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Abstract: Szeged-like topological indices are well-studied distance-based molecular descriptors,
which include, for example, the (edge-)Szeged index, the (edge-)Mostar index, and the (vertex-)PI
index. For these indices, the corresponding polynomials were also defined, i.e., the (edge-)Szeged
polynomial, the Mostar polynomial, the PI polynomial, etc. It is well known that, by evaluating the
first derivative of such a polynomial at x = 1, we obtain the related topological index. The aim of this
paper is to introduce and investigate a new graph polynomial of two variables, which is called the
SMP polynomial, such that all three vertex versions of the above-mentioned indices can be easily
calculated using this polynomial. Moreover, we also define the edge-SMP polynomial, which is the
edge version of the SMP polynomial. Various properties of the new polynomials are studied on
some basic families of graphs, extremal problems are considered, and several open problems are
stated. Then, we focus on the Cartesian product, and we show how the (edge-)SMP polynomial of the
Cartesian product of n graphs can be calculated using the (weighted) SMP polynomials of its factors.

Keywords: SMP polynomial; edge-SMP polynomial; Cartesian product; Szeged index; Mostar index;
PI index

MSC: 05C31; 05C12; 05C09; 05C92

1. Introduction and Preliminaries

Distance-based topological indices are extensively used in mathematical chemistry in
order to predict physico-chemical properties of chemical compounds from the underlying
molecular graph. One of the most important distance-based molecular descriptors is the
well-known Wiener index [1], which is defined as the sum of distances between all pairs of
vertices in a given graph. More precisely, for a connected graph G, the Wiener index W(G)
is calculated as

W(G) = ∑
{u,v}⊆V(G)

dG(u, v),

where dG(u, v) denotes the usual shortest path distance between vertices u and v of G.
See [2] for a recent review on the Wiener index.

It is easy to see that, if T is a tree, then the Wiener index can be computed as

W(T) = ∑
e=uv∈E(T)

nu(e|T)nv(e|T), (1)

where nu(e|T) denotes the number of vertices of T whose distance to u is smaller than the
distance to v and nv(e|T) is defined analogously. Therefore, in 1994, Gutman used the right-
hand side of (1) to define the so-called Szeged index for any connected
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graph G [3], which turned out to be useful in various applications. As a consequence,
many different variations and also edge versions of this index were considered—for exam-
ple, the PI index [4], the vertex-PI index [5], the edge-Szeged index [6], the Mostar index [7],
and the edge-Mostar index [8]. In particular, the Mostar index recently attracted quite a
lot of attention, since it can be used as a measure of peripherality in molecular graphs and
networks [9]. Note that all these indices belong to the family of Szeged-like topological
indices [10].

In order to formally introduce Szeged-like topological indices, we need additional
notation. Let G be a connected graph. The distance between a vertex x and an edge e = uv
is defined as dG(x, e) = min{dG(x, u), dG(x, v)}. In addition, if e = uv is any edge of G,
then the following notation for the sets of vertices and edges of G will be used:

Nu(e|G) = {x ∈ V(G) | dG(x, u) < dG(x, v)},
Nv(e|G) = {x ∈ V(G) | dG(x, v) < dG(x, u)},
N0(e|G) = {x ∈ V(G) | dG(x, u) = dG(x, v)},

Mu(e|G) = { f ∈ E(G) | dG(u, f ) < dG(v, f )},
Mv(e|G) = { f ∈ E(G) | dG(v, f ) < dG(u, f )},
M0(e|G) = { f ∈ E(G) | dG(u, f ) = dG(v, f )}.

Moreover, let

nu(e|G) = |Nu(e|G)|, nv(e|G) = |Nv(e|G)|, n0(e|G) = |N0(e|G)|,
mu(e|G) = |Mu(e|G)|, mv(e|G) = |Mv(e|G)|, m0(e|G) = |M0(e|G)|.

Obviously, nu(e|G) represents the number of vertices of G that are closer to u than to
v and mu(e|G) is the number of edges of G that are closer to u than to v.

For a connected graph G with at least one edge, we can now define the Szeged index
Sz(G), the Mostar index Mo(G), and the vertex-PI index PIv(G) in the following way:

Sz(G) = ∑
e=uv∈E(G)

nu(e|G)nv(e|G),

Mo(G) = ∑
e=uv∈E(G)

|nu(e|G)− nv(e|G)|,

PIv(G) = ∑
e=uv∈E(G)

(nu(e|G) + nv(e|G)).

The edge versions of these indices are defined analogously. Below is the edge-Szeged
index Sze(G), the edge-Mostar index Moe(G), and the PI index PI(G):

Sze(G) = ∑
e=uv∈E(G)

mu(e|G)mv(e|G),

Moe(G) = ∑
e=uv∈E(G)

|mu(e|G)−mv(e|G)|,

PI(G) = ∑
e=uv∈E(G)

(mu(e|G) + mv(e|G)).

In some cases, it is useful to consider graph polynomials related to distance-based
topological indices, since such polynomials provide much more information about the
topology of a given graph. The most investigated among these polynomials is the Hosoya
polynomial (also called Wiener polynomial), which is closely related to the Wiener index
and was introduced in 1988 by Hosoya [11]. It is well known that the Wiener index of a
graph G can be computed by evaluating the first derivative of the Hosoya polynomial at
x = 1.
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Similarly, graph polynomials related to Szeged-like topological indices can also be
introduced—for example, the Szeged polynomial Sz(G; x) [12], the edge-Szeged polynomial
Sze(G; x) [13], the Mostar polynomial Mo(G; x) [9], the edge-Mostar polynomial Moe(G; x),
the vertex-PI polynomial PIv(G; x) [14], and the PI polynomial PI(G; x) [15]. For a connected
graph G, these polynomials are defined with the following formulas:

Sz(G; x) = ∑
e=uv∈E(G)

xnu(e|G)nv(e|G), Sze(G; x) = ∑
e=uv∈E(G)

xmu(e|G)mv(e|G),

Mo(G; x) = ∑
e=uv∈E(G)

x|nu(e|G)−nv(e|G)|, Moe(G; x) = ∑
e=uv∈E(G)

x|mu(e|G)−mv(e|G)|,

PIv(G; x) = ∑
e=uv∈E(G)

xnu(e|G)+nv(e|G), PI(G; x) = ∑
e=uv∈E(G)

xmu(e|G)+mv(e|G).

Additional investigations on these graph polynomials can be found, for
example, in [16–22]. Recently, several so-called root-indices of graphs were defined by
using Szeged-like polynomials [23]. It is interesting that the mentioned root-indices have a
higher ability to discriminate graphs than the corresponding standard indices.

Let TI ∈ {Sz, Sze, Mo, Moe, PIv, PI} be a topological index and P the corresponding
graph polynomial. It is obvious that, for any connected graph G, the topological index
TI(G) can be calculated as the first derivative of the polynomial P at x = 1, i.e.,

TI(G) = P′(G; 1).

The aim of this paper is to define such a graph polynomial that the Szeged index,
the Mostar index, and the vertex-PI index can all be calculated by using only this one
polynomial. It turns out that the mentioned goal can be achieved by introducing a polyno-
mial of two variables, which we call the SMP polynomial. Similarly, one can also define
the edge-SMP polynomial, which can be used to compute the edge-Szeged index, the
edge-Mostar index, and the PI index.

The structure of the paper is the following: in the next section, we formally intro-
duce the SMP polynomial, the edge-SMP polynomial, and also the weighted version of
these polynomials. In Section 3, we investigate some basic properties of the (edge-)SMP
polynomial. In particular, we focus on some basic families of graphs, trees, and extremal
problems related to SMP polynomials. Moreover, several open problems are stated. Fi-
nally, in Section 4, we consider Cartesian products of graphs and provide formulas for
calculating the (edge-)SMP polynomial of the Cartesian product G = G1�G2� · · ·�Gn
by using the (weighted) SMP polynomials of its factors. Note that some existing results
related to Szeged-like topological indices and polynomials of Cartesian products can be
found in [5,12,18,24,25].

2. The SMP Polynomials

As already mentioned, we introduce a new graph polynomial of two variables, which
can be used to easily compute the Szeged index, the Mostar index, and the vertex-PI index
of a given graph.

In the rest of the paper, we always assume that G is a connected graph with at least
one edge, although sometimes this is not specifically mentioned.

Definition 1. Let G be a connected graph with at least one edge. The SMP polynomial of G,
denoted as SMP(G; x, y), is defined as

SMP(G; x, y) = ∑
e=uv∈E(G),
nu(e)≥nv(e)

xnu(e|G)ynv(e|G).
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The next proposition is obvious, and it shows how partial derivatives of the SMP
polynomial can be applied to calculate the above-mentioned topological indices.

Proposition 1. If G is a connected graph, then

Sz(G) =

(
∂

∂x

(
∂

∂y
SMP(G; x, y)

))∣∣∣∣
x=y=1

,

Mo(G) =

(
∂

∂x
SMP

(
G; x,

1
x

))∣∣∣∣
x=1

,

PIv(G) =

(
∂

∂x
SMP(G; x, x)

)∣∣∣∣
x=1

.

Note that the advantage of the introduced polynomial is the fact that one has to
consider only one polynomial instead of three to compute three well-known molecular
descriptors. In addition, by combining different operations, several other topological
indices can be defined and computed from the same polynomial.

Similarly, we can introduce the edge version of the SMP polynomial, which is closely
related to the edge-Szeged index, the edge-Mostar index, and the PI index.

Definition 2. Let G be a connected graph with at least one edge. The edge-SMP polynomial of
G, denoted as SMPe(G; x, y), is defined as

SMP(G; x, y) = ∑
e=uv∈E(G),
mu(e)≥mv(e)

xmu(e|G)ymv(e|G).

The following proposition can be stated.

Proposition 2. If G is a connected graph, then

Sze(G) =

(
∂

∂x

(
∂

∂y
SMPe(G; x, y)

))∣∣∣∣
x=y=1

,

Moe(G) =

(
∂

∂x
SMPe

(
G; x,

1
x

))∣∣∣∣
x=1

,

PI(G) =

(
∂

∂x
SMPe(G; x, x)

)∣∣∣∣
x=1

.

To show an example, let T be a tree from Figure 1.

Figure 1. Tree T.

Obviously, T contains six different edges e = uv for which {nu(e|T), nv(e|T)} =
{9, 1} and {mu(e|T), mv(e|T)} = {8, 0}. Moreover, there are two edges e = uv for which
{nu(e|T), nv(e|T)} = {6, 4} and {mu(e|T), mv(e|T)} = {5, 3}. In addition, for one edge,
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it holds {nu(e|T), nv(e|T)} = {7, 3} and {mu(e|T), mv(e|T)} = {6, 2}. Therefore, the
corresponding SMP polynomials are:

SMP(T; x, y) = 6x9y + x7y3 + 2x6y4,

SMPe(T; x, y) = 6x8 + x6y2 + 2x5y3.

It is useful to also define the weighted SMP polynomial of a graph with two weights
on the edges, which will be needed in Section 4. Therefore, let G be a graph and let
w1, w2 : E(G) → [0, ∞) be two weights on the edges of G. The triple (G, w1, w2) is then
called a double edge-weighted graph.

Definition 3. Let (G, w1, w2) be a double edge-weighted connected graph with at least one edge.
The weighted SMP polynomial of (G, w1, w2), denoted as SMP(w1,w2)

(G; x, y), is defined in the
following way:

SMP(w1,w2)
(G; x, y) = ∑

e∈E(G)

xw1(e)yw2(e). (2)

Obviously, the SMP polynomial and the edge-SMP polynomial are just special cases of
the weighted SMP polynomial. More precisely, if for any edge e = uv ∈ E(G), we define

n1(e) = max{nu(e|G), nv(e|G)}, n2(e) = min{nu(e|G), nv(e|G)}

and
m1(e) = max{mu(e|G), mv(e|G)}, m2(e) = min{mu(e|G), mv(e|G)},

then it holds

SMP(G; x, y) = SMP(n1,n2)
(G; x, y) and SMPe(G; x, y) = SMP(m1,m2)

(G; x, y).

3. Basic Properties of SMP Polynomials

In this section, several properties of SMP polynomials are discussed. We start with the
following observation related to bipartite graphs.

Proposition 3. Let G be a connected graph on n vertices, where n ≥ 2. Then, G is bipartite if and
only if, in every term ai,jxiyj of SMP(G; x, y), we have i + j = n.

Proof. Let e = uv be an edge of G. If G is bipartite, then, for every vertex w, we have
dG(u, w) 6= dG(v, w), which means that nu(e|G) + nv(e|G) = n.

On the other hand, if G is non-bipartite, let C be a shortest odd cycle in G. Observe
that, if u, v ∈ V(C), then dG(u, v) = dC(u, v); otherwise, G has an odd cycle which is
shorter than C. Let e = u1u2 be an edge in C and let w be a vertex on C opposite to
e. Then, dC(u, w) = dC(v, w) and consequently dG(u, w) = dG(v, w), which means that
nu(e|G) + nv(e|G) ≤ n− 1.

Now, we focus on trees and firstly provide the relation between the SMP polynomial
and the edge-SMP polynomial in this class of graphs.

Proposition 4. If T is a tree, then SMPe(T; x, y) = 1
xy SMP(T; x, y).

Proof. Let e = uv be an edge of T. For every other edge e′ = u′v′, denote by we′ that
vertex from u′ and v′, which has a bigger distance from e. Since T is a tree, we′ is defined
uniquely. Then, Nu(e|T) contains the vertices {we′ | e′ ∈ Mu(e|T)} ∪ {u} and Nv(e|T)
contains the vertices {we′ | e′ ∈ Mv(e|T)} ∪ {v}. Therefore, nu(e|T) = mu(e|T) + 1 and
nv(e|T) = mv(e|T) + 1, and consequently SMPe(T; x, y) = 1

xy SMP(T; x, y).

Hence, for trees, it suffices to consider SMP(T; x, y).
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By definition, SMP(G; 1, 1) equals the number of edges in G. Since the only connected
graphs with n vertices and n− 1 edges are trees, we have the following observation.

Observation 1. Let G be a connected graph on n vertices. Then, G is a tree if and only if
SMP(G; 1, 1) = n− 1.

Next, some special families of trees are considered. As usual, by Pn and Sn, we denote
a path and a star, respectively, on n vertices. Take an edge e. Attach a pendant edges to
one endvertex of e and attach b pendant vertices to the other endvertex of e, where a ≥ b.
The resulting graph is called a double star, and it is denoted by Da,b. Observe that Da,b has
a + b + 2 vertices. We have

SMP(Pn, x, y) =

{
2 ∑n/2−1

i=1 xn−iyi + xn/2yn/2 if n is even,

2 ∑
(n−1)/2
i=1 xn−iyi if n is odd;

SMP(Sn, x, y) = (n− 1)xn−1y;

SMP(Da,b, x, y) = (a + b)xa+b+1y + xa+1yb+1.

We can prove the next statement related to the uniqueness of the SMP polynomial.

Proposition 5. Let T ∈ {Pn, Sn, Da,b} and let P(x, y) = SMP(T; x, y). Then, the unique
connected graph with polynomial P(x, y) is T.

Proof. Let SMP(G; x, y) = P(x, y). Then, G has m = P(1, 1) edges. Consider one term
of P(x, y), say ai,jxiyj. Then, G contains an edge (in fact, it contains at least ai,j edges),
which is in a component with at least i + j vertices. By Proposition 3 and Observation 1,
i + j = m + 1. Hence, all edges are in a single component, and G is a tree.

Denote n = m + 1. If e = uv is a pendant edge of a tree, then {nu(e|G), nv(e|G)} =
{n − 1, 1}, and if e is not pendant, then {nu(e|G), nv(e|G)} = {i, j}, where 2 ≤ i, j ≤
n− 2. Hence, P(x, y) contains a term qxn−1y, and q is the number of pendant edges in G.
Consequently, G has q pendant vertices, which solve the cases T ∈ {Pn, Sn}.

In the last case, q = n− 2. Hence, the tree G contains n− 2 pendant edges and one
edge, say f , which is not pendant. Let xiyj be the term of P(x, y) for which 2 ≤ i, j ≤ n− 2.
Then, to one endvertex of e, there are attached i − 1 pendant vertices and, to the other
endvertex of e, there are attached j− 1 pendant vertices. Thus, T is Di−1,j−1.

It is also interesting to investigate trees with the same SMP polynomials. One can check
that the smallest nonisomorphic trees T1 and T2, for which SMP(T1; x, y) = SMP(T2; x, y),
have seven vertices and four pendant edges; see Figure 2. More precisely, SMP(T1; x, y) =
SMP(T2; x, y) = 4x6y + x5y2 + x4y3. Note also that there exist 11 nonisomorphic trees on
seven vertices, but only T1 and T2 have the same SMP polynomials.

Figure 2. Trees T1 and T2 with equal SMP polynomials.
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Now, we consider graphs which are not trees. By Cn, Kn and Kn1,n2 , we denote a cycle,
a complete graph and a complete bipartite graph, respectively, on n vertices. In the last
case, n = n1 + n2, and we also assume n1 ≥ n2. We have

SMP(Cn; x, y) = nxn/2yn/2 and SMPe(Cn; x, y) = nx(n−2)/2y(n−2)/2 if n is even;

SMP(Cn; x, y) = nx(n−1)/2y(n−1)/2 and SMPe(Cn; x, y) = nx(n−1)/2y(n−1)/2 if n is odd;

SMP(Kn; x, y) = (n
2)xy and SMPe(Kn; x, y) = (n

2)xn−2yn−2;

SMP(Kn1,n2 ; x, y) = n1n2xn1 yn2 and SMPe(Kn1,n2 ; x, y) = n1n2xn1−1yn2−1.

The case of odd cycles opens the following:

Problem 1. Characterize graphs G, for which SMP(G; x, y) = SMPe(G; x, y).

If a graph G is edge-transitive on m edges, then there are i1, j1 and i2, j2, such that
SMP(G; x, y) = mxi1 yj1 and SMPe(G; x, y) = mxi2 yj2 . For example, let O3 be the Petersen
graph and let Qt be the graph of t-dimensional cube. Observe that Qt has 2t vertices and
t2t−1 edges. We have

SMP(O3; x, y) = 15x2y2 and SMPe(O3; x, y) = 15x6y6;

SMP(Qt; x, y) = t2t−1x2t−1
y2t−1

and SMPe(Qt; x, y) = t2t−1x(t−1)2t−2
y(t−1)2t−2

.

If G is edge-transitive, then there are integers i and j (not necessarily positive), such
that SMPe(G; x, y)/SMP(G; x, y) = xiyj. Denote ϕ(G) = i + j.

Observe that ϕ(Kn) = 2n− 6 and ϕ(Kn1,n2) = −2, while, for even n, we also have
ϕ(Cn) = −2. Moreover, ϕ(O3) = 8 and ϕ(Qt) = 2t−1(t− 3). It would be interesting to
find extremal values of ϕ. Therefore, we state the following problem:

Problem 2. Characterize edge-transitive graphs on n vertices with an extremal value of ϕ.

Moreover, what are the graphs with the second or third extremal value of ϕ?

Next, we consider bounds for the degree of SMP and SMPe. We set

n(G) = max{nu(e|G) + nv(e|G) | e = uv ∈ E(G)},
m(G) = max{mu(e|G) + mv(e|G) | e = uv ∈ E(G)}.

Observe that n(G) is the degree of SMP(G; x, y), and m(G) is the degree of SMPe(G; x, y).
In the next statement, we bound the degree of SMP(G; x, y).

Proposition 6. Let G be a connected graph on n vertices, where n ≥ 2.

- If n(G) is maximum possible, then n(G) = n, and extremal graphs include all bipartite graphs
and graphs having a bridge.

- If n(G) is minimum possible, then n(G) = 2, and G is the complete graph Kn.

Proof. First, we consider the upper bound. For every edge e = uv, we have nu(e|G) +
nv(e|G) ≤ n, which means that n(G) ≤ n. By Proposition 3, if e = uv is an edge of a
bipartite graph, then nu(e|G) + nv(e|G) = n and so n(G) = n if G is bipartite. The same is
true if e is a bridge, and so, if G is a graph with a bridge, then n(G) = n as well.

Now, we consider the lower bound. For every edge e = uv, we have nu(e|G) ≥ 1 since
0 = d(u, u) < d(v, u) = 1. By symmetry, also nv(e|G) ≥ 1, and so nu(e|G) + nv(e|G) ≥ 2.
If nu(e|G) + nv(e|G) = 2, then every neighbour of u (other then v) must be a neighbour
of v, and every neighbour of v (other than u) must be a neighbour of u. Consequently,
if n(G) = 2, then every pair x, y of adjacent vertices must have the same neighbours in
V(G) \ {x, y}. Hence, G is the complete graph Kn.
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Take a complete graph on n− 1 vertices Kn−1, attach a pendant vertex to one of the
vertices of Kn−1, and denote the resulting graph by K+

n−1. In the following theorem, we
give a tight upper bound for the degree of SMPe(G; x, y).

Theorem 1. Let G be a connected graph on n vertices, n ≥ 2, for which m(G) is maximum
possible. Then, m(G) = (n−1

2 ) if n ≥ 5 and m(G) = 2n− 4 if n ≤ 5. Moreover, if n ≥ 6, then
K+

n−1 is the unique extremal graph.

Proof. Let e = uv be an edge, such that mu(e|G) +mv(e|G) = m(G). If deg(u) = deg(v) =
n− 1, then every edge which is not adjacent to e has distance 1 from both u and v. Hence,
m(G) = 2n− 4 since d(u, e) = d(v, e).

In the following, we may assume that n > 2 and deg(v) < n− 1. Thus, there is a vertex,
say w, which is not adjacent to v. Let x be a vertex of V(G) \ {u, v, w}. We consider possible
edges ux, vx and wx. If ux, vx ∈ E(G), then d(u, wx) = d(v, wx) = 1, so at most two
edges from {ux, vx, wx} contribute to mu(e|G) + mv(e|G). Since for x, y ∈ V(G) \ {u, v, w},
where x 6= y, the sets {ux, vx, wx} and {uy, vy, wy} are disjoint, e does not contribute to
mu(e|G) + mv(e|G), and vw /∈ E(G), we have

m(G) ≤
(

n
2

)
− (n− 3)− 1− 1 =

(
n− 1

2

)
.

However, if e′ = u′v′ is the pendant edge of K+
n−1, then mu′(e′|K+

n−1) + mv′(e′|K+
n−1) =

(n−1
2 ). Since (n−1

2 ) > 2n − 4 if n ≥ 6 (observe that equality holds if n = 5), we have
m(G) = (n−1

2 ) if n ≥ 6 and m(G) = 2n− 4, otherwise.
Now assume that n ≥ 6 and G is an extremal graph. As explained above, m(G) is

attained on e = uv for which deg(v) < n− 1. Thus, there is w ∈ V(G) such that vw /∈ E(G).
Moreover, G contains all edges which have both endvertices in V(G) \ {u, v, w} and also uw.

Suppose that there is x ∈ V(G) \ {u, v, w}, such that vx ∈ E(G). Since n ≥ 6, there
is a vertex y ∈ V(G) \ {u, v, w, x}. As mentioned above, xy ∈ E(G) and xy contributes to
mu(e|G) + mv(e|G). Since d(v, xy) = 1, we have ux /∈ E(G). However, two edges from
the triple {ux, vx, wx} must contribute to mu(e|G) + mv(e|G), and so wx ∈ E(G). Since
uw, vx ∈ E(G), we have d(u, wx) = d(v, wx) and so wx cannot contribute to mu(e) + mv(e),
a contradiction. Hence, vx /∈ E(G) for x 6= u and consequently G is K+

n−1.

Since we do not know a tight lower bound for the degree of SMPe(G; x, y), we have
the following problem.

Problem 3. Find a tight lower bound for m(G) and characterize the extremal graphs.

In some chemical applications, it is interesting to consider a polynomial of (molecular)
graphs for particular values of x any y, since in this way it is possible to obtain a molecular
descriptor from the polynomial. For an example, see [26]. Therefore, we finish this section
with the next open problem.

Problem 4. Characterize graphs with extremal value of SMP(G; c1, c2) or SMPe(G; c1, c2) for a
given pair (c1, c2).

4. SMP Polynomials of Cartesian Products

In this section, we investigate the SMP polynomial and the edge-SMP polynomial of
Cartesian products of graphs. First, we present some basic definitions from [27].

The Cartesian product of graphs G1, G2, . . . , Gn is the graph G = G1�G2� · · ·�Gn such
that:

• V(G) = V(G1)×V(G2)× · · · ×V(Gn),
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• two vertices a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ V(G) are adjacent in G if and
only if there exists exactly one k ∈ {1, . . . , n} such that akbk ∈ E(Gk) and ai = bi for
every i ∈ {1, . . . , n} \ {k}.
For a vertex x of the Cartesian product G, the k-th coordinate of x will be denoted as

xk for any k ∈ {1, . . . , n}, i.e., x = (x1, x2, . . . , xn).
In addition, for the Cartesian product G = G1�G2� · · ·�Gn and k ∈ {1, . . . , n}, we

use the following notation:

Ek(G) = {uv ∈ E(G) | ukvk ∈ E(Gk)}.

Observe that the sets E1(G), E2(G), . . . , En(G) are pairwise disjoint and

E(G) = E1(G) ∪ E2(G) ∪ · · · ∪ En(G). (3)

It is well known that the Cartesian product G is connected if and only if all the factors
Gk, k ∈ {1, . . . , n}, are connected. Moreover, for vertices a, b ∈ V(G), the following distance
formula holds true [27]:

dG(a, b) =
n

∑
k=1

dGk (ak, bk). (4)

We denote r = |V(G)| and s = |E(G)|, where G = G1�G2� · · ·�Gn is the Cartesian
product. In addition, let rk = |V(Gk)| and sk = |E(Gk)| for any k ∈ {1, . . . , n}. Obviously,
we have

r = |V(G)| =
n

∏
k=1
|V(Gk)| = r1r2 · · · rn. (5)

In addition, since

|Ek(G)| = |E(Gk)| ·
n

∏
i=1
i 6=k

|V(Gi)| = sk
r
rk

,

from Equation (3) one can obtain

s = |E(G)| =
n

∑
k=1
|Ek(G)| = r

n

∑
k=1

sk
rk

. (6)

Moreover, for k ∈ {1, . . . , n}, we use the following notation:

G/Gk = G1� · · ·�Gk−1�Gk+1� · · ·�Gn.

As a consequence, by using Equations (5) and (6), we also have

|V(G/Gk)| =
r
rk

and |E(G/Gk)| =
r
rk

n

∑
i=1
i 6=k

si
ri

. (7)

Next, we investigate some subsets of vertices in Cartesian products of graphs in order
to calculate the SMP polynomial.



Mathematics 2023, 11, 956 10 of 15

Proposition 7. Suppose that G = G1�G2� · · ·�Gn is the Cartesian product of connected graphs
G1, G2, . . . , Gn. Moreover, let k ∈ {1, . . . , n} and let f = uv be an edge of G such that e = ukvk ∈
E(Gk). Then,

Nu( f |G) = {x ∈ V(G) | xk ∈ Nuk (e|Gk)},
Nv( f |G) = {x ∈ V(G) | xk ∈ Nvk (e|Gk)},
N0( f |G) = {x ∈ V(G) | xk ∈ N0(e|Gk)}.

Proof. First, we introduce the following notation:

A = {x ∈ V(G) | xk ∈ Nuk (e|Gk)},
B = {x ∈ V(G) | xk ∈ Nvk (e|Gk)},
C = {x ∈ V(G) | xk ∈ N0(e|Gk)}.

We now prove that A ⊆ Nu( f |G). Therefore, let x ∈ A. By (4), we know that

dG(x, u) =
n

∑
i=1

dGi (xi, ui) and dG(x, v) =
n

∑
i=1

dGi (xi, vi).

However, ui = vi for any i ∈ {1, . . . , n} \ {k}. Hence, dGi (xi, ui) = dGi (xi, vi) for all
i ∈ {1, . . . , n} \ {k}. On the other hand, we know that xk ∈ Nuk (e|G), so dGk (xk, uk) <
dGk (xk, vk). Consequently, dG(x, u) < dG(x, v), which also implies x ∈ Nu( f |G). We
have proved that A ⊆ Nu( f |G). Analogously, one can also show that B ⊆ Nv( f |G) and
C ⊆ N0( f |G). Since A∪ B∪C = Nu( f |G)∪Nv( f |G)∪N0( f |G) = V(G), we finally obtain

A = Nu( f |G), B = Nv( f |G), and C = N0( f |G).

We can now determine the cardinalities of the sets from Proposition 7. Note that the
next corollary represents a generalization of a result from [24] to Cartesian products with
more than two factors.

Corollary 1. Suppose that G = G1�G2� · · ·�Gn is the Cartesian product of connected graphs
G1, G2, . . . , Gn. Moreover, let k ∈ {1, . . . , n} and let f = uv ∈ E(G) be an edge such that
e = ukvk ∈ E(Gk). Then,

nu( f |G) = |V(G/Gk)| · nuk (e|Gk),

nv( f |G) = |V(G/Gk)| · nvk (e|Gk),

n0( f |G) = |V(G/Gk)| · n0(e|Gk).

Proof. By Proposition 7, we know that

Nu( f |G) = {x ∈ V(G) | xk ∈ Nuk (e|Gk)}
= V(G1)× · · · ×V(Gk−1)× Nuk (e|Gk)×V(Gk+1)× · · · ×V(Gn).

Therefore,

nu( f |G) = |Nu( f |G)|
= |V(G1)× · · · ×V(Gk−1)×V(Gk+1)× · · · ×V(Gn)| · |Nuk (e|Gk)|
= |V(G1� · · ·�Gk−1�Gk+1� · · ·�Gn)| · |Nuk (e|Gk)|
= |V(G/Gk)| · nuk (e|Gk),

which completes the first part of the proof. The proofs for nv( f |G) and n0( f |G) are similar.



Mathematics 2023, 11, 956 11 of 15

In the following theorem, we show how to calculate the SMP polynomial of the
Cartesian product.

Theorem 2. Suppose that G = G1�G2� · · ·�Gn is the Cartesian product of connected graphs
G1, G2, . . . , Gn. Then,

SMP(G; x, y) =
n

∑
k=1
|V(G/Gk)| · SMP

(
Gk; x|V(G/Gk)|, y|V(G/Gk)|

)
.

Proof. In this proof, the polynomial SMP(G; x, y) will be shortly denoted as SMP. Using
(3) and Corollary 1, we obtain

SMP = ∑
f=uv∈E(G),

nu( f |G)≥nv( f |G)

xnu( f |G)ynv( f |G)

=
n

∑
k=1

∑
f=uv∈Ek(G),

nu( f |G)≥nv( f |G)

xnu( f |G)ynv( f |G)

=
n

∑
k=1

∑
f=uv∈Ek(G),

nuk (ukvk |Gk)≥nv(ukvk |Gk)

x|V(G/Gk)|·nuk (ukvk |Gk)y|V(G/Gk)|·nvk (ukvk |Gk)

=
n

∑
k=1
|V(G/Gk)| · ∑

e=ukvk∈E(Gk),
nuk (e|Gk)≥nv(e|Gk)

x|V(G/Gk)|·nuk (e|Gk)y|V(G/Gk)|·nvk (e|Gk)

=
n

∑
k=1
|V(G/Gk)| · ∑

e=ukvk∈E(Gk),
nuk (e|Gk)≥nv(e|Gk)

(
x|V(G/Gk)|

)nuk (e|Gk)
(

y|V(G/Gk)|
)nvk (e|Gk)

=
n

∑
k=1
|V(G/Gk)| · SMP

(
Gk; x|V(G/Gk)|, y|V(G/Gk)|

)
,

which completes the proof.

In the rest of the section, we investigate the edge-SMP polynomial. Here, the situation
is more complicated. Firstly, we investigate some subsets of edges in Cartesian products.

Proposition 8. Suppose that G = G1�G2� · · ·�Gn is the Cartesian product of connected graphs
G1, G2, . . . , Gn. Moreover, let k ∈ {1, . . . , n} and let f = uv be an edge of G such that e = ukvk ∈
E(Gk). Then,

Mu( f |G) =
{

ab ∈ E(G) | akbk ∈ Muk (e|Gk)
}
∪
{

ab ∈ E(G) | ak = bk ∈ Nuk (e|Gk)
}

,

Mv( f |G) =
{

ab ∈ E(G) | akbk ∈ Mvk (e|Gk)
}
∪
{

ab ∈ E(G) | ak = bk ∈ Nvk (e|Gk)
}

,

M0( f |G) = {ab ∈ E(G) | akbk ∈ M0(e|Gk)} ∪ {ab ∈ E(G) | ak = bk ∈ N0(e|Gk)}.

Proof. We introduce the following notation:

A =
{

ab ∈ E(G) | akbk ∈ Muk (e|Gk)
}
∪
{

ab ∈ E(G) | ak = bk ∈ Nuk (e|Gk)
}

,

B =
{

ab ∈ E(G) | akbk ∈ Mvk (e|Gk)
}
∪
{

ab ∈ E(G) | ak = bk ∈ Nvk (e|Gk)
}

,

C = {ab ∈ E(G) | akbk ∈ M0(e|Gk)} ∪ {ab ∈ E(G) | ak = bk ∈ N0(e|Gk)}.
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Next, we prove that A ⊆ Mu( f |G). First, let ab ∈ E(G) such that akbk ∈ Muk (e|Gk),
which means dGk (akbk, uk) < dGk (akbk, vk). Obviously,

dG(ab, u) = min{dG(a, u), dG(b, u)} = min

{
n

∑
i=1

dGi (ai, ui),
n

∑
i=1

dGi (bi, ui)

}
. (8)

Similarly,

dG(ab, v) = min{dG(a, v), dG(b, v)} = min

{
n

∑
i=1

dGi (ai, vi),
n

∑
i=1

dGi (bi, vi)

}
. (9)

We know that ai = bi and ui = vi for every i ∈ {1, . . . , n} \ {k}. Therefore, dGi (ai, ui) =
dGi (bi, ui) = dGi (ai, vi) = dGi (bi, vi) for any i ∈ {1, . . . , n} \ {k}. As a consequence,

dG(ab, u) < dG(ab, v)

if and only if

min{dGk (ak, uk), dGk (bk, uk)} < min{dGk (ak, vk), dGk (bk, vk)},

which is equivalent to dGk (akbk, uk) < dGk (akbk, vk). The last statement is true by assump-
tion, so it follows that dG(ab, u) < dG(ab, v) and, therefore, ab ∈ Mu( f |G).

Next, suppose that ab ∈ E(G) such that ak = bk = Nuk (e|Gk). Then, dGk (ak, uk) <
dGk (ak, vk). Moreover, there exists j ∈ {1, . . . , n} \ {k} such that ajbj ∈ E(Gj), and ai = bi
for every i ∈ {1, . . . , n} \ {j}. Since the distances dG(ab, u) and dG(ab, v) can be calculated
as stated in (8) and (9), we observe that

dG(ab, u) < dG(ab, v)

if and only if

min{dGk (ak, uk) + dGj(aj, uj), dGk (bk, uk) + dGj(bj, uj)}
< min{dGk (ak, vk) + dGj(aj, vj), dGk (bk, vk) + dGj(bj, vj)},

which is equivalent to

min{dGk (ak, uk) + dGj(aj, uj), dGk (ak, uk) + dGj(bj, uj)}
< min{dGk (ak, vk) + dGj(aj, uj), dGk (ak, vk) + dGj(bj, uj)}

and the last relation is further equivalent to dGk (ak, uk) < dGk (ak, vk). The last statement is
true by assumption, so it follows that dG(ab, u) < dG(ab, v) and, therefore, ab ∈ Mu( f |G).
With this, we have shown that A ⊆ Mu( f |G).

In a similar way, one can also show that B ⊆ Mv( f |G) and C ⊆ M0( f |G). Since
A ∪ B ∪ C = Mu( f |G) ∪Mv( f |G) ∪M0( f |G) = E(G), it follows that

A = Mu( f |G), B = Mv( f |G), and C = M0( f |G).

Similarly as before, we now consider the cardinalities of the sets from Proposition 8.
Again, the following corollary represents a generalization of a result from [24] to Cartesian
products with more than two factors.
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Corollary 2. Suppose that G = G1�G2� · · ·�Gn is the Cartesian product of connected graphs
G1, G2, . . . , Gn. Moreover, let k ∈ {1, . . . , n} and let f = uv ∈ E(G) be an edge such that
e = ukvk ∈ E(Gk). Then,

mu( f |G) = |V(G/Gk)| ·muk (e|Gk) + |E(G/Gk)| · nuk (e|Gk),

mv( f |G) = |V(G/Gk)| ·mvk (e|Gk) + |E(G/Gk)| · nvk (e|Gk),

m0( f |G) = |V(G/Gk)| ·m0(e|Gk) + |E(G/Gk)| · n0(e|Gk).

Proof. By Proposition 8, we know that

Mu( f |G) =
{

ab ∈ E(G) | akbk ∈ Muk (e|Gk)
}
∪
{

ab ∈ E(G) | ak = bk ∈ Nuk (e|Gk)
}

.

Therefore, we separately consider each of the two sets on the right-hand side of the
above equation. We use the following notation:

M1 =
{

ab ∈ E(G) | akbk ∈ Muk (e|Gk)
}

,

M2 =
{

ab ∈ E(G) | ak = bk ∈ Nuk (e|Gk)
}

.

First, observe that, for an edge ab ∈ M1, the vertex ai = bi can be an arbitrary vertex
of the graph Gi for i ∈ {1, . . . , n} \ {k}. Therefore,

|M1| = |V(G1)× · · · ×V(Gk−1)×V(Gk+1)× · · · ×V(Gn)| · |Muk (e|Gk)|
= |V(G/Gk)| ·muk (e|Gk).

On the other hand, for any edge ab ∈ M2, there exists exactly one j ∈ {1, . . . , n} \ {k}
such that ajbj ∈ E(Gj). Moreover, ak = bk is a vertex from Nuk (e|Gk), and ai = bi is a vertex
of Gi for i ∈ {1, . . . , n} \ {j, k}. Therefore, by using the second part of (7), the cardinality of
the set M2 can be computed as follows:

|M2| = |Nuk (e|Gk)| ·
n

∑
j=1
j 6=k

|E(Gj)| ·
n

∏
i=1

i 6=j,k

|V(Gi)|


= nuk (e|Gk) · |E(G/Gk)|.

Since the sets M1 and M2 are disjoint, we finally obtain

mu( f |G) = |Mu( f |G)| = |M1|+ |M2| = |V(G/Gk)| ·muk (e|Gk) + |E(G/Gk)| · nuk (e|Gk),

which completes the first part of the proof. The proofs for mv( f |G) and m0( f |G) are
analogous.

Let G = G1�G2� · · ·�Gn be the Cartesian product of connected graphs G1, G2, . . . , Gn
and let k ∈ {1, . . . , n}. For any edge e = ukvk ∈ E(Gk), we introduce the following notation:

αuk (e|Gk) = |V(G/Gk)| ·muk (e|Gk) + |E(G/Gk)| · nuk (e|Gk),

αvk (e|Gk) = |V(G/Gk)| ·mvk (e|Gk) + |E(G/Gk)| · nvk (e|Gk).

Moreover, we define the edge-weights wk
1(e) and wk

2(e) for an edge e = ukvk of the
graph Gk as

wk
1(e) = max{αuk (e|Gk), αvk (e|Gk)} and wk

2(e) = min{αuk (e|Gk), αvk (e|Gk)}. (10)

Using the above notation, we can now express the edge-SMP polynomial of the
Cartesian product G by the weighted SMP polynomials of factors G1, G2, . . . , Gn.
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Theorem 3. Suppose that G = G1�G2� · · ·�Gn is the Cartesian product of connected graphs
G1, G2, . . . , Gn. Then,

SMPe(G; x, y) =
n

∑
k=1
|V(G/Gk)| · SMP(wk

1,wk
2)
(Gk; x, y),

where the weights wk
1, wk

2 are defined in (10).

Proof. Using (3), we obtain

SMPe(G; x, y) = ∑
f=uv∈E(G),

mu( f |G)≥mv( f |G)

xmu( f |G)ymv( f |G)

=
n

∑
k=1

∑
f=uv∈Ek(G),

mu( f |G)≥mv( f |G)

xmu( f |G)ymv( f |G).

If k ∈ {1, . . . , n} and f = uv ∈ Ek(G), then, by Corollary 2, we know that mu( f |G) =
αuk (e|Gk) and mv( f |G) = αvk (e|Gk), where e = ukvk ∈ E(Gk). Therefore, by (10) and (2),
we obtain

SMPe(G; x, y) =
n

∑
k=1

∑
f=uv∈Ek(G)

xwk
1(ukvk)ywk

2(ukvk)

=
n

∑
k=1
|V(G/Gk)| · ∑

e=ukvk∈E(Gk)

xwk
1(e)ywk

2(e)

=
n

∑
k=1
|V(G/Gk)| · SMP(wk

1,wk
2)
(Gk; x, y).

Note that, by Theorems 2 and 3, one can compute the (edge-)SMP polynomial of the
Cartesian product G = G1�G2� · · ·�Gn by using its factors. The numbers |V(G/Gk)|
and |E(G/Gk)|, k ∈ {1, . . . , n} that appear in these statements can be instantly calculated
using (7).

5. Conclusions

In the present paper, we defined the SMP polynomial of a graph. This polynomial has
two variables and can be used to calculate three important topological indices: the Szeged
index, the Mostar index, and the vertex-PI index. Similarly, the edge-SMP polynomial
was introduced. Then, some properties of these polynomials were stated for bipartite
graphs, trees, cycles, complete graphs, and edge-transitive graphs. Moreover, bounds
on the degrees of these two polynomials were investigated and several open problems
were proposed. Furthermore, we focused on the SMP polynomials of Cartesian products.
Several auxiliary statements related to some subsets of vertices and edges in Cartesian
products of graphs were firstly deduced. Based on these results, formulas for calculating
SMP polynomials of a Cartesian product of graphs from its factors were finally provided.
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