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Abstract: In this paper, the method of transmutation operators is used to construct an exact solution
of the Goursat problem for a fourth-order hyperbolic equation with a singular Bessel operator. We
emphasise that in many other papers and monographs the fractional Erdélyi-Kober operators are
used as integral operators, but our approach used them as transmutation operators with additional
new properties and important applications. Specifically, it extends its properties and applications
to singular differential equations, especially with Bessel-type operators. Using this operator, the
problem under consideration is reduced to a similar problem without the Bessel operator. The
resulting auxiliary problem is solved by the Riemann method. On this basis, an exact solution of the
original problem is constructed and analyzed.

Keywords: Goursat problem; Bessel operator; transmutation operator; Erdélyi-Kober operator;
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1. Introduction: Formulation of the Problem

The study of more complex higher-order equations with singular coefficients is a
natural next step on the path of theoretical generalizations. The value of the theoretical
results obtained in this way increases substantially in connection with the fact that such
equations or their special cases occur in applications.

We especially note the class of partial differential equations with singularities in
the coefficients, typical representatives of which are equations with Bessel operators of
the form

Bx
η = x−2η−1 d

dx
x2η+1 d

dx
=

d2

dx2 +
2η + 1

x
d

dx
(1)

For equations of elliptic, hyperbolic, and parabolic types with the Bessel operator in
single or several variables, I.A. Kipriyanov [1] introduced the terminology B-elliptic, B-
hyperbolic, and B-parabolic equations, respectively. The importance of equations from these
classes is also determined by their use in applications to problems of generalized axially
symmetric potential theory (GASPT) [2,3], Euler-Poisson-Darboux (EPD) equations [4,5],
Radon transform and tomography [6–8], gas dynamics and acoustics [9], the theory of jets
in hydrodynamics [10], the linearized Maxwell-Einstein equations [11,12], mechanics, the
theory of elasticity and plasticity [13], and many others.

In a certain approximation, we can say that these three classes of differential equations
according to the terminology of I.A. Kipriyanov were once considered in three well-known
monographs: B-elliptic equations in the monograph by I.A. Kipriyanov [1], B-hyperbolic
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equations in the monograph by R. Carroll and R. Showalter [14], and B-parabolic equations
in the monograph by M.I. Matiichuk [15]. Of course, many other problems are covered in
these books.

The entire range of questions for equations with Bessel operators was most fully
studied by the Voronezh mathematician I.A. Kipriyanov and his students. Note also that
the 2023rd year is a centennial jubilee of Professor Ivan Alexandrovich Kipriyanov. More
detailed information about this direction can be found in the monographs of V.V. Katrakhov
and S.M. Sitnik [16], S.M. Sitnik, and E.L. Shishkina [17,18]. These types of equations is
also deeply connected with fractional type operators, via Riemann–Liouville, Gerasimov,
Erdélyi-Kober and other classes of operators, different classical integral transforms, and
integral transforms with special function kernels, cf. [17–22].

The theory of equations with singular coefficients is closely related to the theory of
equations degenerating on the boundary of a domain. By means of a change of variables, one
can reduce a rather wide class of degenerate equations to equations with singular coefficients.

The difficulty to solve problems in the theory of partial differential equations with
singular coefficients, as well as the resulting equations that degenerate at the boundary of
the domain under consideration, has been extremely stimulating and continues to stimu-
late intensive research in this area. This is confirmed by numerous scientific publications
over the past fifty years, noted the monographs of M.S. Salakhitdinov and A.K. Uri-
nov [20], T.D. Dzhuraev and A. Sapuev [23], V.I. Zhegalov, A.N. Mironov, E.A. Utkina [24],
A.M. Nakhushev [25], M.S. Salakhitdinov and M. Mirsaburov [26], V. V. Katrakhov and
S. M. Sitnik [16], S. M. Sitnik and E. L. Shishkina [17,18], M.S. Salakhitdinov and B. Is-
lamov [27], O.A. Marichev, A.A. Kilbas and O.A. Repin [28], A.K. Urinov [29,30], A. K.
Urinov and Sh.T. Karimov [21], and others.

Note that in this paper, we consider only mathematical problems of differential equa-
tions and transmutations, and do not consider computational aspects of related problems
or applications to physics, mechanics, etc.

In this paper in the domain Ω = {(x, y) : 0 < x < l, 0 < y < h}, we consider the
equation

Lc
a,b(u) ≡

∂4u
∂x2∂y2 +

a
x

∂3u
∂x∂y2 +

b
y

∂3u
∂y∂x2 +

ab
xy

∂2u
∂x∂y

+ cu = 0, (2)

where l, h, a, b, c ∈ R, and l, h > 0, 0 < a, b < 1.
Equation (2) for a = b = 0 was studied in [23] and, according to the classification of

this work, it belongs to the hyperbolic type. The straight lines x = const, y = const are
real double characteristics of Equation (2).

In [23], the problems were considered in the characteristic quadrangle, and the coeffi-
cients of the equation were smooth enough to ensure the existence of the Riemann function,
in terms of which, ultimately, the solutions of the problems were written. However, the
problems for Equation (2), whose coefficients have singularities, are almost not studied.
The coefficients of Equation (2) have a singularity on the lines x = 0, y = 0; such equa-
tions are called equations with singular coefficients. In addition, the singularity lines are
simultaneously the characteristics of this equation.

A systematic study of two-dimensional equations of the fourth order was considered
in the works of M.S. Salakhitdinov [31], T.D. Dzhuraev and A. Sopuev [23], V.I. Zhegalov,
A.N. Mironov, E.A. Utkina [24], M.M. Smirnov [32], M.M. Meredov [33], A.K. Urinov [29]
and their students. In the works of T.D. Dzhuraev and A. Sopuev [23], the questions of
complete classification and reduction to the canonical form of a general linear fourth-order
equation with two independent variables were studied. It is known that degenerate and
singular equations of the second order have the peculiarity that the well-posedness of
classical problems does not always hold for them. The formulation of the problem is
significantly affected by lower coefficients. Such questions for high-order equations with
singular coefficients have hardly been studied. In this paper, in domain Ω, we study an
analogue of the Goursat problem for Equation (2).
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Problem G. It is required to find a function u(x, y) ∈ C(Ω̄) satisfying Equation (1) and
boundary conditions

u(0, y) = ϕ1(y), lim
x→0

xaux(x, y) = ϕ2(y), 0 6 y 6 h (3)

u(x, 0) = ψ1(x), lim
y→0

ybuy(x, y) = ψ2(x), 0 6 x 6 l. (4)

where ϕk(y), ψk(x), (k = 1, 2) are given smooth functions, such that ϕ1(0) = ψ1(0),
ϕ2(0) = ψ2(0) = 0. In this paper, in contrast to the cited sources, we use a different
approach to solve the problem. Namely, taking into account the specifics of equations with
singular coefficients, we use the Erdélyi-Kober transmutation operator.

Definition 1 ([16,17,34–36]). Let a pair of operators (A, B) be given. A non-zero operator T is
called a transmutation operator if the relation holds

TA = BT. (5)

In order for (5) to be a rigorous definition, it is necessary to specify spaces or sets of
functions on which the operators A, B, and, consequently, T, act; various transmutation
operators’ issues are also considered in [17,36].

The Erdélyi-Kober operators for a certain choice of parameters are a generalization of
the classical Sonin and Poisson transmutation operators [16,17,21,34–36]. We emphasise
that in many of the above mentioned papers and monographs, the fractional Erdélyi-Kober
operators are used as integral operators, but our approach uses them as transmutation
operators with additional new properties and important applications. To be specific, it
extends its properties and applications to singular differential equations, especially with
Bessel-type operators.

Therefore, we first consider some properties of this operator.

2. Erdélyi—Kober Transmutation Operator

To construct a solution to the problem posed, we apply the multidimensional Erdélyi-
Kober operator. This is for Erdélyi-Kober operators cf. [16–19,21,22] and namely for
multidimensional ones and its generalizations cf. [37–39].

Let us emphasise the role of multidimensional Erdélyi-Kober operators with Bessel
functions as kernels. They provide an instrument to transform more complex multidimen-
sional singular differential equations with a spectral parameter into more simple ones. As a
consequence, in this way we receive connection formulas for solutions to more complex
multidimensional singular differential equations via solutions to more simple equations. As
an example, this property of generalized Erdélyi-Kober operators was successfully applied
to particular types of multidimensional singular differential equations in [37–39].

Therefore, we first consider some properties of this operator. Exactly, let us introduce
the multidimensional generalized Erdélyi-Kober operator

Jλ

(
α

p

)
f (x) = Jλ1,...,λn

(
α1, ... , αn

p1, ... , pn

)
f (x1, x2, . . . , xn) =

n

∏
k=1

2x−2(αk+pk)
k
Γ(αk)


x1∫

0

x2∫
0

...
xn∫

0

n

∏
k=1

 J̄αk−1

(
λk

√
x2

k − t2
k

)
(
x2

k − t2
k
)1−αk

t2pk+1
k

 f (t1, ..., tn)dt1... dtn (6)

its properties and their application to multidimensional equations of hyperbolic and
parabolic types with singular coefficients, where αk > 0, pk > −1/2, k = 1, n, J̄ν(z)
is the Bessel-Clifford function [22], which is expressed in terms of the Bessel functions
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Jν(z) according to the formula J̄ν(z) = Γ(ν + 1)(z/2)−ν Jν(z), Γ(ν) is the gamma function,
parameters λk, k ≥ 1 are all real or purely imaginary.

Note that in this paper, we use the term “Bessel-Clifford function”, which is introduced
by A.A.Kilbas in [22]. Often, another term is used for this function—“normalized” or “small”
Bessel function, cf. [1,16–18].

Integral (6) is a multidimensional analogue of the one-dimensional generalized Erdélyi-
Kober operator with the Bessel function in the kernel [22], ch. 7, §37.2, pp. 737–741. The
integral (6) satisfies the following theorem [21], ch.2–3; [19], ch. 3; [37,38].

Theorem 1. Let αk > 0, pk > −1/2, k = 1, n, f (x) ∈ C2n(Ωn), x2pk+1
k Bxk

pk f (x) are integrable

in a neighborhood of xk = 0 and lim
xk→0

x2pk+1
k fxk (x) = 0, k = 1, n.

Then, the next equality is valid

n

∏
k=1

(Bxk
pk+αk

+ λ2
k)Jλ

(
α

p

)
f (x) = Jλ

(
α

p

)
n

∏
k=1

Bxk
pk f (x),

where Ωn =
n
∏

k=1
(0, ak) is the Cartesian product, ak > 0, k = 1, n is the Bessel operator with

respect to xk, parameters, and λk, k ≥ 1 are all real or purely imaginary.

Note that the theorem is also true for some or all of

λk = 0, k = 1, m, m 6 n.

3. Application of the Erdélyi-Kober Operator to the Solution of the Problem

Theorem 1 allows us to apply operator (6) as a transmutation operator that allows one
to transform equations of high even order with singular coefficients into equations without
singular coefficients. This fact is applicable to the study of problem G for Equation (2).

Due to the linearity of Equation (2), we first consider the following auxiliary problem.
Problem G0. It is required to find a function u1(x, y) ∈ C(Ω̄) satisfying Equation (2)

and boundary conditions

u1(0, y) = ϕ1(y), u1x(0, y) = 0, 0 6 y 6 h, (7)

u1(x, 0) = ψ1(x), u1y(x, 0) = 0, 0 6 x 6 l, (8)

where ϕ1(y), ψ1(x) are given smooth functions, and ϕ1(0) = ψ1(0). Assume that a solution
to problem (2), (7) and (8) exists. This solution is sought in the form

u1(x, y) = J0,0

(
α, β

− 1
2 ,− 1

2

)
U(x, y), (9)

where U(x, y) is an unknown differentiable function, α = a/2, β = b/2.
Substituting (9) into Equation (2) and boundary conditions (7) and (8), and then, using

Theorem 1 for n = 2, λ1 = 0, λ2 = 0, p1 = p2 = −1/2, we obtain the problem of finding a
solution U(x, y) of the equation

Uxxyy + cU = 0, (x, y) ∈ Ω (10)

satisfying the boundary conditions

U(0, y) = Φ1(y), Ux(0, y) = 0, 0 6 y 6 h, (11)

U(x, 0) = Ψ1(x), Uy(x, 0) = 0, 0 6 x 6 l, (12)
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where

Φ1(y) = A0
d

dy

y∫
0

(
y2 − s2

)−α
s2α ϕ1(s)ds, A0 = Γ(α + 1/2)/[

√
πΓ(1− β)], (13)

Ψ1(x) = B0
d

dx

x∫
0

(
x2 − s2

)−α
s2αψ1(s)ds, B0 = Γ(β + 1/2)/[

√
πΓ(1− α)]. (14)

To construct a solution to problem (10)–(12), we apply the Riemann method. The
Riemann function R(x, y; ξ, η) is the solution—the adjoint Equation [23]

L∗(R) = Rηηξξ + cR = 0, (15)

satisfying the conditions

R(x, y; ξ, η)|ξ=x = 0, Rξ(x, y; ξ, η)
∣∣
ξ=x = η − y,

R(x, y; ξ, η)|η=y = 0, Rη(x, y; ξ, η)
∣∣
η=y = ξ − x.

If the Riemann function is known, then the solution of the problem G0 can be repre-
sented as [23]

u(x, y) = Rηξ(x, y; 0, y)ϕ1(y)−
y∫

0

Rξηη(x, y; 0, η)ϕ1(η)dη−
x∫

0

Rη(x, y; ξ, 0)ψ′′1(ξ)dξ. (16)

We are looking for the Riemann function in the form

R(x, y; ξ, η) = pw(σ), (17)

where p = (ξ− x)(η− y), σ = λ(ξ − x)2(η − y)2, λ = −c/16, w(σ) is an unknown function.
Calculating the derivatives of the expression (17) and substituting into the conjugate

Equation (15), we find the equation

σ3w′′′′(σ) + 7σ2w′′′(σ) +
41
4

σw′′(σ) +
9
4

w′(σ)− w(σ) = 0. (18)

Generalized hypergeometric function [40]

0F3(a, b, c; z) =
∞

∑
n=0

zn

(a)n(b)n(c)nn!
,

satisfies the equation

z3w′′′′(z) + (3 + a + b + c)z2w′′′(z) + (1 + a + b + c + ab + ac + bc)zw′′(z)

+ abcw′(z)− w(z) = 0. (19)

Comparing (18) and (19) with respect to the parameters, we obtain the system
of equations 

3 + a + b + c = 7,

1 + a + b + c + ab + ac + bc = 41/4,

abc = 9/4,

Solving this system by Vieta formulas for a cubic equation, we find the solution of
Equation (18) in the form

w(σ) = 0F3(3/2, 3/2, 1; σ)



Mathematics 2023, 11, 951 6 of 9

and substituting this solution into representation (17), we determine the Riemann function
for problem G:

R(x, y; ξ, η) = p0F3(3/2, 3/2, 1; σ). (20)

By virtue of the equalities (3/2)n = 2−2n (2n+1)!
n! and (1)n = n!, function (20) coincides

with the Riemann function from [23], constructed as a series

R(x, y; ξ, η) =
∞

∑
m=0

(−1)mcm(ξ − x)2m+1(η − y)2m+1

[(2m + 1)!]2
.

Calculating the corresponding derivatives of function (20) and substituting them into
equality (16), we obtain the solution of problem (10)–(12) in the form

U(x, y) = Φ1(y) + Ψ1(x)−Ψ1(0)0F3(1/2, 1/2, 1; λx2y2)

+
cx2

2

y∫
0

[(t− y)0F3(3/2, 3/2, 2; σ0)]Φ1(t)dt+

+
cy2

2

x∫
0

[(s− x)0F3(3/2, 3/2, 2; ω0)]Ψ1(s)ds, (21)

where σ0 = λx2(t− y)2, ω0 = λy2(s− x)2, λ = −c/16.
Substituting (21) into (9) and taking into account (13) and (14), we change the order of

integration, and then, after calculating the internal integrals, we obtain

u1(x, y) = ψ1(x) + ϕ1(y)− ϕ1(0)0F3(α + 1/2, β + 1/2, 2; λx2y2 )−

− γ1y2
x∫

0

K1(x, y, s; α, β)ψ1(s)ds−γ2x2
y∫

0

K2(x, y, s; α, β)ϕ1(s)ds, (22)

where γ1 = c22α−2/(1 + 2β), γ2 = c22β−2/(1 + 2α),

K1(x, y, s; α, β) =
s2α(x− s)
(x + s)2α

F1;0;1
1;3;0

[
1/2 + α; −; α;

3/2; 3/2 + β, 1/2 + α, 2; −;
σ1, ω1

]
,

K2(x, y, s; α, β) =
s2β(y− s)
(y + s)2β

F1;0;1
1;3;0

[
1/2 + β; −; β;

3/2; 3/2 + α, 1/2 + β, 2; −;
σ2, ω2

]
,

σ1 = λy2(x− s)2, ω1 = (x− s)2/(x + s)2, σ2 = λx2(y− s)2, ω2 = (y− s)2/(y + s)2, and
0 ≤ ωk ≤ 1, k = 1, 2; Fp;q;k

l;m;n is the hypergeometric function of Kampé de Fériet, which has
the form

Fp;q;k
l;m;n

[ (
ap
)
;

(αl);

(
bq
)
;

(βm);
(ck);
(γn);

x, y
]
=

=
∞

∑
r,s=0

p
∏
j=1

(
aj
)

r+s

q
∏
j=1

(
bj
)

r

k
∏
j=1

(
cj
)

s

l
∏
j=1

(
αj
)

r+s

m
∏
j=1

(
β j
)

r

n
∏
j=1

(
γj
)

s

xr

r!
ys

s!
,

here, (ap) = a1, a2, . . . , ap.
This series converges at

1. p + q < l + m + 1, p + k < l + n + 1, |x| < ∞, |y| < ∞ or
2. p + q = l + m + 1, p + k = l + n + 1 and
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{
|x|1/(p−l) + |y|1/(p−l) < 1, atp > l,
max{|x|, |y|} < 1, atp ≤ l ,

and besides that αj 6= 0,−1,−2, . . . , j = 1, l;

β j 6= 0,−1,−2, . . . , j = 1, m; γj 6= 0,−1,−2, . . . , j = 1, n.
To construct a solution to Equation (20) that satisfies the conditions

u(0, y) = 0, lim
x→0

x2αux(x, y) = ϕ2(y), 0 < y < h,

u(x, 0) = 0, lim
y→0

y2βuy(x, y) = ψ2(x), 0 < x < l,

we use the following, easily proven property of the solution to Equation (20): if u1(x, y; 1−
α, 1− β) is a solution to the equation Lc

1−α,1−β(u1) = 0, satisfying conditions (7) and (8),

then the function u2(x, y; α, β) = x1−2αy1−2βu1(x, y; 1− α, 1− β) for 0 < α, β < 1/2 will be
a solution of the equation Lc

α,β(u2) = 0 satisfying the conditions

u2(0, y) = 0, lim
x→0

x2αu2x(x, y) = (1− 2α)ϕ1(y), 0 < y < h;

u2(x, 0) = 0, lim
y→0

y2βu2y(x, y) = (1− 2β)ψ1(x), 0 < x < l.

Taking into account this property and replacing (1− 2α)ϕ1(y) and (1− 2β)ψ1(x),
respectively, by ϕ2(y) and ψ2(x), from equality (22), we obtain

u2(x, y) =
y1−2β

1− 2β
ψ2(x) +

x1−2α

1− 2α
ϕ2(y)−

−γ̃1y3−2β

x∫
0

K1(x, y, s; α, 1− β)ψ2(s)ds−

− γ̃2x3−2α

y∫
0

K2(x, y, s; 1− α, β)ϕ2(s)ds, (23)

where γ̃1 = c22α−2/(3− 2β)(1− 2β), γ̃2 = c22β−2/(3− 2α)(1− 2α).
By virtue of the principle of the linear superposition, the solution of Problem G can be

represented as u(x, y) = u1(x, y) + u2(x, y).
Note that problem G is equivalent to a Volterra integral equation of the second kind of

the form

u(x, y) + c
x∫

0

y∫
0

K(x, y; s, t)u(s, t)dsdt = F(x, y) (24)

where

K(x, y; s, t) =
satb

(1− a)(1− b)
[x1−a − s1−a][y1−b − t1−b],

F(x, y) =
x1−a

1− a
[ϕ2(y)− ϕ2(0)] +

y1−b

1− b
[ψ2(y)− ψ2(0)] + ψ1(x) + ϕ1(y)− ϕ1(0).

By virtue of the general theory of Volterra integral equations of the second kind [41],
the integral Equation (24) has a unique solution. At the same time, it is fair

Theorem 2. If 0 < a, b < 1 and ϕk(y) ∈ C[0, h]
⋂

C2(0, h), ψk(x) ∈ C[0, l]
⋂

C2(0, l), k = 1, 2,
where ϕ′2(y) and ψ′2(x), respectively, can have order singularities less than b at y → 0 and less
than a at x → 0, then there exists a unique classical solution to Problem G.
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For other values of the parameters a and b, the problem is solved by the method of
analytic continuation of the operator (6) with respect to these parameters for a = 2α and
b = 2β.

This method can also be applied to solving the boundary value problems for a multidi-
mensional equation, a high-order equation of the (2) type, and a nonclassical Sobolev-type
equation with many singular coefficients.

4. Conclusions

Using the Erdélyi-Kober transmutation operator, an exact solution of the problem is
constructed. Despite the development of modern computer technology, the construction
of exact solutions to boundary value problems for partial differential equations is still an
important and urgent task. These solutions allow a deeper understanding of the qualitative
features of the described processes and phenomena, the properties of mathematical models,
and can also be used as test cases for asymptotic, approximate and numerical methods.
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