. mathematics

Article

A New Reciprocal Weibull Extension for Modeling Extreme
Values with Risk Analysis under Insurance Data

Haitham M. Yousof (7, Yusra Tashkandy 27, Walid Emam 2{, M. Masoom Ali > and Mohamed Ibrahim *

check for
updates

Citation: Yousof, H.M.; Tashkandy,
Y.; Emam, W.; Ali, M.M.; Ibrahim, M.
A New Reciprocal Weibull Extension
for Modeling Extreme Values with
Risk Analysis under Insurance Data.
Mathematics 2023, 11, 966. https://
doi.org/10.3390/math11040966

Academic Editor: Alicia Cordero

Received: 7 January 2023
Revised: 6 February 2023
Accepted: 10 February 2023
Published: 13 February 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Statistics, Mathematics and Insurance, Benha University, Benha 13518, Egypt

Department of Statistics and Operations Research, Faculty of Science, King Saud University, P.O. Box 2455,
Riyadh 11451, Saudi Arabia

3 Department of Mathematical Sciences, Ball State University, Muncie, IN 47306, USA

Department of Applied, Mathematical and Actuarial Statistics, Faculty of Commerce, Damietta University,
Damietta 34517, Egypt

*  Correspondence: mohamed_ibrahim@du.edu.eg

Abstract: Probability-based distributions might be able to explain risk exposure well. Usually, one
number, or at the very least, a limited number of numbers called the key risk indicators (KRlIs), are
used to describe the level of risk exposure. These risk exposure values, which are undeniably the
outcome of a specific model, are frequently referred to as essential critical risk indicators. Five key
risk indicators, including value-at-risk, tail variance, tail-value-at-risk, and tail mean-variance, were
also used for describing the risk exposure under the reinsurance revenues data. These measurements
were created for the proposed model; hence, this paper presents a novel distribution for this purpose.
Relevant statistical properties are derived, including the generating function, ordinary moments, and
incomplete moments. Special attention is devoted to the applicability of the new model under extreme
data sets. Three applications to real data show the usefulness and adaptability of the proposed model.
The new model proved its superiority against many well-known related models. Five key risk
indicators are employed for analyzing the risk level under the reinsurance revenues dataset. An
application is provided along with its relevant numerical analysis and panels. Some useful results are
identified and highlighted.
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1. Introduction and Motivation

Actuarial risks refer to the financial risks associated with insurance and pension plans.
Statistical analysis is an important tool for actuaries to understand and quantify these risks.
Actuaries use probability distributions to model the likelihood of various events, such as
claims, deaths, and policy cancellations. Common distributions used in actuarial science
include the Poisson distribution, the exponential distribution, and the Weibull distribution.
Survival analysis is used to model the time until a particular event occurs, such as death or
policy cancellation. This technique is used to estimate the probability of survival for a given
time period and to calculate life expectancy. Stochastic modeling is used to model random
processes, such as claims and policy cancellations. This technique is used to estimate the
expected value of future claims and to determine the variability of these estimates. Loss
distributions are used to model the distribution of losses due to events, such as claims and
policy cancellations. This technique is used to calculate the expected value of future losses
and to determine the risk associated with these losses. Actuaries use statistical techniques
used to assess and manage financial risks, including methods for hedging and portfolio
optimization.
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In conclusion, statistical analysis is a critical tool for actuaries to understand and
manage financial risks in insurance and pension plans. Actuaries use a variety of statistical
techniques, including probability distributions, survival analysis, stochastic modeling, loss
distributions, and risk management, to estimate and manage financial risks and ensure the
long-term financial stability of insurance and pension plans.

Because they depict situations where extreme occurrences or outliers occur far more
frequently than expected by traditional or lighter-tailed distributions, such as the normal
distribution, heavy-tailed probability distributions are significant. Numerous real-world
systems, including financial markets, communication networks, and natural disasters, may
be significantly impacted by these occurrences. To effectively reflect the risk and uncertainty
associated with such severe events and to make decisions based on the probabilities of
these events, it is crucial to comprehend and model heavy-tailed distributions.

In the actuarial and statistical literature, the issue of measuring the risk resulting from
some accidents is considered a matter of great importance. This is because determining
the level of risk and measuring its degree will entail a lot of strategic actions and decisions.
One of the most important fields in which we, as statisticians, are interested in measuring
risk is the field of insurance and reinsurance and the field of actuarial sciences in general.
Insurance companies, for example, are very interested in anticipating the volume of claims
that they may be bound by soon. Statistical prediction of the volume of claims will make
the insurance company stable for a certain period of time. Thus, if the expectations are
correct, the company will be in a safe position with the insured parties. Additionally, if it is
not correct, then the company will be in a safer position in most cases.

Based on the importance of this issue, whether in terms of actuarial modeling or
in terms of statistical forecasts, we are excited about this work as it presents a flexible
probabilistic model to help insurance and reinsurance companies determine the volume
of claims that may occur in the near future. The new probability model is a probability
distribution that presents many characteristics that contributed to its nomination to this
actuarial task.

The issue of measuring risk has attracted the attention of many researchers in recent
decades. The researchers’ interests focused on presenting and generalizing some actuarial
indicators that may contribute to measuring risk under certain conditions. These indicators
varied in their forms according to the statistical basis on which they were built. Some
depend on the quantile function; some depend on moments; some depend on the tail of the
probability distribution, and so on.

Heavy-tailed probability-based distributions refer to probability distributions that
have “heavier” tails than the normal distribution, meaning that they have a higher proba-
bility of observing extreme values (outliers). This is in contrast to light-tailed distributions,
such as the normal distribution, where the probability of observing extreme values is low.
Examples of heavy-tailed distributions include; the Pareto distribution, which is used to
model the distribution of wealth and income and is characterized by a long tail on the right
side of the distribution; the Student’s t-distribution, which is used in hypothesis testing and
has heavier tails than the normal distribution, making it more suitable for modeling data
with outliers; the Lévy distribution, which is used in financial mathematics and physics
and has heavier tails than the normal distribution; and the Cauchy distribution, which has
infinite variance and is used to model phenomena with long tails, such as response times
in networks and earthquakes.

Heavy-tailed distributions are important in many fields, including finance, economics,
physics, and engineering, as they provide a more accurate representation of real-world
phenomena where extreme events are more common than expected under a normal distri-
bution. Heavy tailed probability-based distributions might be capable of explaining risk
exposure well. Normally, one number, or at the very least a limited number of numbers,
is used to describe the level of risk exposure. The term “crucial KRIs” refers to these risk
exposure figures, which are undeniably the output of a certain model (see Artzner [1] and
Wirch [2]). Such KRIs give actuaries and risk managers knowledge about the level of a
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company’s exposure to particular risks. There are many KRIs that can be considered and
studied, including value-at-risk (VAR), tail-value-at-risk (TVAR), conditional-value-at-risk
(CVAR), tail variance (TV), and tail Mean-Variance (TMV), among others. The VAR is
specifically included in the quantile distribution of aggregate losses. Actuaries and risk
managers usually concentrate on calculating the chance of a bad outcome, which can
be measured using the VAR indicator at a particular probability /confidence level. This
indicator is typically used to estimate how much money will be required to handle such
potentially unfavorable events. The ability of the insurance firm to handle such events is a
worry for actuaries, policymakers, investors, and rating agencies.

For this purpose, a novel probability-based reciprocal Weibull distribution called the
generalized geometric Rayleigh reciprocal Weibull (GGR-RW) is provided for an adequate
explanation of risk exposure under the reinsurance revenues data set. The probability
density function (PDF) and cumulative distribution function (CDF) of the reciprocal Weibull
(RW) distribution are given by

8610, (¢) = 51525217(‘52“)”%’(_‘5152%52) ly>0,

and S
G51,<52(§l) = exp(_512§1752) |y201

where d; > 0 is a shape parameter and é; > 0 is a scale parameter. For , = 2, we obtain
the reciprocal Rayleigh (RR) model. For §, = 1, we obtain the reciprocal exponential (RE)
model, and for §; = 1, we obtain the one parameter reciprocal Weibull (1IPRW) model.
Let g5, 5, (%) and Gy, 5,(%) denote the PDF and CDF of the RW model with parameters ¢,
and 6, and consider the CDF of the generalized Rayleigh (GR) family, then the CDF of the
generalized Rayleigh reciprocal Weibull (GR-RW) model

Hygs6,(y) =1—exp {—Vi,(sl,(sz (y)} | =060/ 1)

where
_ exp(—béry %)
~ 1—exp(—bory )

Vis,6 (%) ly>06>0,

and %y 5,(y) = dHys, 5,(y)/dy is the PDF corresponding to (1). For any arbitrary
baseline RV having CDF, and V representing the baseline parameters vector, then the CDF
of the geometric family is defined by

H
Pa,y(y) = 1_ (il _Vu(;rll_)lv(y) |y€R;a>O~ 2)

Then, the new model is derived by combining (1) and (2). The CDF of the GGR-RW
model can be defined by

- a— aexp {—V%,gll(sz (y)}
Fp(y) = 1-(1- a){l — exp[—V,%,&l,&z(y)

} } |y=0ia,b,01,6,>0, (©)]

where ¢ = (a,b,J1, 67) refers to the parameter vector. Then, the PDF corresponding to (3) is

[1 B exp(*bfs?y_éz)} exp [—Vj&l,&z (y)}
(1 -(1- a){l —exp {—Vf,al,sz(y)} })2

Using the generalized binomial expansion and the power series, the PDF in (4) can be
expressed as

| />0,40,>0- 4)
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Using Taylor expansion, we can write

fo@) = Y Clm Sba(t+1) 480,80 (@) b2(41)1m) 07 ®)
£,2=0
where
i f (1—a) (-1 (1+ )" (—2> <z> (—3—26)
2= MR+ ) +m] 7 )\s m )
and
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refers to the RW density with scale parameter 6; {b[2(¢ + 1) + 7] }(1/ %) and shape pa-
rameter Jy. Thus, some mathematical properties of the GGR-RW model can be obtained
simply from those properties of the RW density. The CDF of the GGR-RW model can also
be expressed as a mixture of RW densities. By integrating (5), we obtain the same mixture
representation

Fo(z) = Y. CtmGop(es1)4m)on0 @)b(e+1)4m]500 (6)
{,m=0

where Gyo(r41)41],6,6, (%) = €xp (—b[ (£+1)+ m]é‘sz "52) is the CDF of the RW model

with scale parameter &, {b[2(¢ + 1) + m]}(l/ %) and shape parameter 6,. In fact, the GGR-
RW model is motivated by its important flexibility in applications. We demonstrate that
the GGR-RW model offers better fits than many other competing models using three
applications. The “asymmetric monotonically increasing hazard rate function (HRF)”
shown in Figure 1 suggests that the GGR-RW model could be beneficial in real-life modeling
data (first row, right panels).

The GGR-RW model can be recommended for modeling real data which have some
extreme values. Also, the GGR-RW model could be useful for analyzing and modeling
real data which has no extreme observations, as shown in Figure 7 (the second row of the
right and the left panels). Moreover, the GGR-RW distribution can be considered a useful
model for modeling real data for which its nonparametric Kernel density is symmetric and
unimodal. The GGR-RW could be a good choice for dealing with the real data which its
nonparametric Kernel density is the asymmetric bimodal and heavy tail, as illustrated in
Figure 1, Figure 4 (the first row, left panels). Finally, the GGR-RW model may be useful
in modeling the real data which cannot be fitted by the common theoretical distributions,
such as normal, uniform, exponential, logistic, beta, lognormal, and Weibull distributions
as illustrated in Figure 1.

The rest of the paper is organized as follows. We derive a few mathematical features for
the new model in Section 2. Some risk indicators are discussed in Section 3. We introduce
the maximum likelihood technique in Section 4. We present three applications to actual
data in Section 5 to demonstrate the adaptability of the new family. Section 6 provides
the risk analysis for the reinsurance revenues data. Finally, Section 6 addresses a few
closing thoughts.
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2. Properties

The »" moment of Y, say i), ,, follows from (5) as ), = E(Y") = ¥ ci

E(Yoerny )
Henceforth, Yiy5(011)4,.)) denotes the RW distribution with scale parameter

01 {b2(£ + 1) + 77] }(1/52) and shape parameter J,. Then, we have
E(Y{h[z(m)m]}) = 525, {b[2(¢ +1) + ]} /0 g—<5z+1>+fexp(—{b[2(e +1)+ m}}(sfzy—éz)dy,
Then,

=B =1 (1-2) £ eon(a 020D+, 0

£,772=0

the numerical value of the constant }-7°  _ ¢/, ((51 {b[2(£+ 1) + 7] }(1/ 62)) " can be evalu-

ated using any software such as R and MATHCAD among others. The moment generating
function (MGF) My (¢) = E(exp(¢Y)) of Y can be derived from Equation (5) as

My(2) = Y, CtmMppies1)cm)} o (€),
£,2=0

where My (r41)4]},6,,5,(7) is the MGF of Y{p(p(y41)+,,,]}- Hence,
_ _ - Ct,m (1/86)\”
My(¢) =T (1 52) 2:0 . (5«51 (b[2(£ + 1) + 7]} ) .
The s incomplete moment, say ¢y (#), of Y can be expressed from (5) as

0 (0) = [ vy = ¥ el ale DR 4 ml) 60,00,

£,2=0

where I (% {b[2(£ +1) + 72]},01,02) = [y #°8(ppa(t+1)4m]},50,5 (¢ )dy- Then,

Por(0) = ¥ co (6 0R(C+ 1) + ) V) (1 20+ 1) + m]hae ). ®

L,m=0
The n'" moment of the residual life of Y is given by

mny(2) = 1_F¢ Z Zcfm( ) (=2)" 712 (" {bR2(L+ 1) + 2]}, 61, 52),

/m 0r

where -
I2( OR(E+1) + 1}, 00,8) = [ 0" gwaiesny o) (2
then,

(4" {bR(C+1) + ]}, 61,8) = (81 {b2(0+1) +m}V5)) T (1 = ;iz,{b[z(u 1)+ m]}(sfzﬂz).
The n’# moment of the reversed residual life, say M, y(¢) = E[(£ = Y)"|Y < ¢] for¢ > 0

andn=1,2,... followsas M, y(¢) = % fOZ (¢ — y)"dF(y). Therefore, the n'" moment
of the reversed residual life of Y becomes

Mr(0) = iy 3 W17 ()R G2 1) + ) 1),

ke lm=0r=
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3. KRIs

The KRIs are metrics that use statistical methods to measure and monitor an organiza-
tion’s key risks. KRSIs are a type of KRIs that use statistical techniques, such as probability
distributions, regression analysis, and hypothesis testing, to provide a quantitative and
data-driven assessment of risk. These KRIs measure the frequency and magnitude of
losses due to various risks, such as accidents, losses due to fraud, or losses due to natural
disasters. An actuarial estimate of the possible loss that could arise in the future as a result
of a particular action or set of circumstances is the risk exposure. Risks are often assessed
according to their likelihood of happening in the future multiplied by the potential loss if
they did as part of a review of the business’s risk exposure. By assessing the possibility of
future losses, a company can distinguish between small and significant losses. Speculative
risks frequently lead to losses, including failing to adhere to regulations, a decrease in
brand value, security vulnerabilities, and liability issues.

The examination of historical insurance data using time series analysis or continuous
distributions has, nevertheless, received a great deal of attention. Actuaries have recently
used continuous distributions, especially ones with broad tails, to represent actual insur-
ance data. Using continuous heavy-tailed probability distributions, real data has been
modeled in a number of real-world applications, including engineering, risk management,
dependability, and the actuarial sciences. The skewness of the insurance data sets can be
left, right, or right with huge tails.

Risk exposure is an inevitable event for any insurance firm. Actuaries developed a
variety of risk indicators to measure risk exposure as a result. The VAR indicator determines
the risk of a potential loss for the insurance company with a specified probability and
calculates the amount that a group of investments could lose. An increasingly popular
benchmark risk metric for determining risk exposure is this indicator. The VAR often
determines how much capital is required, given a specific likelihood, to ensure that the
business will not officially go out of business. The chosen confidence level is arbitrary.
As a result, a significant VAR amount may be considered for various confidence levels.
For the entire company, it may be a high proportion, for example, 99.95% or greater.
The inter-unit or inter-risk type of diversification that exists can be represented by these
different percentages.

In this paper, these five insurance indicators were chosen due to their importance
and prevalence in the statistical literature. These five indicators can express the size of
the expected loss for insurance companies and, thus, help insurance companies avoid
unexpected and sudden random losses. In insurance analysis, loss refers to the amount
of money an insurance company must pay to an insured individual or business as a
result of a covered event or claim. Losses can include things such as property damage,
medical expenses, and liability judgments. The calculation of loss is a crucial aspect of
the insurance industry, as it helps insurance companies determine the financial risks of
providing coverage and determine the rates charged for insurance policies.

3.1. VAR Indicator

The VAR is a financial metric that measures the maximum loss that an investment or
portfolio is expected to experience with a certain level of confidence over a specified time
period. VAR is used to quantify market risk and is a widely used risk management tool
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for financial institutions. The VAR indicator provides a single value that summarizes the
potential loss of an investment or portfolio. This method uses historical data to simulate
the distribution of returns and estimate the VAR for a portfolio. This method uses statistical
models, such as the normal distribution or the GARCH model, to estimate the VAR for
a portfolio. The VAR is a useful risk management tool, as it provides a clear and concise
measure of the potential loss of an investment or portfolio. However, it has limitations, as it
only provides a point estimate of the potential loss and does not take into account tail risks
or extreme events. To address these limitations, financial institutions often use other risk
management tools in conjunction with VAR, such as stress testing and scenario analysis.

Definition 1. Let Y denote a loss random variable, The VAR of Y at the 100&% level, say VAR (Y)
or p(e), is the 100e% quantile (or the 100e% percentile (Qy)) of the distribution of Y.

Then, based on Definition 1 for the GGR-RW distribution, we can simply write

1%]e=999%
Pr(Y > Qy) = { 5%le=95%,

From Definition 1, for a one-year time when ¢ = 90%, the interpretation is that there
is only a very small chance (10%) that the insurance company will be bankrupted by an
adverse outcome over the next year. The quantity VAR (Y; &) does not satisfy one of the
five criteria for coherence (see Wirch [2]).

3.2. TVAR Risk Indicator

The VAR indicator is frequently used as a risk assessment tool in the management of
financial risk over a defined relatively short time period. Gains and losses are commonly
explained in these circumstances using the normal distribution.

The quantity VAR (Y; ¢) satisfies all coherence requirements if the distribution of gains
(or losses) is restricted to the normal distribution.

Definition 2. Let Y denote a random loss variable, then the TVAR of Y at the 100e% confidence
level is the expected loss given that the loss exceeds the 100e% of the distribution of Y can be
expressed as

TVAR(Y) = E(V)p(0) = 7 oy [ afelwd = 1 [ ufalu)dy
Then,

TVAR(Y) = 5 159 (4 (D00 + 1) + 7]}, 61,69),

1
where I (3 {b[2(£ +1) + 7721}, 61,02) =[5 #8(bi2(0+1) 1)) 61,6, (¢ )y Then,

TVAR(Y) = %{b[2(€+1)+m}}(1/§2) 5 cz,ml”(l—é,{b[Z(Z—i—l)—I—m]}éfz(p(s))52). ©)

{,772=0

Thus, the quantity in (9) is an average of all VAR values above at the confidence level
¢, which provides more information about the tail of the GGR-RW distribution. Further, it
can also be expressed as

TVAR(Y;e) = VAR(Y;¢) + [(VAR(Y;¢)),

where I(VAR(Y;¢)) is the mean excess loss function evaluated at the 100e% th quantile.
So, TVAR (Y;e) is larger than its corresponding VAR (Y;¢) by the amount of average
excess of all losses that exceed the EL (Y;¢) value of VAR (Y;¢). The VAR (Y;¢) has been
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TV(Y;¢)

independently developed and is also known as the conditional tail expectation in the
insurance literature (Wirch [2]). According to Tasche [3] and Acerbi and Tasche [4], it has
also been referred to as the expected shortfall (ES) or the conditional tail expectation (TCE).

3.3. TV Risk Indicator

Furman and Landsman [5] established the TV risk indicator, which determines the
loss’s departure from the mean along a tail. Furman and Landsman [6] have created explicit
calculations for the TV risk indicator under the multivariate normal distribution.

Definition 3. Let Y denote a random loss variable, then the TV risk indicator (TR(Y)) can be
expressed as

TV(Y;e) = E(Yz |Y>p(£)> — [TVAR(Y;e)]2.

Then,
2
S {b2(L+1) + ]} 1% ! 2
= [ e } . Z_OCZ,m{wp(s) (2;01,02) — 1= [wp(s)(l; 51,52)] }, (10)
where

e (V301,2) =T (1= 3 020 +1) + ]} (p(e)) )

Thus, the quantities in (9) and (10) can be evaluated using any software such as R and
MATHCAD, among others, and we will give a numerical example under the reinsurance
data with all details and panels in Section 6.

3.4. TMYV Risk Indicator

As a metric for the best portfolio choice, Landsman [5] developed the TMV risk
indicator, which is based on the TCE risk indicator and the TV risk indicator.

Definition 4. Let Y denote a random loss variable, then the TMV risk indicator can be expressed as
TMV(Y;e) = TVAR(Y; e) + pTV(Y;€)|o<p<-

Then, for any LRV
1. the TMV (Y;e) > TV (Y;e),
2. forp=0,TMV (Y;e) = TVAR (Y;e),
3. forp=1,TMV (Y;e) =TVAR (Y;e)+ TV (Y;e).

4. Modeling

Both simulation and real data have their advantages and disadvantages when com-
paring models. Using simulation data allows for complete control over the underlying
data-generating process and enables the researcher to systematically vary the parameters
and compare the models under different conditions. This can provide insight into the
robustness and generalizability of the models. On the other hand, using real data provides
a more realistic evaluation of the models as it reflects real-world scenarios and allows
for the evaluation of the model’s ability to handle real-world complexities and uncertain-
ties. Ultimately, the choice between simulation and real data will depend on the research
question, the purpose of the comparison, and the availability of data. In many cases, a
combination of both simulation and real data can provide a more comprehensive evaluation
of the models being compared.

To illustrate the wide flexibility of the GGR-RW model, we considered three real-life
data sets, and the new model is compared with many other relevant and competitive
models. Table 1 reports some of the competitive models (see Fréchet [7], Nadarajah and
Kotz [8], and Krishna et al. [9]). Real-life data can be examined quantitatively, visually, or
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using both methods. In order to examine the first fit to theoretical distributions, such as the
normal, uniform, exponential, logistic, beta, lognormal, and Weibull distributions, we will
take into consideration a variety of graphical tools, including the skewness-kurtosis panel
(or the Cullen and Frey panel). For more accuracy, bootstrapping is applied. The Cullen
and Frey panel summarizes the characteristics of distribution by comparing distributions in
the space of squared skewness and kurtosis. The “nonparametric Kernel density estimation
(NKDE)” approach for examining initial density shape, the “Quantile-Quantile (Q-Q)”
panel for examining the “normality” of the data, the “total time in test (TTT)” panel for
examining the initial shape of the empirical HRFs, the “box panel” for examining the
extremes, and the scattergrams are also paneled, which are all taken into consideration.

Table 1. Some competitive models.

Competitive Models (Author(s)) Abbreviation
reciprocal Weibull RW
exponentiated reciprocal Weibull E-RW
Beta reciprocal Weibull model Beta-RW
Marshal-Olkin reciprocal Weibull MO-RW
transmuted reciprocal Weibull model T-RW
Kumaraswamy reciprocal Weibull Kum-RW
McDonald reciprocal Weibull Mc-RW
odd log-logistic reciprocal Rayleigh OLL-RR
odd log-logistic exponentiated reciprocal Weibull OLLE-RW
odd log-logistic exponentiated reciprocal Rayleigh OLLE-RR
generalized odd log-logistic reciprocal Rayleigh GOLL-RR

4.1. Comparing the Competitive Extensions under the Stress Data

A total of 100 observations on the breaking stress of carbon fibers make up the first
uncensored data set (see Nichols and Padgett [10]). Figure 1 shows the NKDE panel (the
first row, left panel), the TTT panel (the first row, right panel), the box panel (the second
row, left panel), the Q-Q panel (the second row, right panel), scattergram panel (the third
row, left panel), and the skewness-kurtosis panel (the third row, right panel). The breaking
stress of carbon fibers is shown in Figure 1 (first-row left panel) to be the asymmetric
bimodal and heavy right tail. It is evident from Figure 1’s panel in the first row to the right
that the HRF for the current data is monotonically rising. It can be seen from Figure 1’s
second-row left panel and second-row right panel that these data contain some extreme
values. The current data cannot be described by theoretical distributions, such as the
normal, uniform, exponential, logistic, beta, lognormal, and Weibull distributions, as seen in
Figure 1’s third row right panel. The Shapiro test (ST) was performed to examine the
extent to which the first data depended on a normal distribution, and the results were
as ST = 0.7165, p-value = 1.33 x 10~12 which means that this data set does not follow the
normal distribution.

The statistics Cramér—von Mises criterion (CVM), Anderson-Darling test (AD),
Kolmogorov-Smirnov test (KS), and the corresponding p-values (P,) for all fitted models
are presented in Table 2. The MLEs and corresponding standard errors (SEs) are reported
in Table 3. From Table 2, the GGR-RW model gives the lowest values CVM = 0.0612,
AD =0.4467, KS = 0.05887, and P, = 0.8789 as compared to the other models. As a result,
the GGR-RW is the model that should be selected. In Figure 2, the estimated PDF and CDF
are shown. For the current data, Figure 3 shows the Probability-Probability (P-P) panel and
estimated HRE. We can see from Figures 2 and 3 that the new GGR-RW model offers good
fits for the empirical functions.
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Figure 1. The NKDE panel (the first row, left panel), the TTT panel (the first row, right panel), the box
panel (the second row, left panel), the Q-Q panel (the second row, right panel), scattergram panel (the
third row, left panel), and the skewness-kurtosis panel (the third row, right panel) for the breaking
stress of carbon fibers data.



Mathematics 2023, 11, 966

11 of 26

10 12

0.8
]

Estimated Density
06

04
I

@ The GGR-RW distribution

1.0

08

08

04

02

00

@ The GGR-RW distribution

T T T
1 2 3

Estimated CDF

T
4

Figure 2. Estimated PDF (left right) and estimated CDF (right) for the breaking stress of carbon fibers data.

- ‘
o
= S
L) L] L] L] L] L]
1 2 3 4 5 6
Breaking stress of carbon fibers data
P-P plot for breaking stress data
o
@ _|
o
£
z 2
g o
=
o
3
HER
=3
3
[in]
™ ]
o
o
=1
T T T T
0.0 0.2 0.4 06 08
Observed Probabilites

Estimated HRF
05 10 15 20 25 30

0.0

Figure 3. P-P panel (left) and estimated HRF (right) for the breaking stress of carbon fiber data.

Table 2. CVM, AD, KS, and P, for the breaking stress of carbon fibers data.

Criteria— Goodness of Fit Criteria
Model| AD CVM KS (P,)
GGR-RW 0.44671 0.0612 0.05887 (0.8789)
OLLE-RW 0.96404 0.1204 0.5561 (<0.0001)
Mc-RW 1.0608 0.1333 0.0807 (0.53323)
OLLE-RR 1.2120 0.1553 0.6550 (<0.0001)
Beta-RW 0.6207 0.0809 0.0757 (0.61472)
Kum-RW 0.6217 0.0812 0.07596 (0.6118)
RW 0.7657 0.1090 0.08746 (0.4282)
E-RW 0.7658 0.1093 0.0875 (0.428667)
MO-RW 0.6142 0.0886 0.07629 (0.51677)
OB-RW 0.4717 0.0662 0.06310 (0.82202)
OLL-RR 1.2120 0.1553 0.6550 (<0.0001)
T-RW 0.6209 0.0873 0.07821 (0.573443)
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Table 3. MLEs and SEs for the breaking stress of carbon fibers data.
Estimates — Estimates
Model| a b c & 5
250.2153 0.029866 74.12585 1.1729339
CORRW (393.532) (0.01752) (68.9231) (0.222893)
5.195441 0.59904 1.040482 1.232432
CGR-RW (0.00123) (0.0323) (0.0444) (0.003323)
0.135122 3.72164 0.92963 21.31942
OLLE-RW (0.011223) (0.00343) (0.0034) (0.00363)
0.4946375 0.067433 1.742628
OLLE-RR (0.04143) (0.71955) (9.30073)
0.494583 0.452423
OLL-RR (0.04139) (0.03877)
1.39688 4.37255
RW (0.0336) (0.3278)
Kum-RW 0.84892 1.62393 1.63413 3.42083
(16.083) (0.6979) (9.0492) (0.7639)
E-RW 0.93951 1.41693 0.9391
(3.5434) (2.56832) (0.3273)
Beta-RW 0.73463 1.58383 1.66844 3.51126
(1.5290) (0.7137) (0.7662) (0.9680)
T-RW —0.71663 1.265642 4.71219
(0.26162) (0.0571) (0.36590)
0.003349 6.23965 1.241982
MO-RW (0.00092) (1.01348) (0.1180)
Mc-RW 0.85035 44.42332 19.8591 0.02039 46.9745
(0.13537) (25.1324) (6.7066) (0.00683) (21.8735)

4.2. Comparing the Competitive Extensions under the Glass Fiber Data

The second data set is a list of glass fiber strengths provided by Smith and Naylor
(1987) [11]. Figure 4 gives the NKDE panel (the first-row left panel), the TTT panel (the first
row, right panel), the box panel (the second row, left panel), the Q-Q panel (the second row,
right panel), the scattergram panel (the third row, left panel), and the skewness-kurtosis
panel (the third row, right panel). Figure 4 (the first row, left panel) indicates that the glass
fiber data is asymmetric bimodal and heavy right tail. Figure 4 (the first row, right panel)
indicates that the HRF of the glass fiber data is monotonically increasing. The glass fiber
data in Figure 4 (second-row left panel and second-row right panel) include some extreme
values. Glass fiber data cannot be described by theoretical distributions, such as the normal,
uniform, exponential, logistic, beta, lognormal, and Weibull distributions, according to
Figure 4’s third-row right panel. The ST was performed to examine the extent to which
the second data depended on a normal distribution. The results were as ST = 0.72409,
p-value = 1.443 x 10~%, which means that this data set does not follow the normal
distribution.

Table 4 lists the statistics of CVM, AD, KS, and P, for each fitted model. Table 5 lists
the MLEs and related SEs. In comparison to other models, the GGR-RW model provides
the lowest values, CVM = 0.11304, AD = 0.89752, KS = 0.12348, and P, = 0.2691 (Table 4).
The GGR-RW distribution can be selected as the best model as a result. In Figure 5, the
estimated PDF and CDF are shown. The P-P panel and estimated HRF for the data on glass
fiber are shown in Figure 6. It is evident from Figures 5 and 6 that the GGR-RW model
adequately fits the empirical distribution functions.



Mathematics 2023, 11, 966

13 of 26

Kernel Density Estimation
o
o~ = o
o @©
— (=3
o | -
= ©
=
© £
S = -
- -
S
= _|
=
o
o~ = -
(=T -
o o .
(=T o
T T T T T T T T T T
1 2 3 4 0.0 02 04 06 o8 1.0
N=63 & Bandwidth=0.1279 im
Box Plot for Glass Fibers Data
o o o 63¢c
~ | ~r
w w0
& o
L 620
o | o
- o
w | = = w
o~ o o~
o o
o T - o~
21 E =
o | —_ o
norm quantiles
Scattergram at lag=1 Cullen and Frey graph
- - -
= #* Observation Theoretical distributions
bootstrapped values % normal
o~ e PP £ yniform
w B exponential
B L ) + \og[:st\c
Rl i N O beta
o L lognormal
o - ~=-_ gamma
T ™ ~ + e {(Weibull i= closs to gamms =nd lognan
% « w
- 2, 8 N
= = o~ =
& S e
5 -
@ .
i ~
o |
= o
1.0 15 20 25 30 T T ! T T
0 1 2 3 4
Strengths[1:(dm - 1)]
I:l:l square of skewness

Figure 4. The NKDE panel (the first row, left panel), the TTT panel (the first row, right panel), the box
panel (the second row, left panel), the Q-Q panel (the second row, right panel), scattergram panel

(the third row, left panel), and the skewness-kurtosis panel (the third row, right panel) for the glass

fibers data.

Table 4. CVM, AD, KS and P, for the glass fiber data.

Goodness of Fit Criteria

Criteria—

Model| AD CVM KS (P,)
GGR-RW 0.89752 0.11304 0.12348 (0.269121)
OLLE-RR 1.14697 0.15025 0.67949 (<0.0005)
OLLE-RW 0.83253 0.10487 0.55196 (<0.0005)

OLL-RR 1.14697 0.15023 0.67951 (<0.0005)
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Table 5. MLEs and SEs for the glass fibers data.
Estimates — Estimates
Model| a b ¢ 5 5y
14.89942 0.005742 53.55753 1.594772
GGR-RW (6.22644) (0.00093) (11.9332) (0.09712)
0.144922 0.008792 1.299724 24.87832
OLLE-RW (0.01294) (0.00021) (0.00006) (0.00025)
0.502541 0.071613 1.704832
OLLE-RR (0.05292) (1.13065) (13.4744)
0.502512 0.4559913
OLL-RR 0.052946 0.0486522
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Figure 5. Estimated PDF (left) and CDF (right) for the glass fibers data.
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Figure 6. P-P panel (left) and estimated HRF (right) for the glass fibers data.

4.3. Comparing the Competitive Extensions under the Relief Times Data

40

The third data collection, dubbed “Wingo data”, contains all of the results from a
clinical trial that measured the number of hours of pain alleviation for 50 individuals with
arthritis. Figure 7 gives the NKDE panel (the first row, left panel), the TTT panel (the first
row, right panel), the box panel (the second row, left panel), the Q-Q panel (the second row,
right panel), the scattergram panel (the third row, left panel), and the skewness-kurtosis
panel (the third row, right panel). Figure 7 (the first row, left panel) indicates that the relief
time data can be considered as symmetric data. Based on Figure 7 (the first row, right
panel), it is noted that the HRF of these data is monotonically increasing. Based on Figure 1
(the second row, left panel, and the second row, right panel), the relief times do not include
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any extreme values. It can be seen from Figure 7’s third row right panel those theoretical
distributions, such as the normal, uniform, exponential, logistic, beta, lognormal, and
Weibull distributions cannot explain the relief timings. The ST was performed to examine
the extent to which the third data depended on a normal distribution, and the results were
as ST = 0.96451 and p-value = 0.1373 which means that this data sets follow the normal
distribution. However, the new presented GGR-RW model performs better than the normal
distribution in modeling this data.

Kernel Density Estimation
= |
- -
o~ T -
@
o
w | 7
«w -7
©
=
2 = -
< | -
S s
w
= o~ ]
o l_/’
o o
= =T
T T T T T T T T T T
02 04 06 08 1.0 00 02 04 06 0.8 1.0
N=50 & Bandwidth=0.06634 iln
Box Plot for Relief Times Data
—_—
@ 1 @
(=T [=T
1
1
~ | ~ |
= =
© ©
= = o
w w
=T =T
1
=< _| I = _|
= 1 S
1
= 1 ©
o 7 < 7]
norm guantiles
Scattergram at lag=1 Cullen and Frey graph
° @ ® A # Observation Theoretical distributions
@ | ° - - o bootstrapped values # normal
= B ~ B i uniform
o= - = exponential
Bl I A -, e - ® + logietic
- e o0 . = - < — ¥, O beta
4 - SO lognormal
— - Dl I S et 3 cose to gamma and fegnen
£ e —
= = - - Eo R 2 o
@ jppp——— =
g ° £ £ T
LY . = ~ o = ©w — - <
= o o
——a ~ <
_____ T e T -~ =
- B ~ -
=T ~. @ .
o o ~. h
= ° =7 o =
- e
o o (=1 b ~
T T T T T T =
03 04 0s 06 07 08 T j " " T !
0 1 2 3 4 5
Times[1:(dm - 1)]
I:l:l square of skewness

Figure 7. The NKDE panel (the first row, left panel), the TTT panel (the first row, right panel), the box
panel (the second row, left panel), the Q-Q panel (the second row, right panel), scattergram panel (the
third row, left panel), and the skewness-kurtosis panel (the third row, right panel) for the relief times.
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Table 6 lists the statistics CVM, AD, KS, and P, for each fitted model. Table 7 lists
the MLEs and related SEs. The lowest values from Table 6 for the GGR-RW model are
CVM =0.0485, AD = 0.4014, KS = 0.081911, and P, = 0.8906. As a result, the GGR-RW may
be selected as the ideal model. Both the calculated PDF and CDF are shown in Figure 8.
The P-P panel and estimated HRF for the relief periods data are shown in Figure 9. We can
see from Figures 8 and 9 that the new GGR-RW model offers good fits for the empirical
CDFs.

Table 6. CVM, AD, KS and P, for the relief times data.

Goodness of Fit Criteria

Criteria—

Model| AD CVM KS (P,)
GGR-RW 0.4014 0.0485 0.081911 (0.8906)
RW 2.0301 0.3233 0.150622 (0.2066)
GOLL-RR 1.3498 0.1955 0.110083 (0.5797)
OB-RW 0.4208 0.0490 0.091243 (0.7994)
OLLE-RW 1.0988 0.1577 0.53498 (<0.0001)
Beta-RW 2.5133 0.3613 0.143345 (0.3601)
E-RW 2.0304 0.3233 0.150619 (0.2064)
T-RW 1.81528 0.2823 0.137013 (0.3045)

Table 7. MLEs and SEs for the relief times data.

Estimates — Estimates
Model| a b ¢ 5 5y
0.377621 0.008394 21.01783 1.212893
GGR-RW (0.6077) (0.00151) (21.46851) (0.45608)
OB-RW 17.79132 6.996212 0.126862 0.178433
(0.00014) (4.03633) (0.00023) (0.00044)
1.961322 0.111237 1.412323
GOLL-RR (0.23402) (0.00146) (0.00534)
0.066923 0.00464 0.35583 32.5611
OLLE-RW (0.00762) (0.0028) (0.0047) (0.0063)
RW 0.485933 3.20785
(0.02272) (0.3263)
E-RW 0.90474 0.50134 3.20774
(18.7863) (3.24444) (0.3265)
Beta-RW 4.01545 1.334933 2.00223 0.87017
(0.11153) (0.1476) (0.32134) (0.00333)
T-RW —0.58161 0.440232 3.49742
(0.27873) (0.0293) (0.3527)
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Figure 8. Estimated PDF (left) and estimated CDF (right) for the relief times.
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5. Risk Analysis

In this section, we will present a wide range of practical results, whether in the field of
actuarial modeling or in the field of insurance applications. First, we introduce synthetic
experiments to analyze actuarial risk. Secondly, we will conduct a comprehensive process
study on insurance claims data.

5.1. Artificial Risk Analysis

For risk analysis and evaluation, the maximum likelihood estimation (MLE), weighted
least squares estimation (WLSQ), ordinary least squares estimation (OLSQ), and Cramér-
von Mises estimation (CVME) methods are considered. We will ignore the algebraic
derivations and theoretical results of these methods since it is already present in a lot of
statistical literature. On the other hand, we will focus a lot on the practical results and
statistical applications of mathematical modeling in general and of the risk disclosure,
analysis risk, and evaluation of actuarial risks. For computing the above-mentioned KRIs,
the following estimation techniques are discussed in these sections: the MLE, OLSQ, WLSQ
and CVME methods. Seven CLs (q = 50%, 60%, 70%, 80%, 90%, 95%, 99% and 99%) and
N = 1000 with Various sample sizes (n = 20, 50, 100) are considered under g = 2,b = 0.5,
01 = 0.7, 62 = 0.3. All results are reported in Tables 8-10. Table 8 shows the KRIs for the
GGR-RW under artificial data where n = 20. Table 9 gives the KRIs for the GGR-RW under
artificial data where n = 50. Table 10 lists the KRIs for the GGR-RW under artificial data
where n = 100. The simulation’s primary objective is to evaluate the efficacy of the five
risk analysis methodologies and select the most appropriate and efficient ones. Tables 8-10
allow us to display the significant results:

1. The VAR(Y; @), TVAR(Y; @) and TMV (Y; @) increase when q increases for all esti-

mation methods.
The TV (Y; @) and EL (Y; i) decrease when q increases for all estimation methods.

The three tables’ results enable us to verify that all approaches are valid and that
it is impossible to categorically recommend one approach over another. Given this
fundamental finding, we are obliged to develop an application based on real data in
the hopes that it would enable us to select one strategy over another and identify the
best and most appropriate methods. In other words, even though the results from the
five ways to risk assessment were equivalent, the simulation research did not help
us decide how to balance the methodologies. These convergent findings comfort us
that, when modelling actuarial data and evaluating risk, all methodologies function
satisfactorily and within allowable limits.
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Table 8. The KRIs for the GRR-RW under artificial data where n = 20.

VAR (Y; ¢) TVAR (Y; ¢) TV (Y; ¢) TMV (Y; ¢) EL (Y; ¢)

MLE 50% 0.0381111 0.1486531 0.0233400 0.1603231 0.1105419
60% 0.0541547 0.1744053 0.0258538 0.1873322 0.1202507

70% 0.0782740 0.2107700 0.0291661 0.225353 0.1324959
80% 0.1189146 0.2678643 0.033902 0.2848153 0.1489497

90% 0.2057473 0.3801243 0.0419915 0.4011201 0.174377
95% 0.3123655 0.5088242 0.0499369 0.5337926 0.1964587
99% 0.6217416 0.8601832 0.0678638 0.8941151 0.2384416

LS 50% 0.0374667 0.1490600 0.0241590 0.1611395 0.1115933
60% 0.0535004 0.1750774 0.0268089 0.1884819 0.121577

70% 0.0776905 0.2118756 0.0303126 0.2270319 0.1341851
80% 0.1185895 0.2697621 0.0353475 0.2874358 0.1511726

90% 0.2063194 0.3838971 0.0440212 0.4059077 0.1775778

95% 0.3144706 0.5151746 0.0526295 0.5414893 0.200704
99% 0.6301761 0.8753958 0.0723317 0.9115617 0.2452197
WLS 50% 0.0342739 0.1376783 0.0210272 0.1481916 0.1034040
60% 0.0489822 0.1618043 0.0233691 0.1734889 0.1128222

70% 0.0712356 0.1959845 0.026472 0.2092206 0.1247489

80% 0.1090019 0.2498647 0.0309402 0.2653348 0.1408628

90% 0.1904255 0.3563898 0.0386510 0.3757153 0.1659643

95% 0.2912627 0.4792157 0.0463079 0.5023696 0.187953
99% 0.5868431 0.8170242 0.0638199 0.8489342 0.2301812
CVM 50% 0.0373757 0.1483838 0.0239460 0.1603568 0.1110082
60% 0.0532972 0.1742681 0.0265773 0.1875568 0.1209709
70% 0.077324 0.2108897 0.0300559 0.2259176 0.1335657

80% 0.1179792 0.2685231 0.0350509 0.2860486 0.1505439

90% 0.2053027 0.3822116 0.0436372 0.4040302 0.176909
95% 0.3130633 0.5129930 0.0521284 0.5390572 0.1999297
99% 0.6276448 0.8716274 0.0714515 0.9073532 0.2439827

Table 9. The KRIs for the GRR-RW under artificial data where n = 50.

VAR (Y; ¢) TVAR (Y; ¢) TV (Y; ¢) TMV(Y; ¢) EL (Y; ¢)
MLE 50% 0.0373339 0.1457556 0.0222846 0.1568979 0.1084217
60% 0.053175 0.1710013 0.0246639 0.1833332 0.1178263

70% 0.0769553 0.2066087 0.027798 0.2205076 0.1296533

80% 0.1169123 0.2624301 0.0322832 0.2785717 0.1455178
90% 0.2019247 0.371995 0.0399747 0.3919824 0.1700704
95% 0.3059526 0.497478 0.0475827 0.5212694 0.1915254

99% 0.6074063 0.8402381 0.0649493 0.8727127 0.2328318
LS 50% 0.0368937 0.1454241 0.0225629 0.1567055 0.1085304
60% 0.0526345 0.1707094 0.0250017 0.1832103 0.1180749
70% 0.0763185 0.2064162 0.0282203 0.2205263 0.1300977

80% 0.1162205 0.2624769 0.0328365 0.2788952 0.1462565
90% 0.2014086 0.3727327 0.0407754 0.3931204 0.1713242

95% 0.3059839 0.4992581 0.0486494 0.5235828 0.1932743
99% 0.6100726 0.8456811 0.0666786 0.8790204 0.2356086

WLS 50% 0.0364107 0.1431778 0.0217920 0.1540738 0.1067671
60% 0.0519162 0.1680499 0.0241419 0.1801208 0.1161336

70% 0.0752356 0.2031654 0.0272418 0.2167863 0.1279298

80% 0.1145055 0.2582839 0.0316851 0.2741264 0.1437783
90% 0.1982991 0.3666467 0.0393191 0.3863063 0.1683476

95% 0.3011073 0.4909484 0.0468821 0.5143894 0.189841

99% 0.5998334 0.8310739 0.064172 0.8631599 0.2312405

CVM 50% 0.0371846 0.1459834 0.0225801 0.1572735 0.1087988
60% 0.0530105 0.1713256 0.0250089 0.1838300 0.1183151

70% 0.0768006 0.2070954 0.0282116 0.2212012 0.1302948

80% 0.116839 0.2632221 0.0328008 0.2796225 0.1463831
90% 0.2022038 0.3735195 0.0406832 0.3938610 0.1713156

95% 0.3068647 0.4999904 0.0484911 0.5242360 0.1931258
99% 0.6107723 0.8459199 0.0663415 0.8790906 0.2351476
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Table 10. The KRIs for the GRR-RW under artificial data where n = 100.
VAR (Y; ¢) TVAR (Y; ¢) TV (Y; ¢) TMV (Y; ¢) EL (Y; ¢)
MLE 50% 0.0370309 0.14445380 0.02182030 0.155364 0.1074229
60% 0.0527590 0.1694630 0.0241430 0.1815345 0.1167039
70% 0.0763570 0.2047240 0.0272020 0.2183249 0.128367
80% 0.1159737 0.2599773 0.0315796 0.2757671 0.1440036
90% 0.2001615 0.3683678 0.0390906 0.3879131 0.1682064
95% 0.3030780 0.492457 0.0465288 0.5157214 0.189379
99% 0.6011336 0.8313712 0.0635422 0.8631423 0.2302376
LS 50% 0.0368989 0.1445928 0.0220315 0.1556085 0.1076939
60% 0.0526166 0.1696712 0.0243896 0.1818660 0.1170547
70% 0.0762228 0.2050486 0.0274979 0.2187975 0.1288258
80% 0.1158991 0.2605198 0.0319508 0.2764952 0.1446207
90% 0.2003359 0.3694332 0.0396026 0.3892345 0.1690973
95% 0.3036975 0.4942325 0.0471918 0.5178284 0.1905351
99% 0.6035121 0.8354713 0.0645834 0.867763 0.2319592
WLS 50% 0.0373859 0.1456207 0.0221189 0.1566801 0.1082348
60% 0.0532489 0.1708169 0.0244691 0.1830515 0.117568
70% 0.0770415 0.2063356 0.0275636 0.2201174 0.1292942
80% 0.1169704 0.2619815 0.0319904 0.2779767 0.1450112
90% 0.2017831 0.3711118 0.0395819 0.3909027 0.1693287
95% 0.3054192 0.4960116 0.0470956 0.5195594 0.1905925
99% 0.6054054 0.8370118 0.0642700 0.8691468 0.2316064
CVvM 50% 0.0370433 0.1448759 0.0220367 0.1558943 0.1078326
60% 0.0528079 0.1699834 0.0243888 0.1821778 0.1171755
70% 0.0764724 0.2053916 0.027488 0.2191356 0.1289192
80% 0.1162215 0.2608921 0.0319261 0.2768551 0.1446705
90% 0.2007439 0.3698128 0.0395488 0.3895872 0.1690689
95% 0.3041334 0.4945666 0.0471064 0.5181198 0.1904333
99% 0.6038073 0.8355222 0.0644203 0.8677323 0.2317149

5.2. Insurance Data for Risk Analysis

The temporal growth of claims over time for each pertinent exposure (or origin) period
is typically represented in the chronological insurance real data as a triangle. The year the
insurance policy was purchased or the time period during which the loss happened can
be considered the exposure period. The origin period need not be annual, as it should be
obvious. Origin periods, for instance, might be monthly or quarterly. The length of time it
takes for an origin period to develop is referred to as the claim age or claim lag. Data from
various insurances are frequently combined to indicate consistent company lines, division
levels, or risks. For the purposes of this study, we use a U.K. Motor Non-Comprehensive
account as an illustration of the insurance claims payment triangle. We choose to set the
origin period between 2007 and 2013 for practical reasons (see Mohamed et al. [12] and
Hamed et al. [13]). The insurance claims payment data frame displays the claims data
in a manner similar to how a database would normally keep it. The development year,
incremental payments, and origin year are all listed in the first column and range from
2007 to 2013. It is crucial to keep in mind that this data on insurance claims were initially
examined using a probability-based distribution. The analysis of real data can be carried
out numerically, visually, or by combining the two. The numerical method, as well as a
few graphical tools, such as the skewness-kurtosis panel (or the Cullen and Frey panel), are
taken into consideration when assessing initial fits of theoretical distributions such as the
normal, uniform, exponential, logistic, beta, lognormal, and Weibull (see Figure 9).

Our negatively skewed actuarial data, with a kurtosis of less than three, are shown in
Figure 10. The NKDE method is used to examine the initial shape of the insurance claims
density (see Figure 11, top left panel), and the P-P panel is used to assess the “normality”
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of the current data (see Figure 11, top right panel), the TTT panel is used to assess the
initial shape of the empirical HRF (see Figure 11, bottom left panel), and the “box panel” is
used to identify the explanatory variables (see Figure 10, the bottom right panel). Figure 11
shows the initial density as an asymmetric function with a left tail (top left panel). Figure 11
does not support any irrational claims (bottom right panel). According to Figure 11’s
bottom left panel, the HRF for the models that explain the current data should similarly be
monotonically expanding. Figure 12 displays the scattergrams for the data on insurance
claims. Figure 13 (left panel) displays the autocorrelation function (ACF) for the data on
insurance claims, and Figure 13 (right panel) displays the partial autocorrelation function
(partial ACF).

Cullen and Frey graph
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Figure 10. Cullen-Frey panel for the actuarial claims data.
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Figure 11. NKDE (top left), Q-Q (top right), TTT (bottom left), and box panels (bottom right) for the
claims data.
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Figure 13. The ACF (left) and the partial ACF (right) for the insurance claims data.

We offer the ACF to show how the correlation between any two signal values changes
as a function of the distance between them. The theoretical ACF provides no information
about the process’s frequency content; instead, it measures the stochastic process memory
in the time domain. Figure 13 illustrates how hills and valleys are distributed across the
surface when Lag = k =1 (the left panel). The theoretical partial ACF with Lag =k =1
is also presented; see Figure 13 (the right panel). The initial lag value is demonstrated
in Figure 13 (the right panel) to be statistically significant, in contrast to the other partial
autocorrelations for all other lags. The first NKDE exhibits an asymmetric density with a left
tail, as shown in Figure 11’s top left panel. On the other hand, the novel model’s interview,
matching, and density are important in statistical modeling since they take into account
the left tail shape. Therefore, it is recommended to simulate insurance claim payouts using
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the GGR-RW model. We present an application for risk analysis under VAR, TVAR, TV,
TMYV, and EL that measures insurance claims data. The risk analysis is performed for some
confidence levels as follows:

q= 50(70, 600/0, 700/0, 80(70, 90(70, 950/0, 99% and 99%.

The GGR-RW and RW models estimate the five metrics. The KRIs for the GGR-RW
under insurance claims data are shown in Table 11. The estimators and ranks for the
GGR-RW model under the claims data are shown in Table 12 for all estimations. The KRIs
for the GGR-RW are listed in Table 13 under statistics on insurance claims. The estimators
and ranks for the RW model under the claims data are shown in Table 14 for all estimations.
The estimators and rankings for each estimating method are shown in the table for the RW
model under the claims data. Because it is the foundational distribution upon which the
new distribution is based, the RW distribution was chosen. These tables’ conclusions are
summarized as follows:

1. For all risk assessment methods | g = 50%, ..., 99%:

VAR (Y; g) lg=s0% < VAR(Y; g) ly=60% - -- < VAR (Y; Q) | p=99%-

2. For all risk assessment methods | g = 50%, 60%, 70%, 80%, 90%, 95%, 99% and 99%:

TVAR (Y @) g5 < TVAR(Y; ) g0 .- < TVAR(Y; ) |g-ooei.

3. For Most risk assessment methods | g = 60%, ..., 99%:

TV(Y;Q) lg=50% < TV(Y;ﬂ) lg=60% - -- < TV (Y;Q) |g=99%-

4.  For all risk assessment methods | g = 50%, ..., 99%:

TMV(Y;Q) lg=50% > TMV (Y;g, 0.5) lg=60% - - - > TMV (Y;g) |g=99°%-

5. For all risk assessment methods g = 50%, ..., 99%:

EL (Y; Q) lg=50% > EL(Y; ? 0.5) lg60% - -+ > EL(Y; f) —

6. Under the GGR-RW model and the MLE method, the VAR(Y; cf)) is monotonically in-
creasing indicator starting with 2519.589871 |q:50% and ending with 9747.670085| 4=99%
the TVAR(Y; @ ) is a monotonically increasing indicator starting with 4267.691033| 4=50%
and ending with 12,352.578196/,_999,. However, the TV(Y; ), the TMV(Y; ¢) and the
EL(Y; ¢) are decreasing functions. Under the RW model and the MLE mgthod, the
VAR(E@) is a monotonically increasing indicator starting with 1986.487789| 4=50%
and ending with 58,937.60432|q:99%, the TVAR(Y; @) is a monotonically increasing
indicator starting with 11,961.555933 |q:50% and ending with 270,450.59761 |q:99%, the
TV(Y; ¢), the TMV(Y; ¢) and the EL(Y; ¢) are decreasing function indicators.

7. Under the GGR-RW model and the LSE method, the VAR(Y; ¢) is a monotonically in-
creasing indicator starting with 2428.50708|q:50% and ending with 13,665.841 14|q:99%,
the TVAR(Y; (7)) is a monotonically increasing indicator starting with 4865.81245 |q:50%
and ending with 18,627.28911,—999,- However, the TV(Y; @), the TV(Y; @) and the
TMV (Y; ¢) are decreasing functions. Under the RW model and the OLSQ method,
the VAR(?; @) is a monotonically increasing indicator starting with 2226.27121 |q:50%
and ending:vith 44,780.28947|,7:99%, the TVAR(Y; é) is a monotonically increasing
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indicator starting with 9174.03623| 7=50% and ending with 151,748.59629 4=99%- Also,
the TV (Y; (?)), the TMV (Y; (YJ) and the EL(Y; (?)) are decreasing functions.

Under the GGR-RW model and the WLSQ method, the VAR(Y; ¢) is a monotonically
increasing indicator starting with 2356.17122| 4=50% and ending with 9514.1782] 1=99%»
the TVAR(Y; 17)) is a monotonically increasing indicator starting with 4108.2022|q:50%
and ending with 12,042.68509| 7=99%- However, the TV(Y; é), the TMV(Y; é) and the
EL(Y; ¢) are decreasing functions. Under the RW model and the WLSQ method, the
VAR(Y?@) is a monotonically increasing indicator starting with 1964.20669|q:50% and
ending with 19,161.39616|q:99%, the TVAR(Y; é) is a monotonically increasing indica-
tor starting with 4830.43197|,_500, and ending with 41,550.35309|;—99v,. However, the
TV(Y; ¢), the TMV(Y; $), and the EL(Y; ¢) are decreasing functions.

Under the GGR-RW model and the CVM method, the VAR(Y; ) is a monotonically in-
creasing indicator starting with 2440.48715|,_s50, and ending with 12,431.24689|,-99,
the TVAR(Y; é) in monotonically increasing indicator starting with 4680.62835|,—502
and ending with 16,642.80352| g=99%- However, the TV(Y; 17)), the TMV(Y; (7)), and
the EL(Y; ¢) are decreasing function. Under the RW model and the AE method, the
VAR(Y; ;7))715 a monotonically increasing indicator starting with 2229.99377| 4=50% and
ending with 38,705.15155|q:99%, the TVAR(Y; g?)) is a monotonically increasing indica-
tor starting with 8126.51599|,_509, and ending with 118,195.6688|;-99, the TV(Y; é),

the TMV(Z Y; é) and the EL(Y; @) are decreasing functions.

Table 11. The KRIs for the GRR-RW under insurance claims data.

VAR (Y; ¢) TVAR (Y; ¢) TV(Y; ¢) TMV (Y; ¢) EL (Y; ¢)
MLE 50% 2519.589871 4267.691033  3,540,150.406026 1,774,342.894046  1748.101162
60% 2925.721995 4653938764  3,669,072.521249 1,839,190.199388  1728.216769
70% 3413.601872 5152.008492  3,909,892.629211 1,960,098.323098  1738.40662
80% 4075.783589 5868.385465  4,288,227.900333 2,149,982.335632  1792.601877
90% 5218.837237 7158545734 4,934,867.46325 2,474592.277359  1939.708497
95% 6438.143819 8557.764414  6,119,681.689183 3,068,398.609005  2119.620595
99% 9747.670085 12,352.578196  8,779,151.168388  4,401,928.162391  2604.908111
OLSQ 50% 2428.50708 4865.81245  9,023,336.47326  4,516,534.04908  2437.30537
60% 2932.40857 543364085  9,547,186.93457  4,779,027.10814  2501.23228
70% 3564.63797 616711262 11,189,826.32321  5,601,080.27423  2602.47465
80% 4465.10947 724454736 12,380,274.28873  6,197,381.69173 2779.4379
90% 6120.70566 9336.0422 16,098,692.10948  8,058,682.09694  3215.33654
95% 8009.94191 11,695.34684  21,542,109.96081 10,782,750.32724  3685.40493
99% 13,665.84114 18,627.28911  36,958,017.28968 18,497,635.93395  4961.44797
WLSQ 50% 2356.17122 4108.2022 3,439,375.14482  1,723,795.77462  1752.03099
60% 2767.2538 449598899  3,543,850.04098  1,776,421.00948 172873519
70% 3260.32173 499320737 3,729,494.08495  1,869,740.24984  1732.88564
80% 3927.39086 5703.45655  4,062,565.44978  2,036,986.18143  1776.06568
90% 5071.69421 697610477  4,779,635.04769  2,396,793.62862  1904.41056
95% 6281.71599 8352.06028  5,653,941.85453  2,835,322.98755  2070.34429
99% 9514.1782 12,042.68509  8,239,930.80908  4,132,008.08963  2528.50689
CVME 50% 2440.48715 4680.62835  6,934,737.28581  3,472,049.27125 2240.1412
60% 2918.03280 518636109  7,534,972.10069  3,772,672.41143  2268.32829
70% 3510.16653 584741837 8,012,409.48002  4,012,052.15838  2337.25184
80% 434245308 681848345  9,433,64336101  4,723,640.16395  2476.03037
90% 5846.10485 8654.84099 12,514,954.3509  6,266,132.01648  2808.73614
95% 7529.80733 1073592128 16,138,733.3737  8,080,102.60813  3206.11394
99% 12,431.2469 16,642.80352  25779,2559529  12,906,270.7800  4211.55663
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Table 12. The estimations for all estimation methods under the GRR-RW model.
Methods a b (SAl JAZ
MLE 0.00109 0.43439 2.71691 0.16504
LS 0.00065 0.32104 2.54461 0.12257
WLS 0.00459 0.76214 2.04483 0.18936
CVM 0.00084 0.37663 2.39879 0.13348
Table 13. The KRIs for the RW under insurance claims data.
VAR (Y; §1,8,)  TVR(Y; &, 6) TV (Y; 81, 8) TMV (Y; &1, 55) EL (Y; &1, 62)
MLE 50% 1986.487789 11,961.555933 174,419,897,519.9525 87,209,960,721.53221 9975.068144
60% 2536.462153 14,390.782535 217,997,610,644.2704 108,998,819,712.9177 11,854.320382
70% 3381.788446 18,212.884768 290,611,198,248.8563 145,305,617,337.3129 14,831.096322
80% 4923241114 25,288.557461 435,793,880,982.5539  217,896,965,779.8344 20,365.316347
90% 8978.892448 44,037.774889 870,728,145,024.2504  435,364,116,549.9001 35,058.882441
95% 15,979.12723 76,311.911159 1,739,359,709,696.955  869,679,931,160.3890 60,332.783923
99% 58,937.60432 270,450.59761 8,648,937,166,516.464  4,324,468,853,708.830 211,512.99328
LS 50% 2226.27121 9174.03623 35,221,234,657.96799 17,610,626,503.02022 6947.76502
60% 2764.08554 10,847.551 44,014,544,061.32928 22,007,282,878.21564 8083.46547
70% 3565.72511 13,418.65557 58,664,352,289.24406 29,332,189,563.2776 9852.93045
80% 4972.24847 18,032.50003 87,948,130,492.44542  43,974,083,278.72273 13,060.25156
90% 8464.56169 29,681.73496 175,453,235,244.5421 87,726,647,304.00603 21,217.17327
95% 14,100.50824 48,626.87171 350,184,932,240.5994 175,092,514,747.1714 34,526.36347
99% 44,780.28947 151,748.59629 1,737,405,220,156.72 868,702,761,826.9589 106,968.30682
WLS 50% 1964.20669 4830.43197 353,521,360.01739 176,765,510.44066 2866.22528
60% 2314.75014 5505.26712 439,620,494.28391 219,815,752.40908 3190.51699
70% 2808.25355 6491.97705 582,260,408.85219 291,136,696.40314 3683.7235
80% 3614.31526 8152.00969 865,097,200.4972 432,556,752.25829 4537.69443
90% 5412.18198 11,944.5794 1,701,168,649.8689 850,596,269.51388 6532.39742
95% 7972.02825 17,419.4644 3,341,868,718.7883 1,670,951,778.8585 9447 43615
99% 19,161.39616 41,550.35309 15,948,264,082.767 7,974,173,591.7366 22,388.9569
CVvM 50% 2229.99377 8126.51599 16,383,249,373.39099 8,191,632,813.21149 5896.52223
60% 2739.42855 9540.45443 20,470,957,007.79706 10,235,488,044.35295 6801.02588
70% 3489.97698 11,691.68313 27,278,563,176.74898 13,639,293,280.05762 8201.70615
80% 4787.7631 15,503.20904 40,882,367,103.10032 20,441,199,054.7592 10,715.44594
90% 7940.21618 24,938.28648 81,425,453,617.80911 40,712,751,747.19104 16,998.0703
95% 12,899.51936 39,927.04311 162,397,882,831.5135 81,198,981,342.79988 27,027.52374
99% 38,705.15155 118,195.6688 804,158,697,120.1825  402,079,466,755.7600 79,490.51725

Table 14. The estimations for all estimation methods under the RW model.

Methods 51 52
MLE 1481.24152 1.24882
LS 1716.84523 1.41054
WLS 1612.67569 1.85864
CVM 1741.81127 1.48342

The novel Reciprocal Weibull distribution is suitable for insurance claims data since
the insurance claims data have a heavy tail and are skewed to the left (see Figure 11, the
top right panel). On the other hand, the new distribution also has a heavy tail to the
right. This initial fit between the shape of the data and the shape of the distribution is the
first starting point through which we recommend a specific probability distribution for
modeling specific data. This process is considered part of the data exploration process, and
during the data exploration process, the researcher reaches this conclusion. Of course, it is
not a requirement that the distribution is suitable for the data, but at least it is a preliminary
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step through which we can nominate a specific model for a specific data mode. To reach
the final results in the distribution selection process, many comparison criteria can be
used through which we can be certain of some results, as is the case in Tables 2, 4 and 6.
However, in Tables 11 and 13, the new model is compared with the baseline model in
risk analysis process. The new distribution proved to be compatible with the original
distribution, according to the aforementioned results.

6. Concluding Remarks

Risk exposure can be correctly described using continuous distributions. To illustrate
the level of exposure to a specific threat, it is preferable to use a data point or, at the
very least, a restricted range of numbers. These risk exposure numbers, also known as
the primary risk indicators, are obviously the product of a certain model. Five key risk
indicators—value-at-risk, tail-value-at-risk, tail variance, and tail mean-variance—were
also implemented to define the risk exposure under the reinsurance revenue data.

Given that the recommended version was used to make these measurements, this
research provides a fresh distribution for this usage. Important statistical characteristics can
be derived, such as the generating function, ordinary moments, and incomplete moments.
In terms of modeling the breaking data, the new model performs better than the Beta
reciprocal Weibull model, the Kumaraswamy reciprocal Weibull model, the McDonald
reciprocal Weibull model, the Marshall-Olkin reciprocal Weibull model, the odd Burr
reciprocal Weibull model, the odd log-logistic reciprocal Weibull model, the odd log-logistic
exponentiated reciprocal Weibull model, the transmuted reciprocal Weibull model.

Five key risk indicators are employed for analyzing the risk level under the reinsurance
revenues dataset. An application is provided along with its relevant numerical analysis
and panels. Some useful results are identified and highlighted as follows:

1.  For all risk assessment methods | g = 50%, ..., 99%:

VAR(Y; ) g=s0% < VAR(Y; @) g - < VAR(Y; ) g—o9

2. For all risk assessment methods | g = 50%, 60%, 70%, 80%, 90%, 95% and 99%:

TVAR(Y; g) ly=s0% < TVAR (Y; g) lg—60% - -- < TVAR (Y,- Q) | =99%-

3. For Most risk assessment methods g = 50%, ..., 99%:

TV(Y; f) lgs0% < TV(Y; Q) ly60% - - < TV (Y; g) |gm99%-

4.  For all risk assessment methods | g = 50%, ..., 99%:

T™MV (Y; Q) ly=s0% > TMV (Y; g) lg=60% - -~ > TMV (Y; Q) | =99%-

5. For all risk assessment methods | g = 50%, ..., 99%:
EL (Y; g) ly=s0% > EL (Y; ﬂ) lg=60% - -- > EL (Y,- Q) s
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