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Abstract: In this study, we investigate tabs applied to turbulent flow over a circular cylinder for the
reductions of the mean drag and lift fluctuations. Tabs are small and thin passive devices attached
to the upper and lower surfaces of a circular cylinder near the flow separation. The Reynolds
number considered is Re = 3900, based on the free-stream velocity and cylinder diameter. Large
eddy simulations are performed using a dynamic global subgrid-scale eddy-viscosity model. A
parametric study is carried out to find the optimal tab configuration for minimizing the mean
drag and lift fluctuations. Parameters considered are the height (ly) and width (lz) of the tabs, and
spanwise spacing (λz) between them. With the optimal parameters, the spanwise coherence of the
vortex shedding behind the cylinder is effectively disrupted, resulting in three-dimensional vortical
structures varying in the spanwise direction. As a result, the strength of the vortex shedding in the
wake is successfully weakened, and the mean drag and lift fluctuations are significantly reduced by
14% and 95%, respectively, with the optimal tab configuration of ly/d = 0.2, lz/d = 0.3, and λz/d = 4,
where d is the cylinder diameter.
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1. Introduction

Unsteady flows past bluff bodies exhibit large-scale vortical structures such as the
Kármán vortex shedding. The Kármán vortex significantly contributes to the mean drag
and lift fluctuations, and also causes flow-induced vibrations and noise. Therefore, many
researchers have proposed numerous control methods to suppress the strength of the
Kármán vortex shedding [1–10]. In particular, flow over a circular cylinder is featured by
the nominally two-dimensional distinct Kármán vortex shedding, and thus it has been the
focus of extensive research on the flow control. According to Choi et al. [1], control methods
for flow over a circular cylinder can be divided into two-dimensional (2D) and three-
dimensional (3D) forcings based on whether or not actuations or geometric modifications
for the control vary in the spanwise direction.

The control of flow over a circular cylinder with 2D forcing is a method in which
actuations or geometric modifications are uniform along the spanwise direction. Examples
for passive control devices in 2D forcing are the end plate [4,11], splitter plate [2,12–14],
flexible splitter plate [15], secondary small cylinder [16–18], and so on. Active control
strategies categorized in 2D forcing include the base bleed [3,5], steady and time-periodic
blowing [9], and active feedback control with blowing/suction on the surface [6,8,10], to
name a few. These control methods have been shown to successfully weaken the strength of
the Kármán vortex shedding in the wake of the cylinder. For example, recent work by Yun
and Lee [10] performed an active feedback control of turbulent flow over a circular cylinder
at Re = 3900, where the amplitude of the uniform blowing/suction actuation near the flow
separation is linearly proportional to the averaged transverse velocity at a sensing location
on the centerplane of the wake. Here, the Reynolds number (Re = u∞d/ν) is defined with
the free-stream velocity (u∞), the cylinder diameter (d), and the kinematic viscosity (ν).
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They showed that, with the control, the vortex shedding behind the cylinder was weakened
and delayed farther downstream, resulting in the reductions of the mean drag and lift
fluctuations on the cylinder.

On the other hand, the control of flow over a circular cylinder with 3D forcing em-
ploys actuations or geometric modifications varying in the spanwise direction, which is
intended to disturb the spanwise coherence of the vortex shedding in the wake. One of the
representative control methods in 3D forcing is the distributed forcing proposed by Kim
and Choi [7]. They installed blowing and suction actuations on the upper and lower slots of
the cylinder surface near the flow separation, which were steady in time and distributed in
the spanwise direction with a sinusoidal profile. They showed that this distributed forcing
effectively disrupted the formation of the Kármán vortex shedding in the wake, and thus
resulted in the reductions of the mean drag and lift fluctuations. Active open-loop control
with the distributed forcing has an advantage that its control efficiency is much better than
other active open-loop controls using 2D forcing, such as the base bleed or the steady and
time-periodic blowing [1,9].

Controls with 3D forcing can also be accomplished with passive devices that introduce
geometric modifications of the cylinder varying in the spanwise direction. Passive devices
in 3D forcing include trailing edge [19–21], wavy cylinder [22,23], O-ring [24], helically
twisted elliptic (HTE) cylinder [25,26], and so on. For example, the HTE cylinder has an
elliptic cross section that rotates along the spanwise axis of the cylinder, and Kim et al. [26]
conducted an extensive parametric study for the optimal shape of the HTE cylinder for
both laminar and turbulent flow regimes. For Reynolds numbers considered in their study,
it was reported that both the drag and lift fluctuations for the optimal HTE cylinders were
smaller than those for a circular cylinder. In their study, the optimal spanwise wavelength
of the HTE cylinder for the maximum drag reduction was around 3d ∼ 5d, and this was
consistent with that of the distributed forcing. Unlike active controls, these passive devices
are attractive because they do not require any power consumption for active actuations.
Nevertheless, these passive devices require substantial geometric modifications to bluff
bodies, and thus it may be difficult to apply them to some apparatuses having bluff
body shapes.

In contrast, tabs [27–30] can be attached to a bluff body without a significant geo-
metric modification of its shape, and thus they can be readily applied to the control of
flow over a bluff body. Park et al. [29] carried out an extensive parametric study for the
effects of the height and width of tabs, and the spanwise spacing between adjacent tabs
on the drag reduction of two-dimensional bluff body with a blunt trailing edge in tur-
bulent flow. Through both experimental and numerical approaches, they showed that
tabs attached to the upper and lower trailing edges of the bluff body effectively caused
spanwise variations of vortical structures in the wake weakening the two-dimensional
nature of the vortex shedding. As a result, it was observed that the base pressure of the
bluff body was increased owing to the tabs. Later, Park et al. [30] showed that tabs attached
to backward facing step could also be used for the mixing enhancement. In their work,
tabs were found to significantly disturb the separating shear layer by generating a pair
of counter-rotating streamwise vortices, which entrained high momentum fluids into the
recirculation region behind the backward-facing step, greatly improving the flow mixing.
On the other hand, Yoon et al. [28] investigated tabs attached to a circular cylinder where
the separation location is movable unlike a body with a blunt trailing edge. At the Reynolds
number of 100, the laminar flow behind a circular cylinder is successfully controlled by
tabs, resulting in the suppression of the Kármán vortex shedding and the drag reduction of
17%. However, for turbulent flow over a circular cylinder, the applicability of tabs for the
reductions of the mean drag and lift fluctuations has not yet been investigated in literature.
Therefore, this study aims to investigate the use of tabs for controlling turbulent flow over
a circular cylinder and examine their effectiveness in reducing the mean drag and lift
fluctuations. The structure of this article is as follows: the numerical configurations and the
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geometry of tabs are described in Section 2. The control results are presented and discussed
in Section 3, followed by the conclusions in Section 4.

2. Numerical Configurations

In the present study, we conduct large eddy simulations (LES) of turbulent flows over
a circular cylinder with or without tabs. The governing equations for this flow are the
unsteady incompressible filtered continuity and Navier–Stokes equations:

∂uj

∂xj
−q = 0, (1)

and
∂ui
∂t

+
∂uiuj

∂xj
= − ∂p

∂xi
+

1
Re

∂2ui
∂xj∂xj

− ∂

∂xj
τij + fi, (2)

where t is the time, xi = (x, y, z) are the Cartesian coordinates, ui = (u, v, w) are the
corresponding velocity components, and p is the pressure. Here, x, y, and z denote the
streamwise, transverse, and spanwise directions, respectively (see Figure 1). (̄) denotes the
filtering operation for LES. To satisfy the no-slip condition on the cylinder surface and tabs,
we adopt an immersed boundary method by Kim et al. [31]. q and fi in Equations (1) and
(2) are the mass source/sink and momentum forcing terms to satisfy the continuity and
the no-slip condition on the cylinder surface, respectively. These terms are only applied on
the cylinder surface or inside the cylinder body and are set to be zero in other regions of
fluid flow. The algorithms to determine q and fi are described in Kim et al. [31]. Variables
in Equations (1) and (2) are non-dimensionalized by the free-stream velocity u∞ and
the cylinder diameter d. τij = uiuj − uiuj is the subgrid-scale stress tensor for LES. The
Reynolds number considered in this study is Re = 3900.

In the present study, we use the dynamic global subgrid-scale (SGS) eddy-viscosity
model based on the Germano identity [32,33] to determine the subgrid-scale stress τij for
LES. The eddy viscosity model for τij is written in the following form:

τij −
1
3

τkkδij = −2νTSij, (3)

Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
, (4)

where νT is the subgrid-scale eddy viscosity, and Sij is the filtered strain rate tensor. νT is
determined by the Vreman eddy viscosity model [34] in the following form:

νT = Cv

√
Bβ

αijαij
, (5)

αij =
∂uj

∂xi
, (6)

Bβ = β11β22 + β11β33 + β22β33 − β
2
12 − β

2
13 − β

2
23, (7)

βij =
3

∑
m=1

∆2
mαmiαmj, (8)

where Cv is the Vreman model coefficient, and ∆ is the size of the grid filter. This model
coefficient Cv is dynamically determined using the Germano identity [33,35] as follows:
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Cv = −1
2

〈
Lij Mij

〉
V〈

Mij Mij
〉

V

, (9)

Lij = ũiuj − ũiũi, (10)

Mij =

√√√√ B
β̃

α̃ijα̃ij
S̃ij −

˜√ Bβ

αijαij
Sij, (11)

where (̃) is the test-filtering operation, and 〈•〉V is the instantaneous volume average over
the entire computational domain. Owing to this volume averaging process, Cv is constant
in the space but varies over time.

Inserting the eddy viscosity model in Equation (3) into the Navier–Stokes equation in
Equation (2) gives

∂ui
∂t

+
∂uiuj

∂xj
= − ∂p

∂xi
+

1
Re

∂2ui
∂xj∂xj

+
∂

∂xj
νT

∂ui
∂xj

+
∂

∂xj
νT

∂uj

∂xi
+ fi. (12)

Note that τkk in Equation (3) is merged into the pressure term [36]. For the time advancement
of the Navier–Stokes equation, we use the fully implicit fractional step method with a veloc-
ity decoupling procedure [37–39]. By conducting a temporal integration using the second-
order implicit Crank–Nicolson scheme together with a linearization of the nonlinear con-
vection term preserving the second-order temporal accuracy by Beam and Warming [40],

un+1
i un+1

j + un
i un

j = un+1
i un

j + un
i un+1

j + O(∆t2), (13)

Equation (12) becomes

un+1
i − un

i
∆t

+
1
2

(
∂

∂xj
un

j un+1
i +

∂

∂xj
un

i un+1
j

)
= −∂pn+1

∂xi
+

1
2

1
Re

(
∂2un+1

i
∂xj∂xj

+
∂2un

i
∂xj∂xj

)

+
1
2

(
∂

∂xj
νT

∂un+1
i

∂xj
+

∂

∂xj
νT

∂un
i

∂xj

)
+

1
2

(
∂

∂xj
νT

∂un+1
j

∂xi
+

∂

∂xj
νT

∂un
j

∂xi

)
+ fi.

(14)

By introducing the intermediate velocity u∗i for the fractional step method [37–39], an
equation for the intermediate velocity can be written as

u∗i − un
i

∆t
+

1
2

(
∂

∂xj
un

j u∗i +
∂

∂xj
un

i u∗j

)
= −∂pn

∂xi
+

1
2

1
Re

(
∂2u∗i

∂xj∂xj
+

∂2un
i

∂xj∂xj

)

+
1
2

(
∂

∂xj
νT

∂u∗i
∂xj

+
∂

∂xj
νT

∂un
i

∂xj

)
+

1
2

(
∂

∂xj
νT

∂u∗j
∂xi

+
∂

∂xj
νT

∂un
j

∂xi

)
+ fi.

(15)
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By defining the delta form δu∗i = u∗i − un
i and substituting it to Equation (15), we can obtain

an equation for δu∗i :

δu∗i
∆t

+
1
2

(
∂

∂xj
un

j (u
n
i + δu∗i ) +

∂

∂xj
un

i (u
n
j + δu∗j )

)

= −∂pn

∂xi
+

1
2

1
Re

(
∂2

∂xj∂xj
(un

i + δu∗i ) +
∂2un

i
∂xj∂xj

)

+
1
2

(
∂

∂xj
νT

∂

∂xj
(un

i + δu∗i ) +
∂

∂xj
νT

∂un
i

∂xj

)

+
1
2

(
∂

∂xj
νT

∂

∂xi
(un

j + δu∗j ) +
∂

∂xj
νT

∂un
j

∂xi

)
+ fi.

(16)

By rearranging Equation (16),

δu∗i
∆t

+
1
2

∂

∂xj
un

i δu∗j +
1
2

∂

∂xj
un

j δu∗i −
1

2Re
∂2δu∗i
∂xj∂xj

− 1
2

∂

∂xj
νT

∂δu∗i
∂xj
− 1

2
∂

∂xj
νT

∂δu∗j
∂xi

= −∂pn

∂xi
− ∂

∂xj
un

i un
j +

1
Re

∂2un
i

∂xj∂xj
+

∂

∂xj
νT

∂un
i

∂xj
+

∂

∂xj
νT

∂un
j

∂xi
+ fi.

(17)

y

x
z

30d
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¥

Figure 1. (a) Schematic diagram for the coordinate system, computational domain, and geometry of a
circular cylinder with tabs; (b) geometric parameters of tab thickness (lx), height (ly), and width (lz).

Equation (17) can be expressed in a matrix form

1
∆t

I + ∆tN11 ∆tN12 ∆tN13
∆tN21 I + ∆tN22 ∆tN23
∆tN31 ∆tN32 I + ∆tN33

δu∗1
δu∗2
δu∗3

 =

R1
R2
R3

, (18)

where Ri denotes the right-hand-side of Equation (17). Here, Nij is given as

Nij =


1
2

∂

∂xj

(
un

i + un
j

)
− 1

2Re
∂2

∂xj∂xj
− 1

2
∂

∂xj
νT

(
∂

∂xi
+

∂

∂xj

)
(i = j)

1
2

∂

∂xj
un

i −
1
2

∂

∂xj
νT

∂

∂xi
(i 6= j).

(19)
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While preserving the second-order temporal accuracy, we carry out the approximate factor-
ization of the coefficient matrix in Equation (18), which gives [39]

1
∆t

I + ∆tN11 0 0
∆tN21 I + ∆tN22 0
∆tN31 ∆tN32 I + ∆tN33

 I ∆tN12 ∆tN13
0 I ∆tN23
0 0 I

δu∗1
δu∗2
δu∗3

 =

R1
R2
R3

. (20)

After calculating δu∗i from the above equation without iterations, we can subsequently
obtain pn+1 and un+1

i . More details on this implicit velocity decoupling procedure for the
incompressible Navier–Stokes equations are referred to Kim et al. [39]. For the discretization
of spatial derivative terms in the Navier–Stokes equation, we adopt the second-order
central difference scheme for all spatial derivative terms except for the convection terms in
the laminar accelerating region near the cylinder where a third-order QUICK scheme is
employed [41]. In this study, simulations are carried out using in-house code implementing
the above numerical configurations. The code has been demonstrated to accurately predict
turbulent flows over various bluff bodies [32,41,42].

Figure 1 shows the schematic diagram for the coordinate system, computational
domain, and geometry of a circular cylinder with tabs. At the inflow boundary, a Dirichlet
boundary condition, u = u∞ and v = w = 0, is applied. A periodic boundary condition
is used in the spanwise direction and ∂u/∂y = v = ∂w/∂y = 0 is given at the top and
bottom boundaries. At the outflow boundary, a convective boundary condition is given as
∂ui/∂t + c∂ui/∂x = 0, where c is the plane-averaged streamwise velocity on the outflow
plane. The computational domain for the present numerical simulations is−15 ≤ x/d ≤ 15,
−25 ≤ y/d ≤ 25, and 0 ≤ z/d ≤ Lz, where Lz is dependent on the spanwise distance
between adjacent tabs (λz) (see Table 1). Lz/d = 4 is used for the LES of flow over a circular
cylinder without a tab.

Table 1. Geometric parameters of the tabs, computational domain sizes, and numbers of grid points.

ly/d lz/d λz/d Domain Size
(Lx × Ly × Lz)

Number of Grid
Points

(Nx × Ny × Nz)

0.2

0.1

4 30d× 50d× 4d 513 × 331 × 160

0.2
0.3
0.4
0.5

0.3

0.1
0.2
0.3
0.4
0.5

0.4

0.1
0.2
0.3
0.4
0.5

0.2 0.3

2 30d× 50d× 2d 513 × 331 × 80
3 30d× 50d× 3d 513 × 331 × 120
5 30d× 50d× 5d 513 × 331 × 200
6 30d× 50d× 6d 513 × 331 × 240

In Figures 1 and 2, there are five geometric parameters for tabs: the installation angle
of tabs measured from the stagnation point (θt), thickness (lx), height (ly), width (lz), and
spanwise distance between adjacent tabs (λz). Yoon et al. [28] investigated the effect of θt
for flow over a circular cylinder at the low Reynolds number of Re = 100, and showed
that θt = 90◦ (see Figure 1a) is the optimal location of tabs for the reduction of the mean
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drag on the cylinder. Therefore, in this study, we install tabs at θt = 90◦. The separation
angle for flow over a cylinder at Re = 3900 from the present LES is θs = 89◦, which is in
good agreement with those from other investigations [43,44]. Thus, the installation location
of tabs (θt = 90◦) is near the flow separation. Figure 2 shows an example of a circular
cylinder attached by multiple tabs installed at θt = 90◦ with the free-stream velocity u∞.
Most studies on tabs attached to bluff bodies adopt tabs having a thin thickness [28–30].
Accordingly, the present study also assumes a thin tab with the thickness of lx = 0.04d [28].
Previous studies on the control of flow over a circular cylinder with 3D forcing reported that
the optimal spanwise wavelength for various 3D forcing methods for the drag reduction
is around 4d [7,26,28]. In particular, through a parametric study, Yoon et al. [28] showed
that λz/d = 4 is the optimal spanwise distance for tabs in the laminar flow over a circular
cylinder. Therefore, with the fixed spanwise distance of λz/d = 4, this study focuses on a
parametric study by varying the tab height (ly) and width (lz). In addition, we examine the
effect of spanwise distance of tabs (λz) as well.

Table 1 shows geometric parameters for tabs, computational domain sizes, and num-
bers of grid points considered in the present study. As shown, we consider 0.2 ≤ ly/d ≤ 0.4
and 0.1 ≤ lz/d ≤ 0.5. The streamwise and transverse domain sizes are Lx = 30d and
Ly = 50d and corresponding numbers of grid points are Nx = 513 and Ny = 331. The
spanwise domain size and number of spanwise grid points depend on the size of λz. That is,
Lz = λz and Nz = 40λz/d. Tabs are installed at z = Lz/2. Figure 3 shows grid distributions
near a circular cylinder with tabs in the x–y plane. As shown, with the adoption of the
immersed boundary method [31], grid lines and the geometry of a circular cylinder with
tabs are not aligned with each other. Simulations with a larger number of grid points give
negligible changes in flow statistics confirming the numerical accuracy of the present study.
For the present unsteady simulations, the size of computational time step is determined
from a maximum CFL number condition, CFL=∆t(|u|∆x + |v|∆y + |w|∆z) ≤ 0.7. Simula-
tions with different maximum CFL number conditions such as CFL ≤ 0.525 do not result
in changes to the flow statistics, indicating that the effect of computational time step is
negligible [45–47].

x

y

z

z
l

u
¥

Figure 2. Schematic diagram of a circular cylinder attached by multiple tabs installed at θt = 90◦

with the free-stream velocity u∞. λz denotes the spanwise distance between adjacent tabs.
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/x d

y

d

Figure 3. Grid distributions near a circular cylinder with tabs in the x–y plane. Every other grid
is shown.

3. Results and Discussion
3.1. Control Results

Table 2 shows the flow statistics for turbulent flow over a circular cylinder without
a tab from the present LES together with those from previous studies. In the table, the
mean drag coefficient (CD), coefficient of lift fluctuations (CLrms ), Strouhal number (St),
mean recirculation length (Lr/d), and base pressure coefficient (−CPb ) are shown. The
mean recirculation length Lr is defined to be the length between the base of the cylinder
(x/d = 0.5) and the point of zero mean streamwise velocity on the centerline (y = 0). The
base pressure coefficient −CPb is the pressure coefficient at the cylinder base (x/d = 0.5).
As shown in Table 2, the flow statistics from the present LES agree well with those from the
previous investigations.

Table 2. Flow statistics for turbulent flow over a circular cylinder without a tab from the present
simulation together with those from previous studies. Here, DNS denotes direct numerical simulation.

Case Re CD CLrms St Lr /d −CPb

Lehmkuhl et al. [44] (DNS) 3900 1.015 - 0.215 1.36 0.935
Kravchenko and Moin [43] (LES) 3900 1.04 - 0.21 1.35 0.94

Kim et al. [26] (LES) 3900 1.05 0.25 - - 0.98
Lam et al. [48] (experiment) 4000 1.03 0.16 - - -

Lam et al. [48] (LES) 3900 1.03 0.12 0.211 - -
Franke and Frank [49] (LES) 3900 0.978 - 0.209 1.64 0.85

Present study (LES) 3900 1.045 0.18 0.208 1.38 0.91

Figure 4 shows the variations of drag and lift coefficients with the tab height (ly) and
width (lz). Here, we fix λz/d = 4. As shown, tabs with lz/d ≥ 0.2 successfully reduce the
mean drag and root-mean-square (rms) of lift fluctuations exerted on the cylinder. The
maximum reductions of the mean drag and lift fluctuations are achieved with the tab
size of ly/d = 0.2 and lz/d = 0.3, which correspond to about 14% (CD = 0.90) and 95%
(CLrms = 0.0096) reductions, respectively, compared to the values of the uncontrolled flow
(flow over a circular cylinder without a tab). We note that these reductions for turbulent
flow are similar to those for laminar flow over a circular cylinder [28]. Tabs larger than this
optimal tab size (ly/d ≥ 0.2 and lz/d ≥ 0.4) also reduce the mean drag and lift fluctuations
but to a lesser extent. We suspect that this is because the form drag exerted on the tabs
themselves increases with increasing the tab size [28]. On the other hand, for the cases of
cylinder with relatively small tabs of lz/d = 0.1, the mean drag and lift fluctuations are not
reduced compared to the case of cylinder without a tab, indicating that small tabs are not
effective in altering the turbulent flow over a circular cylinder. Figure 5 shows the time
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histories of drag and lift coefficients with and without tabs. As expected from Figure 4, a
circular cylinder attached by the optimal size tabs experiences significantly reduced drag
and lift fluctuations.

( )a ( )b

,L rmsC

/
z
l d /

z
l d

D
C

0.1 0.2 0.3 0.4 0.5

0.85

0.9

0.95

1

1.05

1.1

1.15

0.1 0.2 0.3 0.4 0.5

0

0.05

0.1

0.15

0.2

Figure 4. Variations of drag and lift coefficients with the tab height (ly) and width (lz) (λz/d = 4):
(a) mean drag coefficient; (b) rms of lift coefficient. �, ly/d = 0.2; •, ly/d = 0.3; H, ly/d = 0.4. Here,
dashed lines denote values for the uncontrolled flow.

,L rmsC

0 200 400 600 800 1000

0.8

0.9

1

1.1

1.2

1.3

0 200 400 600 800 1000

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

( )a ( )b

D
C

L
C

/tu d
¥

/tu d
¥

Figure 5. Time histories of drag and lift coefficients with and without tabs: (a) drag coefficient;
(b) lift coefficient. Black line, cylinder without a tab; blue line, cylinder with tabs of ly/d = 0.2 and
lz/d = 0.3.

Figure 6 shows the variations of drag and lift coefficients with the spanwise tab spacing
λz. As shown, the optimal tab size of ly/d = 0.2 and lz/d = 0.3 obtained for λz/d = 4 again
produces effective drag reductions for 3 ≤ λz/d ≤ 6. In the figure, the optimal spanwise tab
spacing is found to be λz/d = 4. For λz/d = 2, the drag increases owing to the close spacing
between tabs. On the other hand, as shown in Figure 4b, the lift fluctuations are successfully
reduced for all λz considered in this study. We note that the optimal spanwise tab spacing
(λz/d = 4) in the present study is consistent with those of the previous investigations for
3D forcing such as the distributed forcing [7] and tabs in the laminar flow regime [28].
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Figure 6. Variations of drag and lift coefficients with the spanwise tab spacing λz: (a) mean drag
coefficient; (b) rms of lift coefficient. Here, we use the fixed tab size of ly = 0.2d and lz = 0.3d, and
dashed lines denote values for the uncontrolled flow.

3.2. Flow Fields

In the previous section, we examined that the control performance varies with the tab
size (ly and lz) and spacing (λz), and showed that tabs with adequate sizes and spacings
can effectively reduce the mean drag and lift fluctuations exerted on a circular cylinder.
In this section, we elucidate flow fields modified by tabs with the optimal tab spacing of
λz/d = 4.

Figure 7 shows instantaneous vortical structures over a circular cylinder with and
without tabs identified using the λ2 method [50] in top and side views. For the uncontrolled
flow in Figure 7a,b, it is observed that wavy and asymmetric vortical structures are formed
behind the cylinder owing to the development of the alternating Kármán vortex shedding.
For the tabs of ly/d = 0.2 and lz/d = 0.1, vortical structures near tabs are slightly disrupted
by tabs as shown in Figure 7c,d, but those in the wake exhibit wavy and asymmetric
structures similar to those of the uncontrolled flow. This could explain the comparable
values of drag and lift fluctuations for this size of tab to those of the uncontrolled flow.
On the other hand, as shown in Figure 7f, the optimal tabs (ly/d = 0.2 and lz/d = 0.3)
effectively weaken the alternating Kármán vortex shedding, resulting in symmetric vortical
structures in the near wake with respect to the center plane (y = 0). In addition, vortices
right behind the cylinder without a tab observed in Figure 7a become less prominent by
tabs as shown in Figure 7e,f. These suppressions of vortices behind the cylinder and the
vortex shedding are responsible for the significant reductions of the mean drag and lift
fluctuations of the cylinder as observed in Figure 4.

Figure 8 shows instantaneous velocity vector fields on the x–z plane at y/d = 0.6 with
and without tabs. For the case of optimal tabs, it is observed that the flow significantly
is accelerated after the separation from the sides of the tab and vortices elongated in the
streamwise direction are formed behind the tab. Similar elongated vortices were observed
in other investigations with 3D forcing methods such as tabs in a body with a blunt trailing
edge [29] and a helically-twisted-elliptic cylinder [25]. In contrast to the uncontrolled flow,
these elongated vortices after tabs disrupt the coherence of the vortex shedding in the
spanwise direction, transforming the nominally two-dimensional vortical structure into a
three-dimensional one. This is a typical result of using 3D forcing methods [1].
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Figure 7. Instantaneous vortical structures over a circular cylinder with and without tabs identi-
fied using the λ2 method [50] in top view (left) and in side view (right): (a,b) cylinder without a
tab; (c,d) cylinder with tabs of ly/d = 0.2 and lz/d = 0.1; (e,f) cylinder with tabs of ly/d = 0.2 and
lz/d = 0.3.
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Figure 8. Instantaneous velocity vector fields on the x–z plane at y/d = 0.6: (a) cylinder without a tab;
(b) cylinder with tabs of ly/d = 0.2 and lz/d = 0.3. Note that the x–z plane at y/d = 0.6 is located
slightly above the cylinder.

The differences between two- and three-dimensional vortical structures can be ob-
served by comparing Figure 7a,e. In Figure 7a, the flow structures in the wake for the
uncontrolled flow are irregularly distributed along the spanwise direction without signifi-
cant large-scale variations, resulting in a statistically homogeneous flow in that direction.
On the other hand, in Figure 7e, the vortical structures in the wake modified by tabs exhibit
evident large-scale variations along the spanwise direction owing to the elongated vortices
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generated by tabs. Consequently, the flow is no longer statistically homogeneous in the
spanwise direction.

To obtain another look at three-dimensional vortical structures, we draw instantaneous
spanwise vorticity (ωz) contours over a circular cylinder with and without tabs on x–y
planes in Figure 9. The uncontrolled flow in Figure 9a shows the flow separation, evolution
and roll-up of the shear layer, and vortex shedding in the wake. In contrast, for the flow
with tabs, the roll-up of the shear layer on the x–y plane at z/d = 0 (as shown in Figure 9b)
takes place farther downstream compared to the roll-up in the uncontrolled flow. On the
other hand, in the vorticity contour on z/d = 2 with tabs (as shown in Figure 9c), the shear
layers evolve at higher transverse locations after the flow separation at the tab tips. These
distinct differences of vortical structures in the wake between those right behind the tab
(z/d = 2) and those between tabs (z/d = 0) clearly indicate the formation of the three-
dimensional vortical structures varying in the spanwise direction owing to the tabs. Thus
far, we have examined the three-dimensionality of vortical structures behind a cylinder
with tabs using the λ2 method and vorticity (ωz) fields. In addition to these methods, we
note that analyses adopting other vortex identification approaches such as Lagrangian
coherent structures [51–54] would be an interesting topic of exploration for future research.

/y d
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( )a

/x d
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¥

y

d

y
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y

d

Figure 9. Instantaneous spanwise vorticity (ωz) contours over a circular cylinder with and without
tabs on x–y planes: (a) cylinder without a tab; (b,c) cylinder with tabs of ly/d = 0.2 and lz/d = 0.3.
x–y planes for (b,c) are z/d = 0 and z/d = 2, respectively. For (b,c), note that tabs are located at
z/d = 2.
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Figure 10 depicts instantaneous pressure contours over a circular cylinder with and
without tabs on x–y planes. For the uncontrolled flow shown in Figure 10a, it is apparent
that a distinct low pressure region exists around x/d = 1.6 in the wake. However, as shown
in Figure 10b,c, for the flow with tabs, this low pressure region disappears in the wake,
and the pressure on the rear surface of the cylinder is recovered compared to that for the
uncontrolled flow, resulting in the drag reduction. This behavior of pressure recovery on
the cylinder base is again observed in Figure 11, which display instantaneous pressure
contours of flow over a circular cylinder with and without tabs on the centerplane (y = 0) in
the wake. In addition, in Figure 10a, a clear pressure difference between the top and bottom
surfaces of the cylinder is observed in the case without a tab, but this pressure difference is
alleviated with tabs (Figure 10b,c) causing the significant attenuation of lift fluctuations.

2

p

ur
¥

/x d

y

d

y

d

y

d

( )a

( )b

( )c

Figure 10. Instantaneous pressure contours over a circular cylinder with and without tabs on x–y
planes. Details for (a–c) are the same as in the caption of Figure 9. In addition, the temporal instances
for (a–c) are identical to those in Figure 9.
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Figure 11. Instantaneous pressure contours of flow over a circular cylinder with and without tabs on
the centerplane (y = 0) in the wake: (a) cylinder without a tab; (b) cylinder with tabs of ly/d = 0.2
and lz/d = 0.3.

Figure 12a shows the spanwise variations of the mean base pressure coefficient (CPb ).
Compared to the mean base pressure Cpb = −0.91 of the uncontrolled flow, it is observed
that tabs significantly increase the mean base pressure of the cylinder (Cpb = −0.61),
resulting in the reduction of mean drag. Figure 12b shows the spanwise variations of
recirculation length in the wake. The recirculation length for the uncontrolled flow is
Lr/d = 1.38, which agrees well with those of the previous studies in Table 2. With the
optimal tabs of ly/d = 0.2 and lz/d = 0.3, the recirculation length is significantly increased
for all spanwise locations, which is favorable to the drag reduction of bluff bodies [1,26,55].

( )a ( )b/z d /z d
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Figure 12. Spanwise variations of the mean base pressure coefficient (CPb ) and recirculation length
in the wake (Lr): (a) CPb ; (b) Lr/d. Dashed line, cylinder without a tab; – � – cylinder with tabs of
ly/d = 0.2 and lz/d = 0.3.

Figure 13 shows the mean square of transverse velocity fluctuations and mean stream-
wise velocity at x/d = 1.06 and x/d = 2.02 in the wake. As shown, the flow statistics for
the uncontrolled flow obtained from the present LES are in good agreement with those from
DNS by Lehmkuhl et al. [44]. In particular, it is evident that the fluctuations of transverse
velocities are significantly reduced in the near wake of the cylinder by the optimal tabs.
This reduction of velocity fluctuations clearly indicates the suppression of the Kármán
vortex shedding in the wake by tabs. In addition, the negative streamwise velocity by tabs
observed at x/d = 2.02 is consistent with the increased recirculation length in Figure 12b.
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Figure 13. Mean square of transverse velocity fluctuations and mean streamwise velocity in the wake:
(a,c) x/d = 1.06; (b,d) x/d = 2.02. Dashed line, cylinder without a tab; solid line, cylinder with tabs
of ly/d = 0.2 and lz/d = 0.3; �, direct numerical simulation [44]. Here, 〈〉 and ()′ denote the mean
and fluctuating quantities, respectively. The averaging for 〈〉 is taken over the spanwise direction
and time.

3.3. Tabs in a Staggered Configuration

In the preceding sections, we focused on examining tabs attached to a circular cylinder
in a non-staggered configuration where a pair of tabs are attached to the upper and lower
surfaces of a circular cylinder at the same spanwise location as shown in Figure 2. In this
section, we consider tabs in a staggered configuration as shown in Figure 14.

Figure 15 shows the time histories of drag and lift coefficients for flow over a circular
cylinder with tabs in a staggered configuration, together with those for the uncontrolled
flow. Here, the geometric parameters for tabs are the optimal ones (ly/d = 0.2, lz/d = 0.3,
and λz/d = 4) obtained in a non-staggered configuration as discussed in Section 3.1.
As shown in the figure, tabs in a staggered configuration reduce the mean drag and
lift fluctuations (CD = 1.010 and CLrms = 0.052) compared to those of the uncontrolled
flow. However, these control performances are not as good as those for tabs in a non-
staggered configuration (see Figure 4). Similar results were also observed in other 3D
forcing methods [7,29].

x

y

z
z
l

u
¥

Figure 14. Schematic diagram of a circular cylinder with tabs in a staggered configuration.
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Figure 15. Time histories of drag and lift coefficients with and without tabs: (a) drag coefficient;
(b) lift coefficient. Black line, cylinder without a tab; green line, cylinder with tabs of ly/d = 0.2 and
lz/d = 0.3, and λz/d = 4 in a staggered configuration.

4. Conclusions

In this study, we investigated tabs applied to turbulent flow over a circular cylinder
for the reductions of the mean drag and lift fluctuations. Tabs are small and thin passive
devices consisting of a pair of tabs attached to the upper and lower surfaces of a circular
cylinder near the flow separation. The Reynolds number considered was Re = 3900, based
on the free-stream velocity and cylinder diameter. Large eddy simulations were performed
using a dynamic global subgrid-scale eddy-viscosity model. A parametric study was
carried out to find the optimal tab configuration for minimizing the mean drag and lift
fluctuations. Parameters considered were the height and width of the tabs, and spanwise
spacing between them. With the optimal parameters, the spanwise coherence of the vortex
shedding behind the cylinder was effectively disrupted, resulting in three-dimensional
vortical structures varying in the spanwise direction. As a result, the strength of the vortex
shedding in the wake was successfully weakened, and the mean drag and lift fluctuations
were significantly reduced by 14% and 95%, respectively.

Previous studies have shown that tabs are an effective passive device for reducing
turbulent drag on two-dimensional bluff bodies with a blunt trailing edge having a fixed
separation point [1,29]. Our investigation has also demonstrated that tabs are an effective
tool for reducing drag on a circular cylinder in turbulent flow, even where the separation
point is not fixed. These results suggest that tabs can be used for bluff bodies with nomi-
nally turbulent two-dimensional vortical structures, regardless of the characteristics of the
separation location.

Other passive devices that provide 3D forcing, such as the wavy cylinder [22,23] and
helically twisted elliptic cylinder [25,26], require significant modifications to the geometry
of a circular cylinder, making their implementation challenging. In contrast, tabs can be
easily attached to a bluff body without altering its original geometry, making them a more
practical solution for controlling flow over a bluff body.
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Nomenclature

x Streamwise direction
y Transverse direction
z Spanwise direction
t Time
d Cylinder diameter
u Streamwise velocity
v Transverse velocity
w Spanwise velocity
p Pressure
u∞ Free-stream velocity
ν Kinematic viscosity
Re Reynolds number
q Mass source/sink
fi Momentum forcing
() Filtered quantity
(̃) Test-filtered quantity
τij Subgrid-scale stress tensor
νT Eddy viscosity
Sij Strain rate tensor
Cv Vreman model coefficient
αij Velocity gradient αij = ∂uj/∂xi
u∗i Intermediate velocity
∆t Time step
Lx Streamwise domain size
Ly Transverse domain size
Lz Spanwise domain size
Nx Number of streamwise grid points
Ny Number of transverse grid points
Nz Number of spanwise grid points
θt Installation angle of tabs measured from the stagnation point
θs Separation angle measured from the stagnation point
lx Tab thickness
ly Tab height
lz Tab width
λz Spanwise distance between adjacent tabs
CD Drag coefficient
CL Lift coefficient
CLrms Coefficient of lift fluctuations
St Strouhal number
Lr Recirculation length
Cpb Base pressure
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