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Abstract: A piecewise function can sometimes provide the best fit to a time series. The breaks in
this function are called change points, which represent the point at which the statistical properties
of the model change. Often, the exact placement of the change points is unknown, so an efficient
algorithm is required to combat the combinatorial explosion in the number of potential solutions to
the multiple change point problem. Bayesian solutions to the multiple change point problem can
provide uncertainty estimates on both the number and location of change points in a dataset, but
there has not yet been a systematic study to determine how the choice of hyperparameters or the
presence of autocorrelation affects the inference made by the model. Here, we propose Bayesian
model averaging as a way to address the uncertainty in the choice of hyperparameters and show how
this approach highlights the most probable solution to the problem. Autocorrelation is addressed
through a pre-whitening technique, which is shown to eliminate spurious change points that emerge
due to a red noise process. However, pre-whitening a dataset tends to make true change points harder
to detect. After an extensive simulation study, the model is applied to two climate applications: the
Pacific Decadal Oscillation and a global surface temperature anomalies dataset.

Keywords: change point analysis; prior distribution; model averaging; autocorrelation; PDO;
temperature anomalies

MSC: 62F15; 62J05; 62P12

1. Introduction
1.1. What Is a Change Point?

A change point is defined as the point at which the statistical properties of a model
change. For example, suppose that a constant model, Y = µ + ε, is used to model the
mean signal in a system. Here, a change to either the mean or the variance at any point in
the time series indicates the existence of a change point. If a linear (e.g., trend) model is
more appropriate, i.e., Y = β0 + β1t + ε, then a change in the slope (β1), intercept (β0), or
variance of the error terms (ε) would indicate a change point in the data.

The problem is simple if the locations of the change points are known. In this case,
a separate model can be fit to each section of the data. However, the problem quickly
becomes intractable if the locations of the change points are unknown. For example, there

are
(

250
5

)
= 7,817,031,000 possible ways to place 5 change points among these 250 obser-

vations, and this is by no means a large dataset. Thus, our goal is to create an efficient
change point model that can accurately determine the unknown location of change points
in a dataset.

Change point analysis has been used in a variety of different settings. In finance,
locating change points in a portfolio can help companies understand how their decisions
affect their revenue and profit [1]. Change point models have also been used to study Bitcoin
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returns [2], stock market returns [3,4], and average annual wage growth [5]. In health care,
change point models have been used to look at fMRI data [6], EEG signals [7], and visits to
the emergency department [8]. Climate applications include the study of glacial records [9],
precipitation data [10,11], and global temperature data [12]. Additional applications include
social network analysis [13], speech processing [14], and bio-informatics [15,16], to name
a few. Of further note are the summative works of [17,18], which provide a number of
examples across a variety of fields.

1.2. Overview of Existing Approaches

Page published the first article concerning change points in 1954 [19]. This paper was
motivated by a quality control problem in manufacturing and outlined a test for a single
change point from a common parametric distribution. Now, the literature on change point
models is vast. Broadly, change point detection algorithms can be classified as either batch
(retrospectively analyze the data) or sequential (analyze the data as it comes in), and each
category can be further categorized as either frequentist or Bayesian. In what follows, we
give a brief overview of a few algorithms in each category to help place our model in an
appropriate context.

Cumulative sum (CUSUM) statistics and likelihood ratio tests are two frequentist
approaches to detecting change points. The CUSUM approach, introduced by [20], monitors
either the mean or variance of the residuals and signals a change point if this cumulative
sum begins to “drift” (see also [18,21]). A random set of residual errors would have a
cumulative sum centered at zero, whereas a string of positive or negative residuals might
indicate a break in the underlying model. For a likelihood ratio test (e.g., [22–24]), the null
hypothesis of no change point is tested against the alternative hypothesis of a change point
at each data point. Note that if the pre- and post-change parameters are assumed to be
known, the CUSUM statistic becomes a sequential likelihood ratio test.

A popular approach to the multiple change point problem is binary segmentation,
first introduced by [25]. Binary segmentation begins by searching the entire dataset (using
any available method) for a single change point. If one is found, the data are split in
two at the change point location and the process is repeated on each of the two smaller
segments until no further change points are detected. This greedy algorithm is fast, but is
not guaranteed to find the globally optimal solution, working best when the change points
are well separated and the segment means are distinct [26]. Modern adaptations include
circular binary segmentation [27], which pins the two ends of the dataset together to form
a circle and introduces change points two at a time (i.e., two cuts in the circle), and wild
binary segmentation [28], which considers a localized (rather than global) CUSUM statistic
on random subsegments of the time series to identify change points.

Unlike binary segmentation, segment neighborhood algorithms (e.g., [9,29,30]) and the
pruned exact linear time (PELT) algorithm [31] are guaranteed to find the global optimum
solution to the multiple change point problem. Segment neighborhood algorithms use
dynamic programming to recursively add change points to the time series, with the goal
of minimizing a cost function such as squared error. PELT seeks to minimize an arbitrary
cost function, plus a penalty function that helps to guard against overfitting, by recursively
calculating the minimum cost at time s in terms of the minimal cost at time t, with t < s. If
the number of change points increases linearly with the size of the dataset, the algorithm
achieves linear complexity by removing calculations that are not relevant to finding the
global minimum.

Bayesian approaches to the multiple change point problem have the advantage of
being able to quantify the uncertainty in both the number and location of change points.
MCMC approaches (e.g., [32–34]) are dominant on the Bayesian side, where the idea is often
to make a proposal that changes the location of one change point (either adding, deleting,
or moving its location) and then “accept” that proposal based on whether or not it produces
a better fit to the data. As with all MCMC algorithms, convergence issues can exist due to
strong correlations in the target distributions [35,36]. Dynamic programming (e.g., [35,37])
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can instead be used to sample directly from the posterior distribution, avoiding issues
with convergence.

Sequential Bayesian change point algorithms such as Bayesian Online Change Point
Detection (BOCPD) [38] and particle filters (e.g., [39,40]) work by specifying a probability
distribution over the length of each segment. BOCPD uses a recursive message passing
algorithm to determine the probability distribution of the current “run length” given
the observed data, a predictive model (e.g., i.i.d. Gaussian), and a hazard function (the
probability of a change point at a given run length). For particle filters, each weighted
“particle” represents one possible state of the system (in terms of the number and location
of change points), so the number of particles grows exponentially with the length of the
dataset. Resampling the particles at each step keeps those which are most probable and
can be used to limit the computational burden [3], but this process introduces small errors
which compound over time because particles that are removed cannot be brought back [36].
Alternately, Bayesian dynamic linear models (BDLM), also known as state-space models,
are probabilistic models with time varying coefficients, which can include terms to model
trends, seasonality, covariates, and autoregressive components to capture various features
of a time series [41,42]. Broadly, BDLM use a learning process to sequentially revise the
state of a priori knowledge as new data become available. In particular, a one-step-ahead
prior distribution for the next state is updated after observing the data to create a posterior
distribution at time t, and then the process is propagated forward in time. Changes to the
(hidden) state of the system represent a change point in the system.

Readers looking for more information on change point analysis are directed to the
summative works [17,18], which discuss a number of change point models using examples
across a variety of fields. The changepoint.info website also maintains an extensive list of
publications and software related to change point models.

In Section 2, we describe the Bayesian change point model of [37] which provides
the methodological foundation for this study. While previous studies have considered
variations of this original algorithm, compared the error and detection rates to other
change point models, and offered suggestions on how to set the hyperparameters of the
model (e.g., [43,44]), there has not been a systematic study to determine how the choice
of parameters for the prior distribution can affect the inference made by the model. In
addition, it is not known for certain how autocorrelation will affect the output of the
model. Thus, Section 2 ends with an in-depth discussion of these two shortcomings of
the Bayesian change point model. In Section 3, we discuss a pre-whitening technique to
address autocorrelation and a model averaging technique to address parameter uncertainty.
In both cases, an extensive simulation study is presented, first to show how the algorithm
performs both in the presence of autocorrelation and after pre-whitening, and then to show
how model averaging highlights the most probable solutions to the multiple change point
problem. Section 4 presents a novel analysis of two climate datasets using these techniques.
Discussion and conclusions are given in Section 5.

2. Materials and Methods
2.1. Description of the Bayesian Model

The Bayesian change point model described in this section assumes that the parameters
of the model for any two segments of the data are independent (i.e., a product partition
model [32]) and incorporates dynamic programming recursions to piece together the
different subsets of the dataset in a computationally efficient way. Once complete, the
model returns both the posterior distribution on the number and location of change points
in the time series (which gives us probabilistic bounds on their location) and estimates of
the parameters of the model between any two change points.

For each subset of the data, we assume a linear relationship between the response
variable, Y, and a set of m known explanatory variables, X1, X2, . . . , Xm. Thus, our model
takes the form:

Y = β0 + β1X1 + · · ·+ βmXm + ε,
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where βi represents the regression coefficient corresponding to the ith explanatory variable,
Xi. The explanatory variables are functions of time for a time series and can include
terms that are constant, linear, periodic, etc. In addition, the random error terms, ε, are
assumed to be independent normally distributed random variables with mean 0 and
variance σ2. For change point analysis, this model will be separately fit to each substring
of the data separated by the change points, which implies that each substring has the
same set of explanatory variables but its own set of regression coefficients. Here, we focus
on the simplest versions of this model, i.e., the constant (Y = β0 + ε) and linear models
(Y = β0 + β1X1 + ε), but note that the ideas presented below can easily be applied to the
more general case.

Suppose that a time series contains k change points, c1, c2, . . . , ck, defined as the
location where the parameters of the model change. Generally, the value of k is unknown,
and must be inferred from the data, along with the locations of the change points. In this
setting, the parameters of our model are the regression parameters, so a change point
can represent a change in the mean (the constant term, β0), trend (β1, . . . , βm), or even
the variance of the data (the magnitude of the random error, ε). Since the goal is to fit a
piecewise regression model to the dataset, each segment of the data will have a unique set
of regression parameters.

Bayes’ rule tells us:

P(A|B) = P(B|A)P(A)

P(B)

Define:

• P
(

β, σ2
∣∣Y, M

)
to be the posterior distribution of the regression parameters, β, and the

error variance, σ2, given the data, Y, and the model, M (e.g., constant, linear, etc.);
• P

(
Y
∣∣β, σ2, M

)
as the likelihood of the data given the regression parameters and

the model;
• P

(
β, σ2

∣∣M)
as the prior distribution of the regression parameters, given the model;

• P(Y|M) as the normalization constant, or the probability of the data given the model,

so that Bayes’ rule can be rewritten as:

posterior =
likelihood ∗ prior

normalization constant
→ P

(
β, σ2

∣∣∣Y, M
)
=

P
(
Y
∣∣β, σ2, M

)
P
(

β, σ2
∣∣M)

P(Y|M)

In many applications, the quantity of interest is the posterior distribution and the
normalization constant represents a nuisance quantity that is computationally difficult
to evaluate. However, in our case, the normalization constant is exactly the quantity
that we need for the first step of the Bayesian change point algorithm. Specifically, we
aim to calculate the probability of the data for each possible substring given the model,
after marginalizing out the parameters of the model. These calculations represent the
building blocks that the algorithm pieces together in order to identify the “best” possible
locations of change points. Assuming the error terms, ε, are i.i.d. ~N(0, σ2) and a conjugate
prior distribution is used for both β (multi-variate normal) and σ2 (scaled-inverse χ2), the
normalization constant is relatively easy to evaluate as:

P(Y|M) =
P
(
Y
∣∣β, σ2, M

)
P
(

β, σ2
∣∣M)

P(β, σ2|Y, M)

Dynamic programming works by taking a complex problem (i.e., the multiple change
point problem) and breaking it down into a series of simpler problems, the smallest of
which (i.e., the placement of a single change point) can easily be solved. Consider a jigsaw
puzzle. After dumping out the pieces, you begin by turning all of the pieces over so that
the picture is facing upwards. Next, find two pieces that fit together, then add a third,
and a fourth, etc., until you manage to complete the entire puzzle. The idea is the same
here. After defining a general model for the data (i.e., linear, sinusoidal, etc.), the first
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step to solving the multiple change point problem (i.e., the completed jigsaw puzzle) is to
determine the parameters of the model which best fit each section of the data (i.e., turn the
pieces over). Change points are then identified one at a time (i.e., place two segments of the
data together, then add a third, etc.) until we have a complete model for our dataset.

The Bayesian change point algorithm has three steps.

1. Calculating the Probability Density of the Data P(Yi,j|M):

The quantity P(Yi:j) = P(Yi:j|M) is calculated for all possible substrings of the data, Yi:j,
with 1 ≤ i < j ≤ N, where N is the number of observations in the dataset. Each calculated
probability is then stored in an N × N matrix where the row index represents the starting
point and the column index represents the ending point of the substring. Note that the
exact form of this calculation depends on the nature of the underlying predictive model.
The dependence on the model, M, is hereafter suppressed.

2. Forward Recursion (Dynamic Programming):

Using the probabilistic calculations from Step 1 as building blocks, we recursively
piece together these segments, adding one change point at a time until the complete dataset
has been modeled. Define Pk

(
Y1:j

)
to be the probability that the first j data points contain k

change points. Then, for k ∈ {1, 2, . . . , kmax} :

Pk
(
Y1:j

)
= ∑

v<j
Pk−1(Y1:v)P

(
Yv+1:j

)
for j = (k + 1):N, where P0(Y1:v) = P(Y1:v) is calculated in Step 1 of the algorithm. Here,
our values are stored in a kmax × N matrix, where the row index represents the number of
change points.

3. Stochastic Backtrace via Bayes’ Rule:

Two additional prior distributions need to be specified in order to have a fully defined
model. Specifically, we assume a uniform prior on the number of change points (i.e.,
P(K = k) = 1/kmax) and that all solutions with exactly k change points are equally likely,
i.e., P(c1, . . . , ck|K = k) = 1/Nk , where Nk is the number of possible solutions containing
k change points. Note that if there are no restrictions on the distance between two change

points, then Nk =

(
N
k

)
. This combinatorial prior accounts for the growing number

of potential solutions as the number of change points increases. Taken together, our
normalization constant becomes:

P(Y1:N) =
kmax

∑
k=0

∑
c1 ...ck

Pk(Y1:N) ∗ P(K = k, c1 . . . ck),

with Pk(Y1:N) calculated in Step 2. The parameters of interest can now be sampled directly
from their respective posterior distributions. In particular, we can use Bayes’ rule to:

3.1. Sample a number of change points, k:

P(k|Y1:N) =
Pk(Y1:N)P(K = k, c1 . . . ck)

P(Y1:N)

3.2. Iteratively sample the locations of these k change points, c1, . . . , ck:

P(ck−1|ck) =
Pk−1

(
Y1:ck−1

)
P
(
Yck−1:ck

)
∑v<ck

Pk−1(Y1:v)P
(
Yv+1:ck

)
3.3 Sample the regression parameters for the interval between adjacent change

points ck and ck+1:
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Note that Step 3 must be repeated a large number of times to obtain an accurate repre-
sentation of the joint posterior distribution of the number and location of change points, as
well as the parameters of the regression model. See [37] for full implementation details.

2.2. Shortcomings of the Existing Model
2.2.1. Correlated Errors

Consistent with the majority of the literature on change point analysis, the Bayesian
change point model described above assumes the error terms to be a white noise process.
However, time series often exhibit “memory” at time scales longer than the measurement
frequency [45]. A model runs the risk of flagging spurious change points if this internal
variability is neglected, as positive autocorrelation can create a similar pattern to that of
a shift in the mean or long-term trend [46–48]. Specifically, autocorrelated time series
can exhibit intervals where the time series remains above or below its mean value for an
extended period of time, which can be interpreted by a change point model that assumes
independent data points as the time series having different “regimes” [47]. In summary,
the algorithm can misinterpret internal variability as a change in the forced signal if
autocorrelation is ignored [12].

One way to model the memory of a system is through a first-order autoregressive
(AR(1)) process (e.g., [49]), where the memory of a system geometrically decays to zero over
time. From here, model selection can be used to determine the most appropriate structure
(e.g., [50]) or an information criterion can be used to distinguish between autocorrelation
and true change points (e.g., [51]) for a regression model containing both a trend and an
AR(1) component. An alternate approach is to pre-whiten the time series (e.g., [47,48,52,53])
before performing change point analysis. In Section 3.1, we look at how pre-whitening
the data affects the Bayesian change point algorithm’s ability to detect change points in
simulated datasets.

2.2.2. Choosing Values for the Hyperparameters of the Model

Each of the calculations described in Section 2.1 is conditional on the model. The
algorithm itself is general enough to handle nearly any type of model, but several modeling
decisions must be made before data analysis can begin. In particular, a researcher needs to
decide on:

• Structure of the Model: Examples include constant, linear, periodic, autoregressive, etc.
Here, we use a linear function to model the data and assume that the error terms are
i.i.d. ~N(0, σ2), so the likelihood function given this model follows a multivariate
normal distribution.

• Prior Distribution for Model Parameters: The prior distribution encodes any prior in-
formation available about the parameters of interest. Here, we choose conjugate
prior distributions for both the regression parameters, β and σ2, mainly to obtain
a closed form expression for P(Y|M), the probability of the data given the model
(calculated for every possible substring of the data in Step 1 of the algorithm). Here,
P
(
σ2

∣∣M) ∼ Scaled Inverse χ2(v0, σ2
0
)

and P
(

β
∣∣σ2, M) ∼ N

(
0, σ2/k0

)
, where k0 is

a vector of the same length as β.
• Prior Distribution on the Location of Change Points: Here, we assume a non-informative

prior on the number of change points, k, and their distribution in time (i.e., all change
point solutions with exactly k change points are equally likely). Note that algorithms
which base their inference on the “run length” (e.g., BOCPD [38] and particle filters
(e.g., [39,40]) often encode their beliefs about the expected distance between change
points with a geometric prior.

Five hyperparameters need to be set before starting the analysis:

• k0 is a scale parameter that relates the variance of the regression parameters to the
error variance, σ2. In general, the value of k0 can differ for each regression parameter,
βi, or be constant across all parameters. The practical effect is to act as a “penalty”
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against adding change points, where a smaller value of k0 allows for larger values
of the regression parameters (relative to the error variance), but also gives a larger
penalty on introducing a change point. Allowing for large values of the regression
parameters is especially important for the constant term in a long time series, as its
value can differ significantly from zero. In Section 3.2, we consider different values of
k0 for the constant and trend terms in our model.

• v0 and σ2
0 act as pseudo-data for estimating the value of the residual variance, v0, and

pseudo-data points of variance σ2
0 . For example, setting v0 equal to 1 and σ2

0 equal to
the variance of the data implies that we have one prior observation of the residual
error whose magnitude is equal to the variance of the data.

• dmin represents the minimum distance between two consecutive change points. This
hyperparameter can be set to any reasonable value for the problem of interest and
normally does not affect the inference other than to prevent two change points from
appearing in close proximity to one another. We recommend that dmin be at least twice
as large as the number of regression parameters that need to be estimated.

• kmax represents the maximum number of allowed change points in the time series. The
value of kmax should be at least as large as the expected maximum number of change
points, but need not be any larger than n/dmin, where n is the number of observations
in the dataset.

• One additional quantity that needs to be set by the researcher is the number of solutions
sampled from the joint posterior distribution on the number and location of change
points, as well as the parameters of the regression model fit between any two change
points. Larger values of this parameter allow for a more accurate representation of the
joint posterior distribution, and therefore a more accurate estimate of each quantity.

The choice of parameters for the prior distributions can have a significant impact on
the overall inference. In this case, changing the values of k0, v0, and σ2

0 can impact the
number of change points that are detected, but not on their distribution within the dataset.
In other words, changing the values of the prior parameters does not create a bias in the
inferred location of a change point. Exploring how the values of these parameters affect the
inference is the focus of Section 3.2.

3. Simulation Studies
3.1. Correcting for Autocorrelation

Autocorrelation in a times series can easily be misinterpreted as a change point by
models which assume that the data are independent, including the Bayesian change point
algorithm described in Section 2. Here, we use the pre-whitening technique described
by [47] to try and mitigate the effect of autocorrelation. The idea is to remove the first-order
autocorrelation using a bias-corrected estimate of the first-order autocorrelation:

y′t = yt − ρ̂cyt−1

x′t = xt − ρ̂cxt−1

for t = 2, 3, . . . , n, where n represents the length of the time series, xt and yt represent
the raw variables, x′t and y′t represent the pre-whitened variables at time t, and ρ̂c is the
bias-corrected estimate of the first-order correlation. Rodionov [47] notes that the situation
becomes “complicated” if the time series contains both regime shifts and autocorrelation,
as using all available data can lead to a misleading estimate of the value of ρ (since the
first-order correlation used in pre-whitening is unknown and may also change over time).

A potential solution to this problem is to estimate the value of ρ using randomly se-
lected subsegments of the dataset. If we set the size of these randomly selected subsegments
appropriately, then the majority of them will not contain any change points. Rodionov [47]
suggests that if change points occur at regular intervals of l years, then subsamples of size
m should be selected so that m is less than or equal to (l + 1)/3. From here, ρ̂ is chosen as
the median of the first-order autocorrelation calculated from each subsegment of size m
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(denoted p̂). However, conventional estimators of ρ (e.g., OLS, maximum likelihood) are
known to yield biased estimates of ρ for short subsamples of size m [54], so we can use a
bias-corrected estimate of the first-order autocorrelation developed by [55]:

ρ̂c =
(m− 1) p̂ + 1

(m− 4)

We first aim to show that autocorrelation causes the Bayesian change point algorithm to
detect change points when none actually exist and that the Bayesian change point algorithm
can recover its predictive ability by pre-whitening the time series. Here, we consider a
constant model with no change points (Y = 1 + ε). Simulation of a linear model with no
change points (Y = 4+ 0.05X + ε) is included in the Appendix A. A total of 1000 datasets of
length n = 200 were generated with an auto-regressive signal of level ρ = 0.1, 0.2, 0.3, . . . , 0.9
using the R function arima.sim(), for a total of 10,000 simulations. For this simulation, m is
chosen to be 20, k0 = 0.01, v0 = 1, σ2

0 = var(Y), dmin = 5, and kmax = 20. Since the goal of this
simulation is to see how autocorrelation affects the inference, optimizing these parameters
is not critical. The Bayesian change point model calculates the posterior distribution of
the number of change points for each dataset, so we use this distribution to determine the
expected number of change points in the dataset and then average this quantity across all
1000 simulations. Table 1 gives the average number of detected change points for each
value of ρ before and after pre-whitening, along with the number of datasets where the
algorithm correctly identified zero change points. For smaller values of ρ, there appears to
be little loss in the algorithm’s predictive ability, but the quality of the inference quickly
deteriorates as ρ increases (Table 1). It is also clear from these data that pre-whitening can
help to eliminate spurious change points that arise from autocorrelation.

Table 1. Autocorrelation in a Constant Model. A total of 1000 datasets were generated for each value
of the autocorrelation parameter, ρ. The average number of change points detected by the Bayesian
change point model before and after pre-whitening is indicated for each value of ρ in addition to the
number of datasets (out of 1000) where the algorithm correctly identified zero change points (i.e., the
number of datasets where the expected number of change points < 0.5). Note that a value of ρ = 0
corresponds to white noise.

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
at

a
w

it
h

A
ut

oc
or

re
la

ti
on

Estimated
ρ̂c N/A 0.101 0.212 0.320 0.425 0.521 0.632 0.729 0.823 0.920

Change
Points

Detected
0.002 0.002 0.014 0.027 0.147 0.522 2.052 5.291 8.106 9.150

# Correct 1000 1000 992 986 921 769 411 86 3 0

Pr
e-

W
hi

te
ne

d Change
Points

Detected
N/A 0.002 0.004 0.002 0.006 0.004 0.007 0.005 0.022 0.080

# Correct N/A 999 998 1000 997 999 997 998 990 955

While pre-whitening can be used to help eliminate false positive change points, it also
reduces the magnitude of the change between consecutive regimes, making it harder to
detect true change points [47]. Our next simulation generates datasets of length n = 200
with a trend whose value changes by a random amount at randomly generated change
points, according to the following process:

• The locations of the change points are selected as uniform random variables,
c1 ∼ Uni f (60, 70), c2 ∼ Uni f (95, 100), and c3 ∼ Uni f (150, 160), creating four
segments of varying length.

• The intercept for the model is selected β0 ∼ Uni f (−3, 3) and the trend for the first
segment is selected β1 ∼ N

(
0.2, 0.052), negated with probability 0.5.
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• To avoid overly obvious change point locations, the function is made piecewise con-
tinuous. The change in trend from the first to the second line segment is selected
N(0.75, 0.12), from the second to the third line segment N(0.6, 0.052), and from the
third to the fourth segment N(0.5, 0.0252). Each change in trend is negated with proba-
bility 0.5. Notice that by decreasing the potential magnitude of the change, successive
change points become more difficult to detect.

• An auto-regressive signal of level ρ = 0.1, 0.2, 0.3, . . . , 0.9 is generated using the R
function arima.sim() and added to each dataset.

Figure 1 shows three versions of a representative dataset generated by this process:
one with white noise, one with an autoregressive component using ρ = 0.8, and one after
pre-whitening. This process ensures that each simulated dataset has a different set of
change points and a different set of regression coefficients, making some of the change
points more or less difficult to detect. Note that the data generation process is similar to a
more extensive simulation study conducted by [44], which gives examples of the types of
data generated and compares the speed and accuracy of detecting change points for several
different change point models.
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The data in (b) after pre-whitening. The inferred location of change points is indicated below each 
figure, while their exact location is indicated by dotted vertical lines. Pre-whitening helps to elimi-
nate spurious change points, but the location of the true change points becomes more difficult to 
correctly infer. 

Figure 1. Detecting Change Points in the Presence of Autocorrelation. (a) A simulated dataset with
3 change points that contains only white noise. (b) Autocorrelation is added to (a) using ρ = 0.8.
(c) The data in (b) after pre-whitening. The inferred location of change points is indicated below
each figure, while their exact location is indicated by dotted vertical lines. Pre-whitening helps to
eliminate spurious change points, but the location of the true change points becomes more difficult to
correctly infer.

For each simulated dataset, we sample 500 sets of change points from the joint posterior
distribution. To determine whether or not the Bayesian change point algorithm is successful
in detecting change points after pre-whitening, define:

• Position Uncertainty: Amount of uncertainty allowed in the location of a detected
change point while still considering it “accurate.” For example, if the position un-
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certainty is 1, then we count the number of solutions sampled from the posterior
distribution that detected a change point within 1 point of its true location.

• Barrier Rate: A barrier rate of B% means that if B% of the 500 simulated sets of change
points contain a change point within the “position uncertainty” range, then we are
considered to have successfully detected this change point.

• Noise Level: Refers to the residual variance, σ2.

Two metrics will be used to measure the success of the algorithm:

• True Positive Rate: Proportion of the true change point locations that are detected.
• Perfection Rate: The proportion of datasets where the algorithm has successfully

detected all three change points.

It is important to note that when the noise is large relative to the signal, the algorithm
can be quite uncertain about the exact placement of a change point. As a result, if the
algorithm knows that a change point should exist, but is uncertain about its location, it may
appear to miss that change point when using relatively stringent detection criteria. In other
words, changing either the position uncertainty or the barrier rate can impact the number
of change points detected in a given simulation. However, since the goal of this simulation
is to observe how autocorrelation can impact inference, the relative change in the true
positive rate and the perfection rate is much more important than their absolute values.

For this simulation, m is chosen to be 20, k0 = (0.01, 0.01), v0 = 1, σ2
0 = 1, dmin = 5, and

kmax = 20. Our position uncertainty is set to 7 and the barrier rate is set to 75%, with a noise
level of 1. As before, we use the posterior distribution of the number of change points
for each dataset to determine the expected number of change points in each dataset and
then average this quantity across all 1000 simulations. Table 2 gives the average number
of detected change points for each value of ρ before and after pre-whitening, along with
values for the metrics described above, which help indicate the accuracy of detection.

Table 2. Autocorrelation in a Change Point Model with Linear Trend. A total of 1000 datasets
containing a linear trend with 3 change points were generated for each value of the autocorrelation
parameter, ρ. The average number of change points detected by the Bayesian change point model
before and after pre-whitening is indicated for each value of ρ in addition to the true positive and
perfection rate. Note that a value of ρ = 0 corresponds to white noise.

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Estimated ρ̂c N/A 0.110 0.201 0.289 0.381 0.463 0.547 0.624 0.701 0.754

W
it

h
A

ut
oc

or
re

la
ti

on Number
Detected 2.997 2.999 3.002 3.013 3.053 3.141 3.291 3.701 4.273 5.090

True Positive
Rate 0.972 0.965 0.956 0.945 0.937 0.894 0.838 0.779 0.681 0.596

Perfection Rate 0.922 0.901 0.876 0.843 0.829 0.718 0.590 0.463 0.336 0.235

A
ft

er
Pr

e-
W

hi
te

ni
ng Number

Detected N/A 2.996 2.995 2.993 2.991 2.976 2.929 2.855 2.709 2.556

True Positive
Rate N/A 0.962 0.949 0.927 0.892 0.795 0.667 0.536 0.354 0.284

Perfection Rate N/A 0.897 0.856 0.799 0.725 0.520 0.341 0.187 0.076 0.044

Figure 1 helps to illustrate several patterns that emerged from the simulation. First,
change points are fairly easy to detect in the presence of white noise (Figure 1a). Since
the magnitude of the change in trend is less than the amount of noise in the system, the
Bayesian change point algorithm may have some uncertainty in the exact location of the
change point (visualized by the mound-shaped density function centered at the location of
each change point), but clearly identifies three regions where a change point exists. In this
case, missing a change point is generally the result of stringent detection criteria, which
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requires the posterior distribution to be highly concentrated around the true location of the
change point.

Second, values of ρ < 0.5 generally do not have a large impact on the inference made
by the Bayesian change point algorithm, as we maintain a relatively high true positive
rate and perfection rate. For values of ρ ≥ 0.5, the number of change points detected by
the algorithm increases (similar to the previous simulation study), but the true positive
rate and perfection rate decrease. This indicates the emergence of spurious change points
and/or greater uncertainty in the location of true change points, to the point where the
posterior probability falls below the barrier rate (Figure 1b). The region from data points
1 to 69 (the location of the first change point) is a great example of how autocorrelation
can create a pattern that looks like a change in the long-term trend [26,46,47]. Here, the
data should appear as a downward sloping function, but we instead see an upward trend
bracketed by regions of steep decline (Figure 1b). The upward feature in the middle of an
otherwise downward signal introduces a pair of spurious change points into the model.
Moreover, the pattern appears to be repeated just before the true location of the first change
point so that, visually, the upward component of the signal now appears to begin before it
actually should. Thus, while the Bayesian change point model will not receive credit for
detecting a “true positive”, it does appear to correctly identify the start of the upward trend
in this dataset. This is exactly what [47] meant when he said that inferring change points is
“complicated” in the presence of autocorrelation.

Finally, pre-whitening the data helps to eliminate the spurious change points, evi-
denced by the number of detected change points returning back down to the true value
of three (Figure 1c). However, it also degrades our ability to detect changes in the trend
due to the interdependence between the values of the autoregressive and slope parameters.
Specifically, we now have much greater uncertainty in the location of change points and the
potential for posterior distributions to be centered at the wrong spot (Figure 1c). As a result,
there is not enough posterior mass to cross the barrier rate, so our true positive rate and
perfection rate remain relatively low. A more lenient definition of “detection” (e.g., larger
position uncertainty or lower barrier rate) can help account for the greater uncertainty, but
would not be able to address the posterior distribution of a change point being centered at
the wrong spot due to the phenomenon noted at the beginning of the dataset in Figure 1b.

3.2. Hyperparameters for the Bayesian Change Point Model

Bayesian methods are, in general, subjective, and the model described in Section 2
is no exception. Subjectivity arises through the researcher’s choice of a prior distribution
for the model, and their ability to use these distributions to code in prior information or
beliefs about the parameters of interest. Our model assumes a conjugate prior distribution
for both the error variance, σ2, and the set of regression parameters, β, primarily so that the
calculation required for Step 1 of the algorithm has a closed form solution. Specifically, we
assume σ2 ∼ Scaled− Inverse χ2(v0, σ2

0
)

and β
∣∣ σ2 ∼ N

(
0, σ2

k0

)
.

One benefit of using conjugate prior distributions is that the parameters of these
distributions are easily interpretable as prior observations. Generally, we set the parameters
of our prior distribution to be as non-informative as possible. This allows the information
contained in the data to dominate the inference. In this vein, a sensible choice for the
Scaled− Inverse χ2 distribution might be v0 = 1 and σ2

0 = var(Y), which implies that we
have one prior observation of the residual variance whose value equals the variance of
the dataset. The hyperparameter, k0, relates the variance of the regression parameters
to the residual variance. Different values of k0 can be used for the slope and intercept
parameters of the model, so k0 can be thought of as a vector: k0 = (k1, k2). We want to
allow the regression parameters to be larger than the error variance, so k0 is generally
chosen as a decimal value between 0 and 1. It is especially important that k1 is a small
value, as the intercept for the model may differ significantly from zero. A reasonable choice
is k0 = (0.01, 0.01). This gives us four hyperparameters to choose. Unfortunately, the
inference made by the Bayesian change point model is sensitive to the choice of these
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hyperparameters, which is a common feature of Bayesian analysis. The “best” choice for
the values of k0, v0, and σ2

0 remains an open question.
Figure 2 gives examples of “good” and “bad” choices for the prior parameters using a

simulated dataset generated according to the process outlined in Section 3.1. Notice that
when a poor choice for the parameter values is made, the model can infer either too few or
too many change points, while a “good” set of parameters allows for a proper inference. It
is easy to see what makes a “good” and “bad” choice of parameters on a simulated dataset
where the locations of the change points are known, but much harder when the goal is to
infer the unknown location of change points on a real dataset. Fortunately, our study shows
that the “good” parameters also tend to produce the most probable solutions, so we can use
Bayesian Model Averaging (BMA) to marginalize out the choice of the hyperparameters
and arrive at the best overall solution [56].
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Figure 2. “Good” and “Bad” Parameter Choices. A representative dataset using the data generation
process described in Section 3.1 is analyzed using different sets of values for the hyperparameters.
Dotted vertical lines indicate the actual location of the change points. The left panel uses a set of
parameters that produces a posterior distribution which infers too few change points while the right
panel uses a set of parameters that produces a posterior distribution that infers too many change
points. The middle panel correctly identifies the correct number of change points.

Define θ to be the parameters of interest and suppose that we have a set of possible
models under consideration, M1, . . . , Mm. BMA is defined as:

P(θ | Y) =
m

∑
i=1

P(θ|Y, Mi)P(Mi|Y)

In words, the posterior distribution of the parameters of interest is a weighted average
of the posterior distribution of the parameters for each model, weighted by the likelihood
of each model. This means that more probable models will have a stronger impact on the
posterior distribution of the parameters of interest.

In this scenario, each model is defined by the chosen values of the hyperparameters
k0 = (k1, k2), v0, and σ2

0 . Therefore, we can equate the term “model” with a set of hyperpa-
rameters. The parameters of interest, θ, are the number and locations of the change points,
along with the parameters of the regression model in each region of the data. Thus, our
sampling procedure (Step 3 of the Bayesian change point algorithm), along with the use of
conjugate prior distributions, makes the quantity P(θ|Y, Mi) easy to evaluate. Since each
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model is determined by its set of parameters, the term P(Mi|Y) tells us how good a specific
set of hyperparameters is and can be obtained through one final application of Bayes’ rule:

P(Mi|Y) =
P(Y|Mi)P(Mi)

∑m
j=1 P

(
Y
∣∣Mj

)
P
(

Mj
)

Note that P(Y|Mi), the probability of the data given the model after marginalizing out
the parameters of the model and the location of the change points, is calculated as part of
Step 3 of the Bayesian change point algorithm. A priori, if we assume that all models (i.e.,
all sets of values for the hyperparameters) are equally likely, this expression reduces to:

P(Mi|Y) =
P(Y|Mi)

∑m
j=1 P

(
Y
∣∣Mj

)
In the simulations that follow, we vary the values of k0 = (k1, k2), v0, and σ2

0 to
determine the posterior distribution of each model and then combine this information with
that model’s distribution of change point locations to obtain the “model averaged” solution.
The process is conceptually simple, but computationally intensive.

3.2.1. Changing the Values of k1 and k2

For this analysis, we generated a dataset according to the process outlined in Section 3.1
(Figure 3), assuming ρ = 0.25 and a noise level of 1. Values of v0 and σ2

0 are both fixed at 1
(i.e., one prior observation for the variance equal to 1). Here, we are interested in studying
values of k1 and k2 between 10−4 and 10−1, so we choose 16 equally spaced values for each
parameter on the log10 scale. Figure 3 displays how the log probability of the data changes
as we vary the values of k1 and k2 and the posterior distribution of change point locations
for three sets of values of k1 and k2 (labeled A, B, and C). As the value of k1 increases from
0.0001 to 0.1 (moving from point A to B to C), the log probability of the data decreases,
while changing the value of k2 from 0.001 to 0.1 (compare points A and B) does not have
a significant impact on the log probability of the data. For this particular dataset, a small
value of k1 is necessary because it allows the intercept of the model to be significantly larger
than the residual variance. Forcing the intercept to take on a small value also introduces a
number of spurious change points, as we limit the set of potential regression parameters in
each interval. Notice that points A and B have a relatively similar log probability, and show
only subtle differences in their distribution of change point locations, whereas point C has
a much lower log probability and a significantly different distribution of change points.

3.2.2. Changing the Values of v0 and σ2
0

We again generated a dataset according to the process outlined in Section 3.1 (Figure 4),
assuming ρ = 0.25 and a noise level of 1. For this analysis, values of k1 and k2 are fixed
at 0.001. Here, we study how values of v0 and σ2

0 affect the inference, so we choose
v0 = 1, 2, 4, 8, 16, and 32, and values of σ2

0 = 0.1, 0.5, 1, 2, 5, 10, 20, and 50. The calculation
required for Step 1 of the Bayesian change point algorithm calculates a quantity analogous
to a posterior sum or squares, which is the sum of the prior variability, v0σ2

0 , the variability
of the regression parameters, and the residual sum of squares. When a change point is
introduced into the model, this term appears twice (once for each region of the data), so a
larger value of the product v0σ2

0 creates a barrier against additional change points. As we
move from points A to B to C in Figure 4, this product increases, resulting in a posterior
distribution with fewer detected change points. The locations of the change points are not
altered, only our confidence in their existence. In addition, the value of v0 does not affect the
log probability of a model if we choose values of σ2

0 similar to the actual residual variance
(e.g., 0.5, 1, and 2), which is consistent with their interpretation as prior observations of the
residual variance. On the other hand, choosing larger values of v0 will quickly decrease the
log probability of the model if the chosen value of σ2

0 is inconsistent with the data. As a



Mathematics 2023, 11, 1082 14 of 22

result, we always recommend choosing v0 = 1, so that our prior distribution on the error
variance has a minimal impact on the posterior inference.
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Figure 3. How k1 and k2 Affect the Posterior Distribution. The top left displays a dataset generated
according to the process described in Section 3.1, along with the location of each change point,
indicated as a dotted vertical line. The log probability of the data, i.e., P(Mi|Y) , is shown on the
right for various combinations of v0 and σ2

0 . Three sets of hyperparameters, labeled A, B, and C, are
selected and their posterior distribution of the location of change points is shown in the bottom left,
along with the posterior distribution for the BMA solution, which weights each solution according to
its probability.

3.2.3. Applying BMA

Figures 3 and 4 show that the models of lower probability (i.e., those with a “bad”
choice of values for the hyperparameters) often do not have the correct number of change
points, inferring either too few or too many change points. Fortunately, BMA lets us keep
all the benefits of a Bayesian solution to the multiple change point problem, in particular
the uncertainty bounds on the number and locations of change points, while also helping
to prevent a “bad” choice of hyperparameters. Here, the models weighted most heavily are
those with the highest probability, which also tend to infer the correct number of change
points. Figures 3 and 4 show the BMA solution to each simulation, which looks most
similar to point A in each figure, the most probable of the three models shown for each
simulation. This nicely illustrates how BMA can help to eliminate the effects of a “bad”
choice of values for the hyperparameters.
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4. Applications to Climate Data
4.1. Pacific Decadal Oscillation a Change in Mean

Pacific Decadal Oscillation (PDO) was first identified in the late 1990s [57] and de-
scribes sea surface temperature anomalies over the northeastern Pacific Ocean. Similar to
El Niño/Southern Oscillation (ENSO), PDO oscillates between two states (positive and
negative) that are correlated with by widespread variations in the Pacific Basin and North
American climate [58]. The positive phase is characterized by cooler sea surface tempera-
tures north of Hawaii and warmer than normal sea surface temperatures along the western
coast of North America. The reverse is true in a negative phase. However, unlike ENSO,
PDO is an aggregation of several independent processes rather than just a single climate
phenomenon and the positive/negative phases can last for 20–30 years [59]. Researchers
also believe that PDO can intensify or diminish the impacts of ENSO depending on whether
or not they are in the same phase. If both ENSO and the PDO are in the same phase, then the
impacts of El Niño/La Nina may be magnified. Conversely, if they are out of phase, then
the effects may offset each other resulting in a milder ENSO event [60]. More information
about PDO can be found in [61].

The PDO dataset can be downloaded from the National Centers for Environmental
Information website (https://www.ncei.noaa.gov/access/monitoring/pdo/, accessed 15

https://www.ncei.noaa.gov/access/monitoring/pdo/
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August 2022). Annual means from 1854 to 2021 were calculated from monthly values for
each year (Figure 5). This dataset has been previously analyzed for change points by other
researchers (e.g., [12,47,57,62]), so it represents an interesting application of the approach
described in this paper. Here, our goal is to fit a piecewise constant model to the PDO
where the change points represent transitions between the positive and negative phases
of PDO.
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Figure 5. Change Points in PDO. The top panel shows the annual PDO values, while the bottom
panel shows a pre-whitened version of this dataset. The horizontal dotted line at 0 is for reference to
help identify positive and negative phases of the PDO. The Bayesian change point algorithm did not
detect any change points in this dataset.

The autocorrelation function (R function acf()) shows that the residuals in the PDO
are correlated, so we begin our analysis with the pre-whitening technique described in
Section 3.1 to help eliminate change points due to autocorrelation rather than a change in
the phase of the PDO. For our analysis, we set the value of m to be 8, since the positive and
negative PDO phases are expected to last 20–30 years (l was chosen as 25). Following the
procedure outlined in Section 3.1, we calculate p̂ = 0.155, and the bias-corrected estimate
of the first-order autocorrelation as p̂c = 0.53 (consistent with 0.46 in [47], who studied a
shorter time series), which is near the point at which false positive change points become a
regular part of the inference (Table 1). At this point, the autocorrelation function shows no
significant correlation in the residuals, so we can continue with change point analysis.

After pre-whitening, we set v0 = 1, and then allowed potential values of k1 and σ2
0 to

be the same as in Section 3.2. BMA was then used to accumulate these models to produce
a single inference on the number and location of change points in the PDO data. The
Bayesian change point algorithm does not detect any change points in the PDO. This result
is surprising considering all the discussion of positive (e.g., 1925 to 1947 and 1976 to 1999)
and negative phases (e.g., 1946 to 1976) of the PDO (see for example [57]), but consistent
with the results of [12], who also identified a constant mean plus AR(1) model as the best
fitting model for the PDO. This is not to say that positive and negative phases of the PDO
do not exist—just that their magnitude and/or duration are not substantial enough to
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warrant the placement of a change point by either the Bayesian change point model or
PELT [12].

Note that if we had instead analyzed the monthly rather than mean annual PDO values,
the autocorrelation is much higher (ρ = 0.855). An autocorrelation this high will induce
a large number of spurious change points if the model does not have an autoregressive
component (Table 1). After pre-whitening the monthly PDO data, the Bayesian change
point algorithm did not detect any change points (results not shown).

4.2. Global Surface Temperature Anomalies—A Change in Trend

The Earth’s temperature has risen by an average of 0.14◦ Fahrenheit (0.08◦ Celsius)
per decade since 1880, but the rate of warming has not been consistent over time. In fact,
the rate of warming since 1981 is 0.32 ◦F (0.18 ◦C), more than twice the long-term average.
This past year was the sixth-warmest on record (0.84 ◦C above the 20th century average),
and the years 2013–2021 are nine of the ten warmest years on record [63,64]. Since the rate
of warming fluctuates over time, a change point model with a linear trend seems most
appropriate to model global surface temperature data.

Although surface temperature data are collected at stations across the globe, absolute
temperature measurements can be difficult to take in certain geographic locations. Thus,
temperature anomalies, or the departure from a reference value, are used instead and
allow for a more effective and reliable comparison between different geographic locations.
A global surface temperature anomalies dataset attempts to combine this temperature
information into a measure of global surface temperatures. Several groups have created
global surface temperature anomalies datasets, all with slightly different assumptions. One
such time series is the HadCRUT5 dataset produced by the Met Office Hadley Centre [65],
which begins in 1850 and has a reference period of 1961–1990. The data can be downloaded
from https://www.metoffice.gov.uk/hadobs/hadcrut5/. Two others are MLOST, NOAA’s
Merged Land Ocean Global Surface Temperature Analysis Dataset (NOAA) [66], avail-
able at (https://www.ncei.noaa.gov/access/monitoring/global-temperature-anomalies/
anomalies, accessed 15 August 2022), which starts in 1880 and has a reference period of
1901–2000, and GISTEMP, NASA’s Goddard Institute for Space Studies Surface Tempera-
ture Analysis ([67], available at https://data.giss.nasa.gov/gistemp/, accessed 15 August
2022), which starts in 1880 and has a reference period of 1951–1980. The University Corpo-
ration for Atmospheric Research website (https://climatedataguide.ucar.edu/, accessed
15 August 2022) contains additional information on these and several related datasets.

As with the PDO data, the autocorrelation function was used to initially check for
correlated residuals and then to verify that the pre-whitening technique was effective. For
this analysis, we expect up to 4 change points across the 140-year record, so we set the value
of m to be 12. Following the procedure outlined in Section 3.1, we calculate p̂ = 0.154, and
the bias-corrected estimate of the first-order autocorrelation as p̂c = 0.336, which is small
enough so as to not have a major impact on the inference (Table 2). Nevertheless, we pre-
whitened the data to help eliminate any change points that may arise due to autocorrelation.
As with the PDO data, we set v0 = 1, and then allowed the values of k1 and k2 to vary as in
Section 3.2. Since the variance of the temperature anomaly datasets is so small (<0.1 after
pre-whitening), we chose potential values for σ2

0 = 0.05, 0.1, 0.5, 1, 2, 5, 10, and 20. BMA
was then used to accumulate these models to produce a single inference on the number
and location of change points in the three temperature anomaly datasets.

The Bayesian change point model with BMA detected only a single change point
in the MLOST and GISTEMP datasets, and two change points in the HadCRUT5 data
(Figure 6). This result is somewhat surprising and includes fewer change points than
previous analyses (e.g., [68]). However, the authors note that these datasets are continually
revised and updated. Repeating the analysis of [68] on the revised datasets using the same
parameter values now produces an inference with fewer change points, so in that sense,
the results are consistent with previous studies on the same dataset.

https://www.metoffice.gov.uk/hadobs/hadcrut5/
https://www.ncei.noaa.gov/access/monitoring/global-temperature-anomalies/anomalies
https://www.ncei.noaa.gov/access/monitoring/global-temperature-anomalies/anomalies
https://data.giss.nasa.gov/gistemp/
https://climatedataguide.ucar.edu/
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Figure 6. Change Points in the Temperature Anomaly Data. The top row displays the HadCRUT5,
MLOST, and GISTEMP datasets, along with the model fitted by using BMA together with the Bayesian
change point model. The bottom row displays the BMA posterior distribution for the locations of
change points in each dataset. HadCRUT5 has two change points detected by the model, while
MLOST and GISTEMP have a bimodal distribution for a single change point.

5. Discussion

This paper addresses two open questions related to the Bayesian change point model
of [37], namely, how autocorrelation and the choice of values for the hyperparameters
can affect the inference. When a change point model is used to analyze real data, the
“true” number of change points is generally unknown. As a result, it is hard to know
whether a model is giving accurate and precise results. To see how our model performs in
difference scenarios, simulated data were generated which varied the number and location
of change points, the regression coefficients in each section of the data, the variance of
the residual error, and the magnitude of autocorrelation. Any change that reduces the
signal-to-noise ratio of the dataset (e.g., larger values of ρ or σ2, subtle changes in the
regression parameters, etc.) makes change points harder to detect, and thus has an impact
on the accuracy of the model. Specifically, a smaller signal-to-noise ratio manifests itself
in the posterior distribution as greater uncertainty in the location of a change point or a
complete lack of detection by the algorithm.

Autocorrelation is often present in real data, yet [37] assumes that the error terms are
independent, mean 0, normally distributed random variables. Simulations show that the
inference made by the Bayesian change point model is not strongly affected by low levels
of first-order autocorrelation (ρ < 0.5, see Tables 1 and A1)—the algorithm is still able to
detect the correct number of change points in the data. However, when the first-order
autocorrelation is larger, it can create a similar pattern to that of a change in the mean or
long-term trend (46–48), which can shift the inferred location of true change points (if the
autocorrelation makes the pattern appear to start earlier or later than it actually does) and
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introduce spurious change points. To counter the effect of serial correlation, we pre-whiten
the data using the Cochrane–Orcutt method with a bias-corrected estimate of the first-order
autocorrelation. Results show that pre-whitening the data eliminates the spurious change
points introduced by the autocorrelation. However, pre-whitening the data reduces the
magnitude of the shift between adjacent segments, making true change points harder to
detect. This is partially offset by a reduction in the variance, but not completely [47]. Both
of our applications (PDO and global surface temperature anomalies) exhibit only first-order
autocorrelation, so we did not study how the pre-whitening approach would fare on data
with higher-order autocorrelation.

As with any Bayesian analysis, the inference can be sensitive to the choice of the prior
distribution. In this case, we use conjugate priors for both the regression parameters and
the error variance, so the subjectivity comes in through the values of the hyperparameters
for these two distributions. As seen in Figures 3 and 4, changing the values of the hyperpa-
rameters generally affects the inferred number of change points, but not their location. In
other words, we can think of the changing values of the hyperparameters as creating more
or less stringent criteria for the algorithm to “detect” a change point. A “bad” choice of
values for the hyperparameters can produce an inference with too few or too many inferred
change points (Figure 2). To avoid this problem, we propose a BMA technique to weight
each model’s inference by the posterior probability of that model, so that “good” parameter
choices (as defined by the posterior probability of the model) carry more weight than “bad”
parameter choices. The result is an inference that takes into account multiple different
potential sets of hyperparameters.

BMA partially eliminates the problem of the model being sensitive to the values of
the hyperparameters. The problem is only partially eliminated because BMA is being
conducted using only a finite set of potential values for the hyperparameters rather than
considering all possible values. A Monte Carlo approach would fix this issue but at an
increased computational cost. Since models (defined by the set of values of the hyperpa-
rameters) of similar probability tend to produce a similar inference (see the similarity of
change point solutions for points A and B in Figure 3), and the model itself is not especially
sensitive to small changes in parameters values, we did not feel that this increased compu-
tational burden would significantly improve our BMA solutions. The interested researcher
could also try placing a non-uniform prior over the set of values for the hyperparameters if
they believe certain values to be more likely than others.

A major limitation of the Bayesian change point model discussed in this paper is its
run time, which can make BMA over a large parameter space prohibitive. Computational
complexity is a common challenge for Bayesian methods, so this limitation is not unique to
our model. However, we find inference produced by the Bayesian change point algorithm
to be reliable and believe that the reduced subjectivity afforded by BMA to be an important
step towards letting the data dictate which model is “best”. Future research should focus
on analyzing the impact that the range of parameter values has on the inference and on
further reducing the compute time so that this approach can be applied to longer and more
complex datasets.
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Appendix A. Correcting for Autocorrelation in the Presence of a Linear Trend Model

A second study was conducted to analyze how autocorrelation affects the Bayesian
change point algorithm’s ability to detect change points when none actually exist. Here,
we consider a linear model with no change points (Y = 4 + 0.05X + ε). An auto-regressive
signal of level ρ = 0.1, 0.2, 0.3, . . . , 0.9 is then generated using the R function arima.sim()
and added to each dataset (a total of 10,000 simulations for each of the two models). The
value of m is chosen to be 20, k0 = (0.01, 0.01), v0 = 1, σ2

0 = 1, dmin = 5, and kmax = 20. Since
the goal of this simulation is to see how autocorrelation affects the inference, optimizing
these parameters is not critical. The Bayesian change point model calculates the posterior
distribution of the number of change points for each dataset, which can be used to determine
the expected number of change points in the dataset. Table A1 gives the average number
of detected change points across the 1000 simulated datasets for each value of ρ before
and after pre-whitening, along with the number of datasets where the algorithm correctly
identified zero change points. As with Table 1, it is clear from these data that pre-whitening
can help to eliminate spurious change points that arise from autocorrelation.

Table A1. Autocorrelation in a Linear Trend Model. A total of 1000 datasets were generated for
each value of the autocorrelation parameter, ρ, for a model that includes a linear trend. The average
number of change points detected by the Bayesian change point model before and after pre-whitening
is indicated for each value of ρ, along with the number of datasets (out of 1000) where the algorithm
correctly identified zero change points (i.e., the number of datasets where the expected number of
change points <0.5). Note that a value of ρ = 0 corresponds to white noise.

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
at

a
w

it
h

A
ut

oc
or

re
la

ti
on

Estimated
ρ̂c N/A 0.039 0.139 0.229 0.321 0.419 0.501 0.591 0.666 0.732

Change
Points

Detected
<10−3 <10−3 <10−3 <10−3 0.003 0.013 0.087 0.472 1.861 3.577

# Correct 1000 1000 1000 1000 998 990 928 700 203 18

Pr
e-

W
hi

te
ne

d Change
Points

Detected
N/A <10−3 <10−3 <10−3 <10−3 <10−3 0.002 0.015 0.080 0.450

# Correct N/A 1000 1000 1000 1000 1000 998 989 940 693

For the linear trend model (Table A1), we estimate the value of the autoregressive
parameter on the residuals of the model after accounting for the linear trend. The fact
that we underestimate the value of the autocorrelation should not be surprising. Both [69]
and [70] discuss the difficulty of jointly estimating the trend and autoregressive parameters
of a model as they are highly interdependent. Note that if we estimated the value of ρ
based on the entire dataset rather than short subsegments of the data, then the estimated
value of ρ is much closer to the true value of ρ (results not shown). However, this approach
is problematic in the presence of the change points.
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