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Abstract: The motive of this study is to provide the numerical performances of the monkeypox
transmission system (MTS) by applying the novel stochastic procedure based on the radial basis scale
conjugate gradient deep neural network (RB-SCGDNN). Twelve and twenty numbers of neurons
were taken in the deep neural network process in first and second hidden layers. The MTS dynamics
were divided into rodent and human, the human was further categorized into susceptible, infectious,
exposed, clinically ill, and recovered, whereas the rodent was classified into susceptible, infected,
and exposed. The construction of dataset was provided through the Adams method that was refined
further by using the training, validation, and testing process with the statics of 0.15, 0.13 and 0.72.
The exactness of the RB-SCGDNN is presented by using the comparison of proposed and reference
results, which was further updated through the negligible absolute error and different statistical
performances to solve the nonlinear MTS.

Keywords: monkeypox; deep neural networks; nonlinear; radial basis; scale conjugate gradient;
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1. Introduction

Public health professionals are unsure whether monkeypox virus (MV) will offer a new
threat despite the coronavirus still being a risk in view of the recent pandemic it already has
caused [1,2]. An illness with two DNA viruses, the cowpox, variola and vaccinia, as well
as MYV, are all family members of the orthopoxvirus [3]. The MV was originally detected
in monkeys in the middle of 20th century. The natural form of MV contains rope/tree
squirrels, dormice, and Gambian pouched rats [4]. MV severely affected the African
regions, particularly the western and central areas [5]. Several epidemiological incidents
have been linked to sexual activity, especially in male, gay and bisexual individuals [6-8].
MV can also be spread via sharing bedding or clothing, as well as by being in close
contact with scabs, infectious sores, or bodily fluids [9]. Each individual experienced
different MV symptoms. Smallpox-like symptoms include a recognizable rash with mild
prodromal signals, although they are less severe than smallpox symptoms such as illness,
lymphadenopathy, and fever [10]. Patients with this epidemic often experience a dermatitis
that starts in the vaginal/perianal parts and could or might not expand to other internal
organs [11]. Viral genetic research of swabs were taken from the continental crust of
ulceration or blisters, which is the suggested technique for determining the presence of
current MV cases [12]. Numerous nations have notified the World Health Organization
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(WHO) about MV since the beginning of 2022. According to the WHO, 2103 cases were
reported with laboratory diagnosis and one was death registered in the middle of the last
year [13,14].

To identify naturally occurring phenomena, a variety of mathematical concepts have
been applied using the prey—predator interactions and interspecies communications. The
virus can be spread by direct contact with body liquids from sick persons and illnesses [15,16].
Monkeypox is an infectious disease, the treatment for which has not been identified until
now. Antiviral drugs, the vaccine immune globulin, and chicken pox vaccination have all
been created to protect against the MV. Chickenpox has been eliminated worldwide and
its vaccination was not accessible for a long time [17,18]. The virus’s trends are uncertain
because it has not received much attention previously. Even so, investigators have tried to
objectively investigate the behavior of MV and have developed an intricate computational
approach [19]. To prevent the spread of illness, infected patients should be kept apart from
the public. A design of a nonlinear system was presented to designate the dynamics of the
MYV [20]. The simulated analysis revealed that a person’s immunological status is affected
if they sustain an orthopoxvirus sickness. To better explain how illnesses spread and find
new therapy modalities, many computer simulations of serious illnesses are currently being
investigated [21-23].

The current investigations indicate the numerical solutions of the monkeypox trans-
mission system (MTS) by applying the novel stochastic procedure of radial basis scale
conjugate gradient deep neural network (RB-SCGDNN). Twelve and twenty neurons in
the first and second hidden layers have been applied to solve the MTS. The stochastic
RB-SCGDNN has never been exploited before to solve the mathematical MTS. The nu-
merical stochastic procedures based supervised /unsupervised neural networks have been
implemented in various disciplines, e.g., coronavirus system [24], food chain model [25],
HIV infectious systems [26], delay mathematical model [27], and differential form of the
singular systems [28]. The MTS dynamics were categorized into rodent and human; the ro-
dent was classified into three groups: susceptible, infected, and exposed, while the human
was classified into susceptible, infectious, exposed, clinically ill, and recovered. The generic
form of nonlinear MTS is shown as [29]:

0) = o — (Aw + un)Su(0),
0) = AuSu(0) — (B+pun)En(9),
= BEu(0) — (¢ + v+ pun +61)Iu(0),

C'y(0) = vIn(0) — (o + 62+ un)Cr(9),

H(9) = Iy (0) +pCh(0) — uuRyH(0),
= ¢r — (AR + HRr)SR(0),

—(e+ ur)Er(0) + ArSr(0),

r R(G) = ER(G) — urIr(6).

where Sy, Ey, Iy, Cy and Ry present the susceptible, exposed, infectious, clinically ill, and
recovered human, while S, Eg and Iy indicate the susceptible, exposed, and infectious
rodents. @r and @p are the rodent and human susceptible recruitments, y shows the
clinically ill ratio, up and ug represent the natural death rate per capita in humans and
rodents, Agr and Ay indicate the natural death and infection force, 8 is the progression
rate of illness based on the infection-exposed humans, J; and J; are the transferrable and
clinically diseased persons, p presents the recovered ratio of clinically ill individuals, 1 is
the natural recovered immunity rate and ¢ is the rate of growing communicable rodents.
Some novel features of this work are presented as:

)

e  The stochastic RB-SCGDNN is presented to find the precise solutions of the nonlinear
dynamics of MTS.
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e  The solutions of MTS are obtained through the RB-SCGDNN by taking twelve and
twenty neurons in the hidden layers.

e A dataset is provided through the Adams method that is refined further by using the
training, validation, and testing process with the statics of 0.15, 0.13, and 0.72.

e  The exactness of RB-SCGDNN is presented by comparison of reference and achieved
results, which is further validated using the negligible values of the absolute error
together with different statistical measures to solve the MTS.

The rest of the paper is summarized as: the RB-SCGDNN based methodology is
shown in Section 2. Discussions of the results is presented in Section 3 and conclusions are
reported in Section 4.

2. Methodology

In this section, a methodology based on the stochastic operators is presented to solve
the mathematical form of the nonlinear MTS. The mathematical and graphical procedures
based on the multi-layer structures are also presented.

2.1. RB-SCGDNN Procedures

The mathematical RB-SCGDNN is presented with twelve and twenty neurons in the
1st and 2nd hidden layers, which is given as:

p1 w11 q11
p2 w12 qp
p3 w13 qns3
Al 7 je+| " ©
L P12 | L W1,12 | L q112
[ 51 ] (P11 ¥21 W31 Ya1 - o wia [ il [ 421 ]
$2 P12 Y22 P32 YPap . . Wi p2 92,2
53 P13 Y23 Y33 YPaz . . Wig ps3 42,3
- A . . . . . . . . + . (3)
L 520 | Lh120 $220 P320 YPa20 - - wWiz2ol L P12 L 9220 |
[ SH(0) T [w11 w21 w3l - . . W1 | [ 431 ]
En(0) wip Wy w3p . . . wyp | [ s1 ] 732
Iy (0) w13 W3 W3z . . . Wyga s2 33
Cn(0) Wi4 W4 W34 . . . W04 53 43,4
Ru(8) | A wis W5 W35 . . . W5 T 735 o @
Sr(0) Wi Woe Wi . . . We : 3,6
Er(0) w7 wyy wyz ... wag || Séo ] q3,7
| Ir(6) | | wis wag w3g . . . wWg | | 938 ]

where w and 1 are the weight vectors in first and second layer, while w is the output layer
weights. p and s indicate the layers 1 and 2 along with output layers. g shows the bias vector
and A is the activation function, which is taken as radial basis, which is mathematically
given as:

A = exp(—f?), where f = i(wi@) +q, ()
i=1



Mathematics 2023, 11,975

40f13

where r presents the neurons. Figure 1 shows the mathematical form of MTS and multi-layers
construction together with the accomplished results. Figure 2 shows the procedure of multi-
layers along with single and multiple hidden layers by taking twelve and twenty neurons.

Deep neural network

Structure of deep neural
network

The numerical solutions of the
mathematical form of the
monkeypox virus transmission
system have been provided
through the novel procedures of
deep nenral network using
twelve and twenty numbers of
hidden neurons in the first and
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Figure 1. A deep neural network process, mathematical formulations, and assessment of outcomes

for the MTS.



Mathematics 2023, 11,975

50f13

N

90 © © © OF

Figure 2. A multilayers procedure for the nonlinear MTS.

The deep neural network by taking twelve and twenty neurons using the 1st and 2nd
layers, the 850 selected epochs, radial basis activation function, and the performances have
been tested based on mean square error (MSE) and scale conjugate gradient was used in
the process of optimization, which is presented in Figure 3.
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Figure 3. Cont.
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Figure 3. A neural network training performance, an input, couple hidden and output layers for
solving the nonlinear dynamics of the MTS. (a) A neural network training performance, (b) An input,
couple hidden and output layers to solve the MTS.

The significant performances to generalize the procedure are presented by applying
the Adam numerical solver, whereas the other procedures were executed using the default
setting of the parameters in order to produce the dataset. The artificial intelligence aptitudes
using the supervised SCGNNSs process were accomplished with best indices cooperation,
with complexity, overfitting /underfitting, and premature convergence. Moreover, the ad-
justment of these parameters was approved after comprehensive simulation investigations,
experience, and minor variations in the setting. The parameter setting of the SCGNN5s
method is given in Table 1, accompanied by the slight modification, disparity, and change,
which could have caused the poor performance (premature convergence). Hence, these
parameter settings were integrated with general consideration for the numerical investigations.

Table 1. Parameter adjustment for the SCGNNs approach.

Index Settings
Hidden neurons in the first layer 12
Hidden neurons in the second layer 20
Fitness goal (MSE) 0
Maximum Mu values 108
Maximum Epochs 850
Minimum values of the gradient 1077
Increasing Mu performances 10
Decreeing Mu measures 0.2
Training statics 0.15
Testing data 0.72
Validation data 0.13
Samples selection Random
Generation of dataset Adam method
Adam method execution and stoppage standards Default

2.2. Scale Conjugate Gradient (SCG)

Moller developed the SCG, which belongs to the family of conjugate gradient algo-
rithms and was widely implemented in the supervised learning for feedforward neural
networks [30]. The conjugate gradient is a mathematical scheme, which is applied in the
process of optimization whether the system is linear or nonlinear. SCG is normally an
iterative method and implemented as a direct search scheme to obtain the numerical results.
SCG is an exceptionally straightforward formula for calculating the completely different
direction vector. In recent years, SCG has been applied in the number of applications,
some of them are image restoration [31], motion control systems [32], inverse scattering
problems [33], nonlinear monotone operator models with applications [34], portfolio selec-
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tion [35], economic and environmental models [36], mild steel turning operation [37], and
partial differential models [38].

3. Results and Discussion

The numerical representations for solving three cases based on the rate of human
natural death were uy = 0.000303, py = 0.000202 and py = 0.000101, while the other
parameter values were ¢g = 0.2, ¢y = 0.1, p = 0.088366, yy = 0.000303, g = 0.002,
e =0.1,p = 0.036246, B = 0.016744, 5; = 0.003286, v = 0.5, Ay = 0.000202, Ag = 0.00404,
Jy = 0.055487 and o = 0.012458 including initial conditions 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2,
and 0.3 given as [29]:

A procedure based on the stochastic RB-SCGDNN scheme was provided for the
numerical solutions of the nonlinear dynamics of MTS. The structure of the first and second
hidden layers was provided by taking twelve and twenty number of neurons. Figure 4
indicates the illustrations of the optimal training and transition of state (ToS) by applying the
process of deep neural network for solving the nonlinear form of MTS. A total of 850 epochs,
an activation radial basis function, and SCG were taken for the purpose of optimization for
each case of MTS. MSE using the test, train, and authentication performances are illustrated
in Figure 4, which is authenticated as 4.0020 x 10°,1.4172 x 107° and 1.0610 x 1072 at
epochs 74, 61, and 38. Figure 4 represents the sum squared, gradient, num parameter, Mu,
and substantiation forms. The gradient values are given as 9.0831 x 107, 6.1865 x 10~°
and 7.6674 x 10~°. Figure 5 shows the fitness function using the test outputs/targets, error,
training outputs/targets, and fitness for MTS. Figure 6 authenticates the error histograms
(EHs) for the MTS using the deep neural network, activation radial basis function, and
SCG optimization. The EHs values for each case of the MTS are illustrated as 5.7 x 107>,
3.5 x 1074, and 1.08 x 10~*. The clear performances of the testing dataset are observable;
however, the errors performances based on the datasets of training and validation are not
clearly noticeable because of the small proportion. The linear tendency of zero-line error
presents the proposed results, which were performed closer to reference of the optimal
outcomes. Therefore, the point data based on validation/testing is not so clear. The
regression (Reg) measures are shown in Figure 7 to signify the numerical representations of
the nonlinear MTS are presented as one, which shows a perfect model. R values present the
coefficient of correlation, which was applied together with MSE measures of the artificial
neural networks. The values of R exist between —1 and +1, while, if the values of R are
closer to positive one, the performances of high network along with positive form of the
linear relationship can be accomplished. The bias values of the neurons and weights are
settled during the process of training until the system learns the correlation performances
between the variables based on input and output, i.e., until the minimum values of MSE are
obtained. The results of MSE using the test/train performances of the MTS are presented
in Table 2.

Table 2. MSE measures using the RB-SCGDNN scheme for the nonlinear MTS.

MSE
Case Performance Gradient Epoch
Train Validation Test

1 241 x 107° 4.00 x 10 862x107% 214x107% 9.08 x 10 74
2 2.69 x 10°° 1.41 x 107> 149 x 1075 234 x10°® 619 x10°° 61
3 3.14 x 10° 1.06 x 1075 190 x 1075 246 x 107 757 x107° 38
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Figure 5. Function fitness for solving the nonlinear dynamics of MTS.
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The comparison performances of each dynamic of nonlinear MTS are presented in
Figure 8. The overlapping of the obtained and reference results was accomplished for
each dynamic of the MTS, which represents the correctness of the stochastic RB-SCGDNN

scheme.
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Figure 8. Result comparisons for each class of the nonlinear dynamics of the MTS.
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AE performances for solving the classes Sy (6), E(6), Ig(6), Cu(6), Ru(0), Sr(6),
ER(0), and Ir(0) of nonlinear MTS are presented in Table 3. These negligible AE perfor-
mances authenticate the correctness of the RB-SCGDNN scheme.

Table 3. AE for each category of the nonlinear MTS.

Absolute Error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
6x107% 1x107% 1x10® 2x107% 8x103 3x10% 8x103 3x107® 8x107* 3x10% 3x107°
SH(B) 1x1072 1x1073 1x10% 7x10°® 3x10% 9x10® 3x10% 3x10° 2x107% 1x102 2x1073
1x10% 6x1073 1x10% 9x102 2x107* 1x103 8x10™* 3x10° 3x10* 8x10° 2x1073
2x107% 2x107° 2x107° 1x10° 1x107° 1x10° 1x107° 1x107® 1x10° 6x10° 9x10°
En(6) 3x107% 3x107° 3x107° 1x10° 7x10°® 5x10°® 3x10° 2x1077 1x10% 1x107° 1x107°

3x107° 3x107% 2x107° 1x10° 3x107° 2x10° 4x107° 1x10® 4x10% 3x10° 2x107°
1x107% 1x1073 1x10% 8x10% 8x107* 8x10% 6x107* 3x10% 1x10* 5x10* 4x10™*
Iy (8) 9x107% 1x1073 2x103 9x107% 6x10* 3x107* 4x10% 6x107* 6x107% 1x10% 4x107*
1x107% 7x107* 4x10° 1x102 5x107* 1x103 4x107* 5x10° 3x10™* 1x10% 8x107°
9%x107* 1x107% 9x10* 8x10* 6x10* 6x10% 5x10% 1x10* 2x10* 1x107* 4x105
Cu(0) 4x107° 3x107% 2x10% 1x107*% 1x107% 2x107* 3x10% 5x10% 2x10* 1x10%* 9x107*
6x107% 2x107% 1x107* 2x107* 6x10° 4x107* 2x10*% 4x10* 4x10* 1x10° 8x10°*

6x107° 1x107% 1x107* 2x107*% 2x10* 3x10* 3x10% 2x10* 4x10* 4x10* 4x10°*
Rg(f) 2x1077 2x10™* 4x10° 4x107° 9x10° 5x107> 9x10° 1x10™% 2x107* 3x107° 1x107*
5x107% 4x107% 4x10* 6x107% 5x10% 5x107* 2x10% 5x10™* 4x10% 3x10™* 4x107*
3x107% 2x107% 2x1073 2x10% 9x10% 1x10% 7x10® 9x10°® 1x103 2x10% 4x1073
Sr(0) 1x1072 8x107* 8x10° 9x10™* 2x10% 9x10® 4x10% 5x107% 1x107% 1x1072 3x107°
5x107% 1x1072 8x107° 1x102 2x107% 3x10% 5x10% 2x107% 7x10% 1x107%2 2x107°

2x107% 2x107% 5x107* 9x10° 1x107% 6x107* 1x10° 5x107* 4x107* 1x103 4x10*
Er(0) 4x107% 9x107% 2x103 7x107% 1x107® 1x10% 1x10® 2x10% 1x10® 5x10% 2x1073
4x107% 8x107* 2x103 5x107% 2x10% 5x10° 4x10% 4x10% 9x10% 3x10% 1x1073
1x107% 1x10* 6x107% 1x102 6x107* 2x103 2x107% 1x107% 4x10™* 3x10°% 1x1073
Ir(0) 2x107% 1x107% 3x1073 2x10% 2x10% 2x10% 2x10% 3x10% 7x10% 8x10% 2x1073
2x107% 3x107% 1x107* 3x107% 2x107% 2x107* 3x10® 6x107* 1x1073 8x1073 1x107°

4. Conclusions

In this work, the numerical performances of the MTS based on the novel stochastic
procedure through the radial basis scale conjugate gradient deep neural network have
been presented. The nonlinear dynamics of the MTS was divided into rodent and human.
The human was further categorized into susceptible, infectious, exposed, clinically ill, and
recovered, while the rodent had three groups, i.e., susceptible, infected, and exposed. Some
of the conclusions of this work are presented as follows:

e  The nonlinear system of differential equations based on the MTS is successfully solved
by using the stochastic approaches;

e The deep learning neural network along with the SCG and radial basis is used to
present the numerical solutions of the MTS;

o Twelve and twenty neurons in the structure of hidden layers have been used in the
deep learning process;

e A dataset was constructed using the Adams method, which is refined further through
the process of train, validation, and test by taking 0.15, 0.13 and 0.72 values;

e 850 epochs, activation radial basis function, test performances through MSE and
optimization-based SCG were used throughout the process for solving the MTS;
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e  The exactness of RB-SCGDNN was performed through the comparison of proposed and
reference results. Moreover, negligible AE further enhanced the correctness of the scheme.

e  The reliability of RB-SCGDNN procedure was verified through different statistical
configuration using regression, correlation, ToS, and EHs.

In future, the RB-SCGDNN procedure can be applied to solve different nonlinear
systems based on the fluid, fractional order, and other biological models [39-46].
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