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Abstract: Solar energy is an essential renewable energy source among all the other renewable energy
sources. It is possible to improve the efficiency of the solar energy absorber by increasing the solar
energy absorber’s capacity for absorption, which can help in building better solar-based renewable
energy devices. The need of covering the whole solar spectrum led us to design this T-shaped
metasurface solar absorber which is based on graphene material. The T-shaped absorber gives 90, 88
and 57% absorption in the visible, infrared and UV regions, respectively. This symmetrical structure
is also periodic with respect to x-axis and y-axis. This solar absorber demonstrates better efficiency
compared to many other existing solar absorbers. The solar absorber is also compared with two other
square-1 and square-2 designs to show the improvement in solar energy absorption. The parametric
optimization method is applied to optimize the design. The parameters, such as the length and width
of the substrate and the thicknesses of the T-shaped metasurface and substrate, are varied to find out
the optimized design for maximum solar energy absorption. The optimized parameters obtained
from the optimization are 1000, 2500, 3000 and 3000 nm, for resonator thickness, substrate thickness,
substrate length and substrate width, respectively. The design results for graphene material and its
potential variation are also observed. The design also shows good absorption for a wide-angle of
incidence of about 0 to 50◦. The increased efficiency of this design can be applied in future solar
absorber devices.

Keywords: numerical optimization; parametric optimization; computational; finite element analysis;
solar energy; absorber; photovoltaic applications

MSC: 65K10; 78-10; 00A06

1. Introduction

Renewable energy sources are gaining interest among researchers because of lim-
ited fossil fuel resources [1]. One more disadvantage of using fossil fuels is it increases
pollution while the renewable resources are clean and sustainable [2]. Solar power is
widely recognized as one of the most significant examples of currently available forms of
renewable energy and the absorber converts solar energy into heat energy [3]. The solar
energy efficiency in the solar absorber can be improved by applying the mathematical
optimization methods such as parametric optimization [4]. This heat energy can be used in
many day-to-day life applications as well as industrial applications. The solar absorbers’
efficiency is very important and most of the absorbers are absorbing the energy of the
visible spectrum [5]. There is a need for a solar absorber to absorb visible, ultraviolet and
infrared spectrum energy. The need for this broad spectrum and high efficiency can be
met by using metamaterials and graphene material, which are novel concepts that can
be incorporated into traditional solar absorber designs to meet the high efficiency and
broadband requirement of today’s solar absorbers.
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Metamaterials are important man-made materials with unexpected features such as
negative permittivity and permeability [6]. Metamaterials can be used with their unusual
properties to improve the solar absorber designs’ efficiency [7–9]. The split ring resonators
(SRR) are one of the components of metamaterials that can be used for designing, the second
component is thin wires and the third counterpart of SRR is complementary split-ring
resonators, etc., which can be supplemented to make the solar absorber more effective. The
SRR-based approach is shown in [10] and a thin wires-based solar cell design with CZTS
thin film is presented in [11]. A split hexagonal patch array has been used as a metamaterial
absorber to absorb not only visible but also ultraviolet regions [12]. A gold resonator
array placed over a substrate is used to improve the absorption and create a broadband
near-infrared absorber [13]. Gold is used to create a solar absorber that is a near-infrared
and near-visible metamaterial absorber [14]. Absorption of light can be increased using
plasmonic grating, which can be used to get broadband absorptions [15]. The solar thermal
absorber is designed using a MIM sandwiched structure with nanodisks to overcome the
limitations of existing plasmonic metamaterial absorbers [16]. The symmetrical structures
show a better response, which can be used to improve the absorption. Symmetrical meta-
surfaces improve the absorption of an absorber. The symmetric structures are also able to
show a multiband response in the absorber structure [17]. The symmetrical array of the
metamaterial structures is used for flat lenses. The twisted symmetries are used for this
with a complementary split ring resonator [18]. The concept of symmetrical structures is
also used to improve the sensing of sensors for the THz frequency band region [19]. Meta-
materials can be designed with different metals and materials. The metamaterial design
with Nickel [20], GST [21], Vendium dioxide [22], Tantalum carbide [23], tungsten [24],
Al-doped ZnO [25] and TiN [26] are used for solar absorbers and solar thermal applications.

Graphene is an exceptional electrical and optical material because it is only one atom
thick in nature, which can be used in a variety of applications to improve the efficiency
of solar absorbers [27–29]. A graphene spacer can be added between the resonator and
the substrate to boost the solar absorber’s absorption [30]. Graphene, with its excellent
optical properties, can be useful in energy-storing devices [31]. A broadband solar absorber
covering most of the solar spectral visible region is designed using a graphene metasurface-
based solar absorber [32]. To achieve a wider absorption bandwidth in the near-infrared,
reduced graphene oxide is used with composites of TiO2 to create a broadband solar
absorber [33]. The O-shape gold material design which is placed on a substrate base
outperforms the L-shape gold material design in terms of performance in designing solar
absorbers with exceptional performance. To demonstrate the solar absorber’s effectiveness,
AM 1.5 solar spectrum irradiance is used to compare absorption performance. The designs
are also verified for different parameters with optimization. The graphene spacer layer
is layered on the top of the substrate and beneath the metasurface material to achieve
broadband absorption [34]. Zirconium nitride metamaterial absorber is suggested for better
absorption characteristics. The suggested absorber has ZrN circular nanodisks created to
generate the metasurface effect laid over a SiO2 substrate [35]. Multilayer metasurface
designs can also improve the absorption and a broad spectral absorption range can be
achieved. One such absorber based on a swastika-shaped metasurface layer is analyzed by
researchers to improve the absorption [36].

The graphene material can be mixed in the different road-creating materials for better
improvement and performance of roads. The graphene material can also be used with
its anti-aging enhancing properties in modified asphalt [37]. The graphene-based asphalt
can be used in creating roads, which produces better quality and performance [38]. The
different defects of cement products can be analyzed and improved using the addition
of graphene [39]. The graphene material can also be used in designing smart composites.
The graphene nanoplatelets can be used for that purpose [40]. Graphene can be used for
electrochemical applications [41]. Microwave-assisted heating with graphene material can
be suitable for carbon precursors [42].
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Mathematical optimization methods can be applied to solve different problems in
electromagnetic and photonics problems [43]. One such method is the optimization method
where parametric optimization can be applied to optimize the design to get better re-
sults [44]. Machine learning and deep learning optimization algorithms are also used
to optimize the design results. The elephant herding optimization algorithm is used to
optimize the design and produce better results [45]. The parameters are tuned to optimize
the available results. The tuning of parameters is done with different algorithms [46]. The
photovoltaic designs and their models are optimized by applying parametric optimization
to these models. The optimization improves the efficiency of the models [47]. Parametric
optimization is the mathematical optimization method used to optimize the results where
the parameters of physical or geometrical nature are required to be optimized. These two
optimization methods known as linear parametric optimization method and nonlinear
parametric optimization method are used based on the behavior of the response. These
optimization methods are used to optimize the response and improve the results of the
absorber or other structures [48].

The solar absorber design requires high efficiency and broad bandwidth that covers all
solar regions. We propose a solar absorber that is broadly effective against solar radiation
covering 0.2 to 1.5 nm. The efficiency of this solar absorber is also good with the highest
average absorption of 95% with the visible spectrum. The metasurface design is also
optimized with several solar absorber physical variables to get the highest efficiency
for the design. The effects of the electric field are equally interesting and obtained to
observe the high electric energy in the proposed structure. The proposed structure analysis
and its results, which can be found in Sections 2 and 3. The fourth portion contains
final observations.

The main objectives of this research are (1) Design of an efficient solar absorber that
can absorb not only visible but UV and infrared regions. (2) The structural optimization of
the solar absorber design to improve the overall efficiency of the solar absorber. (3) Use of
the metasurface structure to improve the efficiency and reduce the structure size. (4) Design
of a metasurface structure which is easy to fabricate with less complexity and cost.

2. Design and Modeling

We have presented our proposed solar absorber design in Figure 1. We have verified
three metasurface designs to observe the highest absorption for the absorber design. The
results for the T-shape metasurface design are compared with square-1 metamaterial design
and square-2 metamaterial designs. The metasurface shape is varied and the results are
observed for these three metasurface designs. The metasurface designs are observed to
check whether our T-shape design is performing better than the other designs or not.
Section 3 contains the outcomes of all the designs. The two designs from the top are shown
in Figure 1a,b and the design is shown from the front in Figure 1c. The graphene layer
is inserted between the metasurface and substrate as presented in Figure 1c. The size of
the different physical parameters of the designs is denoted by X1, X2, X3 and X4 and is
given by 3000, 2500, 1000 and 2800 nm. The T-shape size and square-1 size are kept the
same and it is 2500 nm. In the next part of this section, the graphene layer is a single atom
thick and has a thickness of 0.34 nm. We have presented the numerical analysis of the
absorption and graphene materials. The design presented in Figure 1 is the optimized
design which is obtained by checking various designs and their results. The three different
designs are shown in the figure. One has the square resonator covering most of the part of
the substrate while the second square resonator has shorter length and width compared to
the substrate. The etching of two rectangular slits from the square resonator creates the
T-shape metamaterial design, which is presented in Figure 1a, and the results of all three
designs are shown and compared in the upcoming section. The analysis of the absorption
and graphene parameters is provided here for better understanding. The absorption of
the structure is dependent on the amount of reflection and transmittance. The angle of
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incidence is also playing the vital role in the absorption of the solar energy. The detailed
analysis of the abruption is provided here.
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Figure 1. Solar absorber design with three different metasurfaces. (a,b) T-shape metasurface absorber.
(c) Square-1 metasurface absorber design. (d) Square-2 metasurface absorber design. The design
parameter values are X1 = 3000 nm, X2 = 2500 nm, X3 = 1000 nm, X4 = 2800 nm. The T-shape length
and width are 2500 nm and square-1 shape size is also 2500 nm.

2.1. Analysis of Absorption

Absorption depends on reflectance and transmittance. As these two values reduce,
the absorption increases. The reflectance and its dependence on the incidence angle are
presented in [49].

r(ω, θi) =
ω cos θi ∏00(ω, θi)

2i}ck2 + ω cos θi ∏00(ω, θi)
(1)
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σ||(ω, k) = −i
ω

4π}k2 ∏00(ω, k) (2)

r(ω, θi) =
2π cos θiσ||(ω, k)

c + 2π cos θiσ||(ω, k)
(3)

R(ω, θi) = |r(ω, θi)|2 (4)

R(ω, θi) =
4π2 cos2 θi

[
Re2σ||(ω, k) + Im2σ||(ω, k)

]
[
c + 2π cos θiReσ||(ω, k)

]2
+ 4π2 cos2 θiIm2σ||(ω, k)

(5)

R(ω) = R(ω, 0) =
4π2

[
Re2σ(ω) + Im2σ(ω)

]
[c + 2πReσ(ω)]2 + 4π2Im2σ(ω)

(6)

A(ω) = 1−R(ω)− T(ω) (7)

2.2. Analysis of Graphene

The graphene conductivity depends mainly on its chemical potential and its depen-
dence is provided in [50]. The graphene material majorly depends on the graphene layer
conductivity for tuning its spectrum and also achieving the higher absorption results. The
tuning of the result is achieved by giving a change in graphene potential that is applied to
the monolayer graphene sheet. The graphene layer and its applied potential also helps in
achieving the higher absorption, which can be utilized for the solar absorber to improve
its efficiency.

ε(ω) = 1 +
σs

ε0ω∆
(8)

σintra =
−je2kBT

π}2(ω− j2Γ)

(
µc

kBT
+ 2ln

(
e−

µc
kBT + 1

))
(9)

σinter =
−je2

4π} ln
(

2|µc| − (ω− j2Γ)}
2|µc|+ (ω− j2Γ)}

)
(10)

σs = σinter + σintra (11)

3. Design and Results

Using COMSOL Multiphysics, the design depicted in Figure 1 is analyzed and simu-
lated, and analyzed results are presented in upcoming figures. Absorption, electric field,
different geometrical parameter variation, incident angle variation and graphene potential
variation are all examples of the outcomes. The three metasurface designs are investigated
and Figure 2 shows the outcomes of the experiment by means of absorbing, and its numeri-
cal values for different solar spectral regions are shown in Table 1. The absorption of the
solar absorber mainly depends on the three layers of Titanium-graphene-SiO2. These three
layers absorb solar energy. The absorption is achieved initially with a resonator of titanium
which further increases because of graphene’s high optical and electrical properties. The
base of the SiO2 substrate absorbs the amount of energy that is passed through the titanium
and graphene layers. We have not used any ground metal plane, yet we are achieving
more than 90% average absorption. The resonator is made up of Titanium material and
the substrate is made up of SiO2 material. The data shown in Figure 2 demonstrate that
the absorption of the T-shape metasurface has better results compared to square-1 and
square-2 designs. The T-shape metasurface design results are presented in Figure 2a. It is
obvious from the findings that the absorption is about on average 90% to 1.6 micrometer
range. In the ultraviolet region, 57% absorption is accomplished, 90% in the visible range
and 88% is in the infrared range of 0.7 m to 1.6 m. The data are also listed in Table 1 for
comparison purposes. The square-1 design findings suggest that the design results in terms
of absorption degradation as the T-shape is converted to the whole square shape. The
reason for this result degradation is change in inductance because of the increase in the
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metal part of the absorber design. In the ultraviolet region, 60% absorption is accomplished,
71% in the visible range, and 72% in the infrared range of 0.7 m to 1.6 m. The design results
further degrade as the size of the square shape is increased and square-2 metasurface
design is investigated. In the ultraviolet region, 55% absorption is accomplished, 62%in
the visible range, and 40% in the infrared range of 0.7 m to 1.6 m. The design results show
that the absorption is reduced to less than 70% above 1.6 µm so we have taken the absorp-
tion between 0.2 and 1.6 micrometers for all the next result discussions for the parameter
variation and its effect on the absorption.
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Table 1. Comparison of the proposed metasurface design results.

0.2 to 0.4 (Micrometer)
(Avg. Absorption in %)

0.4 to 0.7 (Micrometer)
(Avg. Absorption in %)

0.7 to 1.6 (Micrometer)
(Avg. Absorption in %)

T-shape metasurface design 57 90 88

Square-1 metasurface design 60 71 72

Square-2 metasurface design 55 62 40

Parametric Optimization

It is possible to use an optimization technique known as parametric optimization to
observe the effect of improvement in absorption which can increase the effectiveness of
the design. Here, we have applied the nonlinear optimization of the solar absorber which
can usually match well with the nonlinear behavior of the solar absorption response. The
optimization of the solar absorber is mainly done by optimizing the geometrical parameters
of the solar absorber such as resonator thickness, substrate thickness, substrate length and
width [51].

The functions do not behave linearly, which produces this optimization. It has function
f (x), constraint ci(x) = 1, 2, . . . . . . ..n or dj(x) = 1, 2, . . . . . . ..n are components of x that are
non linear.

The different geometrical parameters such as substrate height, resonator and length
and width of the substrate are analyzed for the T-shape metasurface absorber design. The
parametric optimization produces the best possible results for absorption. The resonator
height and the substrate height and its variation results are presented in Figure 3. The
responses are analyzed for the wavelength range of 0.2 to 1.6 micrometers. The absorption
results show that the initial wavelength is from 0.2 to 0.3 micrometer and the absorption is
around 90% for the other part. As the resonator thickness rises the absorption rises. The
highest absorption is visible in the resonator thickness of 1000 nm with red color plot. The
resonator helps in the concentration of the solar radiation in substrate. The rise in the
substrate thickness rises the absorption as it will help in absorbing the radiation more. The
rise in substrate thickness rises the absorption and it is visible in Figure 3b.

For the geometrical parameters such as length and width of the substrate and its
variation, the data are reported in the form of absorption in Figure 4. The results are
analyzed for the wavelength range of 0.2 to 1.6 micrometers. The absorption results show
that the initial wavelength is from 0.2 to 0.3 micrometer and the absorption is decreasing
two parameters. As the substrate length and width decrease, the absorption rises. The
highest absorption is visible in the substrate length of 3000 nm and substrate width of
3000 nm. The rise in substrate length and width rises the absorption and it is visible in
Figure 4. The variation in length and width are presented in Figures 4a and 4b, respectively.
The red color indicates the rise in absorption and the blue color indicates less absorption.

Graphene is very essential in boosting the solar absorber’s absorption. The change in
graphene potential can affect the overall absorption that’s why the variation in graphene
chemical potential is also carried out to show that there is no change in absorption levels
for the investigated wavelength range. Figure 5 depicts the outcomes for this variation.
The potential of graphene is changed between 0.1 and 0.9 eV. The wavelength range is
0.2 to 1.6 micrometer. The absorption outcomes are evident that the vertical lines of red
color for good absorption and blue color vertical lines for less absorption. The vertical lines
illustrate that increasing the graphene chemical potential does not affect the results. The
potential variation does not affect the solar absorber’s efficiency.

The angle of incidence is very important in absorbing solar radiation as the sun
changes its position throughout the day, we have investigated the absorption variation
for varying incidence angles. In Figure 6, the incidence angle is changed from 0 to 80◦ to
see how it affects the overall absorption. The results from the figure clearly show that the
absorption is considerable for incidence angles of 0 to 50◦ and for the other angles, the
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absorption is decreasing. The solar absorber shows a wide angle of incidence of 0 to 50◦ for
the T-shape metasurface design.
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The electric field is another important parameter that needs to be investigated to check
the absorption of different wavelengths. Here, we investigated electric field results for
three different wavelengths: 0.25, 0.50 and 0.75 micrometer as shown in Figure 7. The
absorption results are matching with the electric field results for all three wavelengths. The
three wavelengths were chosen to observe the electric field at various places across the
spectrum. The comparison of the T-shape metasurface absorber design is also compared
with the design results of [24–33] as presented in Table 2 and the results show promising
absorption compared to other design results. The comparison of the designs shows that
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there are designs with around 90% absorption for a visible region such as ours but those
designs do not give any absorption in ultraviolet or infrared regions while our designs give
57% for the ultraviolet region and 88% for the infrared region. Thus, our design has overall
good absorption compared to the other designs presented or published previously. The
design complexity of our design is also less and the materials used are also available and
can be fabricated easily for the solar thermal energy conversion devices.
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Table 2. The analysis of the three designs with other designs.

Designs 0.2 to 0.4 (Micrometer)
(Avg. Absorption in %)

0.4 to 0.7 (Micrometer)
(Avg. Absorption in %)

0.7 to 1.6 (Micrometer)
(Avg. Absorption in %)

T-shape metasurface design 57 90 88

Square-1 metasurface design 60 71 72

Square-2 metasurface design 55 62 40

Refrectory Metal design [52] - 90 -

Array of C-shaped metasurface design [29] - 86.5 -

90 nm thick graphene absorber design [53] - 93 -

Broadband metasurface design [54] - 90 -

Monolayer graphene design [55] - 80 -

Multi grooved metasurface design [56] - 71.1 -

Meta absorber for solar cell design [57] - 70 -

Solar cell design [58] - 84 77

Broadband absorber design [59] - 93.7 -

4. Conclusions

We studied three different metasurface designs to find a highly efficient T-shape meta-
surface solar absorber design. The design response is analyzed for absorption, electric field
and parametric optimization. The results for these three metasurface designs (T-shape,
square-1 and square-2) are also compared to observe the improved proposed design. The
mathematical nonlinear parametric optimization method is applied to optimize the pa-
rameters and obtain a higher efficiency for the solar absorber design. The comparison
clearly shows that a T-shape design has the maximum absorption with an average ab-
sorption of 57, 90 and 88% in the ultraviolet region, visible region and infrared region of
0.7 to 1.6 µm. The parameter optimization led to the best values of resonator thickness
of 1000 nm, resonator thickness of 2500 nm and substrate length and width of 3000 nm
each. The T-shape metamaterial design shows a wide angle of incidence in the range of 0
to 50◦. The electric field analysis presented shows the absorption behavior presented in
the T-shape design. The design can further be improved in the future to absorb more of
the UV spectrum energy and also increase the efficiency of visible and infrared spectrum
absorption to make perfect absorption. This can be achieved by improving the design using
a new metamaterial approach and graphene metasurface concepts.
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Abbreviations
Abbreviations Full Form
UV Ultraviolet
SRR Split ring resonator
CZTS Copper zinc tin sulfide
MIM Metal Insulator Metal
GST Germanium-Antimony-Tellurium
ZnO Zinc Oxide
Avg Average
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