [8] presents experimental results on the evaporation of octafluoropropane
and decafluorobutane droplets of different sizes in water. In the case of complete evap-
oration of the droplet, data were also obtained on the radial oscillations of a pure vapor
bubble. It is shown that an increase in the initial droplet size leads to a stronger growth of
the vapor bubble, as well as to an increase in the amplitude of its oscillations. Experimental
data on the evaporation of a droplet of dodecafluoropentane in water are presented in [9],
and a mathematical model of a vapor bubble is also considered, taking into account gas
diffusion in an infinite perfluorocarbon liquid. It is noted that, without taking into account
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gas diffusion, the vapor bubble collapses after the first acoustic cycle. The presence of
gas diffusion allows the vapor bubble to survive the first collapse and continue to grow,
which is well confirmed by experimental data on the observed time scales. A generalization
of the mathematical model to the case of a finite size of a perfluorocarbon droplet was
carried out in [10–12]. The effect of acoustic parameters, liquid properties and droplet size
on the process of acoustic evaporation has been studied. To prevent rapid dissolution of
droplets in the carrier liquid, they are usually covered with a polymer shell [13]. In [14],
the propagation of acoustic waves in a viscoelastic liquid with coated perfluorocarbon
droplets containing vapor bubbles was studied. The influence of the shell of inclusions
on the dependences of the phase velocity and attenuation coefficient on the frequency
of perturbations is illustrated. A good agreement between the presented theory and the
known experimental data is found. If phase transitions are not taken into account, then the
mathematical model [14] transforms into the model [15], which describes the acoustics of a
viscoelastic liquid with encapsulated gas bubbles. The propagation of weakly nonlinear
waves in a liquid with encapsulated gas bubbles was considered in [16,17]. The viscoelastic
shell obeyed the Kelvin–Voigt rheological model. Both low-frequency long waves and high-
frequency short waves were considered. Particular attention is paid to the compressibility
of the shell and liquid, as well as heat transfer between the gas bubble and the carrier liquid.
It is shown that the compressibility of the bubble shell and the process of heat transfer
increase the scattering of the wave. In particular, it has been found that the scattering of the
wave due to the compressibility of the shell is about ten times greater than due to the com-
pressibility of the liquid. Wang et al. [18] obtained experimental data on the reflection of an
acoustic wave from a water layer with air bubbles. A significant effect of the volume content
of gas on the dependence of the reflection coefficient on the frequency of perturbations
has been established. In [19], the problem of the propagation of a high-intensity acoustic
wave in a liquid layer with spherical gas bubbles was considered. A system of differential
equations for acoustic pressure and bubble radius is written out. Based on the Lie approach,
the authors analyzed the resulting system of nonlinear equations, and for the first time,
several exact analytical solutions were obtained. Wang et al. [20] derived an equation for
radial oscillations of a gas bubble near the boundary of a solid body. The influence of the
initial bubble radius, the distance to the solid wall and the period of acoustic pressure on
the evolution of the bubble were studied numerically. It is shown that the maximum bubble
radius increases with increasing pressure period and distance to the solid boundary. Other
publications on the dynamics of vapor–gas bubbles can be found in the review [21]. The
wave dynamics of dodecafluoropentane on a solid wall was experimentally studied using
high-speed visualization [22]. Droplets of micron size were subjected to ultrasonic treat-
ment with an amplitude in the range from 0.6 to 3 MPa and a frequency of 5 MHz. It was
found that the expansion of the volume due to the phase change promotes the separation
of droplets from the solid wall. A quantitative estimation of the influence of the size of a
droplet or bubble, as well as the amplitude of ultrasound on the dynamic motion of the
inclusion has been carried out. In [23], a model for the generation of a vapor bubble inside
a liquid droplet using a two-frequency configuration of focused ultrasound, which consists
of continuous low-frequency ultrasound and a short high-frequency pulse, is presented.
This made it possible to shorten the onset time for the formation of vapor nucleation center
and to change the ratio of the length and width of the region of formation of nucleation
centers at a lower energy cost. In contrast to [11,12], where the van der Waals equation
of state was used in modeling the acoustic evaporation of perfluorocarbon droplets, the
Redlich–Kwong equation of state was used in [24]. This made it possible to predict a
much higher vapor generation velocity, which is in better agreement with the experimental
results. In addition, it is shown that the properties of droplets have a very strong effect on
the nucleation center formation threshold compared to the acoustic parameters. The group
of Sojahrood extensively investigated the dynamics of encapsulated bubbles (including the
free bubble case) through various aspects such as bifurcation structure [25,26], sub- and
super-harmonic behaviors [27,28] and the mechanics of nonlinear power dissipation [29].
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In this paper, we present a mathematical model and numerically simulate the growth and
radial oscillations of a vapor bubble inside an encapsulated perfluorocarbon droplet in
an external viscoelastic liquid. The model proposed here can be used both to describe
laboratory experiments, where water is usually used as the ambient liquid, and to describe
various applications where a more complex liquid can act as a carrier phase.

2. Mathematical Model

Let us consider an encapsulated droplet of liquid with a vapor bubble at the center
inside an array of viscoelastic liquid (Figure 1).

Figure 1. Scheme of a droplet: v—vapor, e—liquid phase, s—shell and l—carrier liquid.

The equations of continuity and momentum in a spherical coordinate system in the
presence of central symmetry and assuming the incompressibility of liquid phases and
shell are written as [14]

1
r2

∂

∂r

(
r2uvρv

)
= −∂ρv

∂t
, r < R1, (1)

1
r2

∂

∂r

(
r2uk

)
= 0, r > R1, k = e, s, l, (2)

ρk

(
∂uk
∂t

+ uk
∂uk
∂r

)
= −∂pk

∂r
+

∂τrr,k

∂r
+

3τrr,k

r
, r > R1, k = e, s, l. (3)

Here ρ is the density, r is the radial coordinate, t is the time, u is the radial velocity,
p is the pressure and τrr are the normal stresses. The solution of Equation (2) is written
as follows

uk =
R2

1
r2 Uk, k = e, s, l, (4)

where Uk is the velocity of liquid at the inclusion boundary. Boundary conditions are
written at the boundary R1 with phase transitions and R2 without phase transitions

pe(R1)− pv(R1) +
2σ1

R1
= τrr,e(R1)− τrr,v(R1) + J(ue(R1)− uv(R1)),

J = ρv

(
dR1

dt
−Uv

)
= ρe

(
dR1

dt
−Ue

)
,

ps(R2)− pe(R2) +
2σ2

R2
= τrr,s(R2)− τrr,e(R2), us(R2) = ue(R2) =

dR2

dt
,

pl(R3)− ps(R3) +
2σ3

R3
= τrr,l(R3)− τrr,s(R3), ul(R3) = us(R3) =

dR3

dt
. (5)
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Here, σ is the surface tension coefficient, Uv is the velocity of vapor and J is the mass
flow due to the phase change at the vapor/liquid interface. The normal stresses for a vapor
and a liquid droplet are given in the form

τrr,v = 2µv
∂uv

∂r
− 2µv

3r2
∂r2uv

∂r
, τrr,e = 2µe

∂ue

∂r
, (6)

where µ is the dynamic viscosity. Since the viscosity of the vapor is less than the viscosity of
the liquid, therefore τrr,v � τrr,e and therefore, in the future, the value τv can be neglected.

For the carrier liquid and the shell of the droplet, we use the Kelvin–Voigt rheological
model. Thus, the stress tensor component is related to the deformation tensor component
by the following relation:

τrr = 2Gεrr + 2µε̇rr, (7)

where G is the shear modulus and εrr is the deformation. A priori

ε̇rr =
∂us

∂r

∣∣∣∣∣
R2

=
∂ue

∂r
= −

2R2
2Ṙ2

r3 =⇒ εrr,s = −
2

3r3

(
R3

2 − R3
20

)
,

where R20 is the initial radius of the droplet. Then expression (7) takes the form

τrr,s = −
4R2

2
r3

[
GsR2

3

(
1−

R3
20

R3
2

)
+ µsṘ2

]
, and

3
R3∫

R2

τrr,s

r
dr = −4Gs

3

(
1−

R3
20

R3
2

)(
1−

R3
2

R3
3

)
−

4µsR2
2

R3
2

(
1−

R3
2

R3
3

)
Ṙ2. (8)

Similarly, we find the normal stress for the carrier liquid

τrr,l = −
4R2

3
r3

[
Gl R3

3

(
1−

R3
30

R3
3

)
+ µl Ṙ3

]
, and

3
∞∫

R3

τrr,l

r
dr = −4Gl

3

(
1−

R3
30

R3
3

)
−

4µl R2
3

R3
3

Ṙ3. (9)

Let us take into account the conditions of incompressibility of the shell and liquid,
then we have

R2
3Ṙ3 = R2

2Ṙ2 = R2
1Ue. (10)

The momentum Equation (3) is integrated from R1 to infinity. In this case, the interval
from R1 to R2 will correspond to the parameters of the liquid droplet, from R2 to R3—to the
parameters of the shell, from R3 to infinity—to the parameters of the carrier liquid. Then,
taking into account (4)–(10), after mathematical transformations, the equation of radial
oscillations of the considered inclusion is derived

ρd1R1U̇e − 0.5ρd2U2
e + 2ρd1Ṙ1Ue = pv − pl −

2σd
R1

+

(
1
ρv
− 1

ρe

)
J2 − 4µdUe

R1

−4Gs

3

(
1−

R3
20

R3
2

)(
1−

R3
2

R3
3

)
− 4Gl

3

(
1−

R3
30

R3
3

)
, pl = p∞ + pa,

ρd1 = ρe + (ρs − ρe)
R1

R2
+ (ρl − ρs)

R1

R3
, ρd2 = ρe + (ρs − ρe)

R4
1

R4
2
+ (ρl − ρs)

R4
1

R4
3

,
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σd = σ1 + σ2
R1

R2
+ σ3

R1

R3
, µd = µe

(
1−

R3
1

R3
2

)
+ µs

(
R3

1
R3

2
−

R3
1

R3
3

)
+ µl

R3
1

R3
3

, (11)

Ṙ1 = Ue +
J

ρe
. (12)

In Equation (11), the term pa determines the external acoustic pressure. If we take J = 0,
then Equation (11) coincides with the equation obtained earlier in [30]. Estimates made
in [31] show that for perfluorocarbons, the thermal diffusion length is about 10 centimeters
for perturbation frequencies from 1 to 10 MHz. As a result, we can assume that the temper-
ature inside the vapor bubble is equal to the temperature on its surface. Thus, the pressure
and temperature inside the bubble are determined from the Clausius–Clapeyron equation

pv = p∞ exp
[

l
Bv

(
1

Ts0
− 1

Tv

)]
, (13)

where l is the specific vaporization heat of liquid, Ts0 is the temperature at the saturation
line, Tv is the vapor temperature inside the bubble, and Bv is the reduced gas constant.
Next, it is necessary to obtain an equation that describes the evolution of temperature Tv.
To achieve this, the mass (1) and energy [32] conservation equations are written for the
vapor phase in a spherical coordinate system under the following assumptions: the vapor
in the bubble obeys the ideal gas law, the vapor density is not constant in time, the pressure,
density and temperature inside the bubble are uniform (∂pv/∂r = ∂ρv/∂r = ∂Tv/∂r = 0),
the adiabaticity of the bubble is preserved (the heat flow qv of the vapor is zero)

ρvcv
∂Tv

∂t
=

∂pv

∂t
, (14)

ρv = pv/(BvTv), (15)

where c is the specific heat. We multiply Equation (1) by cvTv and add it to Equation (14),
we obtain

∂(ρvcvTv)

∂t
+

cvρvTv

r2
∂

∂r

(
r2uv

)
− ∂pv

∂t
= 0. (16)

Using the equation of state (15), the relationship between the heat of an ideal gas, the
gas constant and the adiabatic exponent, and integrating Equation (16), we find

uv = − r
3γv

ṗv

pv
. (17)

Combining the obtained expressions (17), (5) as well as the Clausius–Clapeyron
Equation (13), we arrive at a differential equation for temperature Tv

Ṫv =
3γvBvT2

v
lR1

[(
1
ρv
− 1

ρe

)
J −Ue

]
. (18)

To close the system of Equations (10)–(13), (15) and (18), it is necessary to set the mass
flow J. Since the temperature inside the vapor bubble is uniform and does not depend on
the radial coordinate, we write down the thermal conductivity equations for the droplet

∂Te

∂t
+ ue

∂Te

∂r
=

De

r2
∂

∂r

(
r2 ∂Te

∂r

)
+

12µe

ρece

u2
e

r2 , De =
λe

ρece
. (19)

Here λ is the thermal conductivity coefficient, D is the thermal diffusivity. Boundary
conditions are set

r = R1 : Te = Tv, J =
λe

l
∂Te

∂r
; r = R2 : Te = T∞. (20)
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As in [8], it is assumed here that the temperature of the shell and liquid surrounding
the droplet are constant. Thus, to determine the mass flow J, it is necessary to solve the
thermal conductivity equation in partial derivatives (19) with boundary conditions (20).
Thus, we obtained a closed system of nonlinear differential Equations (10)–(13), (15) and
(18)–(20), which determines the growth and radial oscillations of a vapor bubble in an
encapsulated perfluorocarbon droplet located inside an array of viscoelastic liquid.

3. Initial Conditions and Numerical Realization

If we assume that the vapor bubble at the initial moment of time exists in the form of a
nucleation center R1(0) = R10 and is at rest, then the velocity of the liquid/vapor interface
satisfies the condition Ṙ1(0) = 0. The initial values of the radius of a droplet and a droplet
with a shell are also determined by R2(0) = R20, R3(0) = R30 = R20 + rs0, where rs0 is the
initial thickness of the shell. Thus, the pressure in the bubble at the initial moment of time
has the form

pv(0) = pv0 = p∞ +
2σ1

R10
+

2σ2

R20
+

2σ3

R30
,

and its temperature is found from the Clausius–Clapeyron equation

Tv(0) = Tv0 =

(
1

Ts0
− Bv

l
ln

pv0

p∞

)−1
.

For the thermal conductivity Equation (20), the initial condition is given as Te(r, 0) =
T∞. The numerical solution of ordinary differential Equations (10)–(12), (18) is carried out
by the Runge–Kutta method of the 5th order with automatic step selection. To eliminate
computational problems in solving the thermal conductivity (19) connected with the motion
of the bubble and droplet walls, by analogy with [32], the boundaries are fixed using
dimensionless variables. For the internal liquid phase, the variable x = (R2 − r)/(R2 − R1)
is introduced, in this case, if r ∈ [R1, R2], then x ∈ [0, 1]. Then the partial derivatives will
be written as

∂

∂r
= −1

h
∂

∂x
,

∂

∂t
=

∂

∂t
+

Ṙ2 − ḣx
h

∂

∂x
, h = R2 − R1,

and the thermal conductivity Equation (19) is rewritten in the form

∂Te

∂t
= Ve2

∂2Te

∂x2 + Ve1
∂Te

∂x
+ Ve0,

Ve2 =
De

h2 , Ve1 = −
[

1
h

[
Ṙ2 − ḣx−

R2
1Ue

(R2 − hx)2

]
+

2De

h(R2 − hx)

]
,

Ve0 =
12µe

ρece

R4
1U2

e
(R2 − hx)6 . (21)

Equation (21) is approximated using an implicit scheme with errors of the first order
in time and of the second order in space. The spatial coordinate x is discretized by N points
with a step of ∆x. Thus, the partial derivatives of temperatures can be estimated using the
following second-order finite-difference schemes

∂Te

∂x
=

Te|i+1 − Te|i−1

2∆x
+ O(∆x2),

∂2Te

∂x2 =
Te|i+1 − 2Te|i + Te|i−1

∆x2 + O(∆x2), i = 2, ...,N − 1.
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As a result, we arrive at a system of three-point equations, which can be solved, for
example, by the runout method. When the temperature field at the time step is found, the
mass flow J is found by the following formula

J =
λe

l
3Tv − 4Te|2 + Te|3

2∆x
+ O(∆x2).

4. Results of Calculations

To check the constructed mathematical model and the chosen numerical implementa-
tion in the particular case in Figure 2 there is comparison of the vapor bubble radius versus
time with the available experimental data [8] obtained by evaporating an octafluoropropane
droplet of various sizes in water. Water temperature is T∞ = 310 K, pressure is p∞ = 105 Pa.
The thermophysical parameters of octafluoropropane were taken from [8,14]. The external
acoustic pressure was given in the form

pa =

{
−Pa sin(2π fat), 0 ≤ t ≤ Na/ fa,
0, t > Na/ fa,

where Pa = 0.5× 106 Pa, fa = 8× 106 Hz and Na = 2. The initial radius of the vapor bubble
is R10 = 10−7 m.

0 2 4 6 8
0

5

10

2

R1, m

t, s

1

Figure 2. Comparison of the dependence of the vapor bubble radius on time with the experimental
data [8] (the cross shows the moment of complete evaporation of the droplet): 1—R20 = 10−6 m and
2—R20 = 1.85× 10−6 m; rs0 = 0, ρs = ρl , Gs = 0 and Gl = 0.

For data 1, the authors of the experiment [8] proposed to use the viscosity of the carrier
phase µl = 0.006 Pa·s, and for data 2—µl = 0.009 Pa·s. In the case when the droplet
completely turned into vapor (the current droplet radius R2 coincided with the radius of
the vapor bubble R1 and R2 < R1), it was assumed that the mass transfer intensity J was
equal to zero. In this case, the already pure vapor bubble then performed radial oscillations.
It can be seen that the larger the radius of the liquid droplet, the greater growth of the
vapor bubble inside it. It should be noted that an increase in the droplet size by a factor of
1.85 leads to an approximately twofold increase in the time for complete evaporation of the
liquid. On the whole, there is good agreement between theory and experiment. Thus, the
mathematical model and its numerical implementation are capable of correctly reproducing
the key physical processes underlying the evaporation dynamics of volatile contrast agents
with phase transitions.

Let us now turn to the consideration of the dynamics of an encapsulated octafluoro-
propane droplet in water. Butyl rubber with a density of ρs = 1475 kg/m3 and a viscosity
of µs = 0.99 Pa·s is considered as a shell of a droplet. Shell thickness is rs0 = 10−7 m.
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Figure 3 shows the dependencies of the vapor bubble radius on time for various values of
the shear modulus of the droplet shell.

0 5 10
0

5

10

 1
 2
 3

R1, m

t, s

Figure 3. Vapor bubble radius at different shear moduli of the droplet shell: 1—Gs = 107, 2—3× 107,
3—5× 107 Pa; µl = 9× 10−3 Pa·s and R20 = 1.85× 10−6 m (the cross shows the moment of complete
evaporation of the droplet).

As expected, an increase in the shear modulus of the droplet shell leads to a decrease
in the growth of the vapor bubble, as well as to a faster attenuation of its radial oscillations.
With an increase in the elasticity of the shell, the evaporation time of the droplet increases.
For the shear modulus value Gs = 107 Pa the droplet evaporation time is approximately
t ≈ 0.7 µs, while for the Gs = 5× 107 Pa value the evaporation time increases to t ≈ 4.6 µs.
Thus, in this case, an increase in the shear modulus by a factor of 5 leads to an increase in
the evaporation time of the encapsulated droplet by a factor of 6.5.

Figure 4 shows the time dependencies of the vapor bubble radius for various shell
thicknesses.

0 5 10
0

5

3

2

R1, m

t, s

 

1

Figure 4. Radius of a vapor bubble for different values of the initial shell thickness: 1—rs0 = 10−7,
2—1.2× 10−7, 3—1.3× 10−7 m; Gs = 5× 107 Pa and R20 = 1.85× 10−6 m (the cross shows the
moment of complete evaporation of the droplet).

It can be seen that the thicker the shell, the smaller the radius of the vapor bubble and
the faster its radial oscillations attenuate. As in the previous case, the droplet evaporation
time also increases. Calculations show that taking into account the elasticity of the external
liquid will not change the qualitative picture of the curves. Thus, a sufficiently elastic and
thick shell of the inclusion, as well as an elastic external liquid, will restrain the radial
motions of the vapor bubble.
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5. Conclusions

A system of differential equations that determines the radial oscillations of a vapor
bubble inside an encapsulated perfluorocarbon droplet located in an external viscoelastic
liquid under acoustic pressure action has been obtained. Numerical calculations have been
carried out. In a particular case, a good agreement between theoretical calculations and
known experimental data has been found. It is shown that an increase in the shear modulus
of the shell of a droplet or an elastic carrier liquid, as well as an increase in the thickness of
the shell, lead to a decrease in the growth of a vapor bubble, as well as to a decrease in the
amplitude of its oscillations. With the current parameters of the problem, it was found that
if the droplet radius is increased by a factor of 1.85, then the time for complete evaporation
of the liquid will approximately double. However, if the droplet is covered with a thin
elastic shell, then, depending on the properties and parameters of the shell, it is possible
to increase the time of complete evaporation of the droplet by 6–7 times. This result is
important from a practical point of view. Finally, as with any study, the limitations of the
present model must be recognized and considered in future work: (1) shell viscoelasticity
from the Maxwell, Zener and Oldroyd models; (2) shell anisotropy [33]; (3) small non-
sphericity of the vapor bubble and droplet; (4) the Redlich–Kwong equation of state for the
vapor phase [24].
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