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Abstract: Feature selection is commonly employed for identifying the top n features that significantly
contribute to the desired prediction, for example, to find the top 50 or 100 genes responsible for lung
or kidney cancer out of 50,000 genes. Thus, it is a huge time- and resource-consuming practice. In
this work, we propose a divide-and-conquer technique with fuzzy backward feature elimination
(FBFE) that helps to find the important features quickly and accurately. To show the robustness
of the proposed method, it is applied to eight different datasets taken from the NCBI database.
We compare the proposed method with seven state-of-the-art feature selection methods and find that
the proposed method can obtain fast and better classification accuracy. The proposed method will
work for qualitative, quantitative, continuous, and discrete datasets. A web service is developed for
researchers and academicians to select top n features.

Keywords: feature selection; divide-and-conquer technique; huge dimension dataset; genomic
dataset; fuzzy technique; fuzzy backward feature elimination

MSC: 15-04

1. Introduction

A feature is an individual measurable property of the process being observed. A ma-
chine learning algorithm predicts the value of the desired target variable using these
features [1]. We are now in the era of big data, where huge amounts of high-dimensional
data have become ubiquitous in various domains, such as social media, healthcare, bioin-
formatics, and online education. The rapid growth of data presents challenges for feature
selection. The “curse of dimensionality” (CoD), a wealth of riches, presents itself in vari-
ous forms [2]. Feature Selection (variable elimination) helps understand the data, reduce
computation requirements, reduce the effect of dimensionality’s curse, and improve the
predictor performance.

Let, ρ = number of observed variables.
Initially, as the dimensionality ρ rises, the space that the samples could occupy expands

rapidly. Figure 1 shows the model performance with respect to number for features. If we
consider the distance between the points as a measure of similarity, then we interpret the
greater distance as a greater dissimilarity. As ρ increases, the pairwise distance between two
points decreases, the correlation among vectors increases, and the likelihood of a specific
region of the space being empty and sparse, with no data, increases.
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Figure 1. Effect of number of features on performance of model.

In other words, as the number of dimensions grows, the amount of data required for
satisfactory results from any machine learning algorithm expands rapidly. The cause of this
is that with more dimensions, the model needs a greater number of data points to represent
all the possible combinations of features in order to be considered valid.

Hughes (1968) found in his study that the effectiveness of a classifier in predicting
outcomes improves as the number of dimensions increases up to a point [3]. Beyond that
point, the performance decreases. This phenomenon of diminishing returns in prediction
accuracy as the number of dimensions grows is commonly referred to as the “curse of
dimensionality” or the “Hughes phenomenon”.

This study shows the requirement of feature selection, especially for a huge dimension
dataset. Existing feature selection methods suffice for small datasets but fail in huge
dimension datasets due to high computational requirements. A feature selection method
removes features by measuring the relevance of each feature with the target class or by
measuring the correlation between features. If two features are highly correlated, then one
of them is removed. Feature selection methods are different from dimension reduction
methods, such as PCA [1,4]. This is because good features can be independent from the
rest of the data [5].

The outcome of a feature selection attempt from a broad dataset depends on several
factors, such as the underlying probability distributions (some issues could be simple to
solve), the number of instances (sample size), the number of features (dimensionality),
the selected method for feature selection (its ability to find optimal feature subsets, its
resistance to overfitting, and the accuracy of evaluating the desired criterion), and the
classifier recommended to the user, as noted in [6].

Kohavil et al. propose the wrappers method for feature subset selection, which is
divided into two major categories: filter and wrapper methods [7]. Filter methods score
features without testing them in prediction algorithms, while in wrapper methods, the
feature selection criteria are as per the predictor’s performance. The embedded method [8]
is another technique that includes a variable method as a part of the training process.

2. Feature Selection Methods
2.1. Filter Methods

Filter methods choose features based on a measure of performance, independent of
the data modeling algorithm used. The algorithm uses those features that are selected from
filter methods. Filter methods can evaluate individual features or entire feature subsets,
ranking them based on performance. These methods can be applied to various problems
in classification, clustering, and regression, according to [9]. These criteria are mutual
information, correlation, f-score, and chi-square.
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2.1.1. Mutual Information

This method evaluates the dependency between two variables to score each of them.
To understand mutual information [10], we must start with an entropy of variables.

Let X = random variable with discrete values. Then, the entropy of X, H(X) can be
defined as

H(X) = −∑ p(x) log p(x), xεX (1)

where p(x) is the probability density function of x.
Conditional entropy refers to the uncertainty reduction of a variable when another

is known. Assuming that variable Y is given, the conditional entropy H(X|Y) of X with
respect to Y is

H(X|Y) = −∑ ∑ p(x, y) log p(x|y), xεX, yεY (2)

Equation (2) indicates that observing the variable X reduces the uncertainty in Y. The
decrease in uncertainty is expressed as

I(Y, X) = H(Y)− H(Y|X) (3)

This gives the mutual information between X and Y. Mutual information between X
and Y will be zero if they are independent; greater than zero, they are dependent.

2.1.2. Correlation

Correlation is a statistical measure expressed as a number that characterizes the
magnitude and direction of the relationship between two or more variables. The most
commonly used measure of dependence between two variables is the Pearson correlation
coefficient [11], which can be defined as

ρ(X,Y) = corr(X, Y) =
cov(X, Y)

σXσY
=

E[(X− µX)(Y− µY)]

σXσY
, i f σXσY > 0 (4)

The above equation calculates the correlation between X and Y. The cov(X, Y) calcu-
lates the covariance. The correlation ranking detects the correlation between features and
the target variable.

2.1.3. Chi-Squared

A chi-squared test (symbolically represented as χ2) is a data analysis based on obser-
vations of a random set of variables. The chi-squared method evaluates the association of
two categorical variables. The importance of a feature increases if its chi score is high [12].
Chi-squared statistics can be defined as follows:

χ2 =
m

∑
i=1

k

∑
j=1

(
Aij − Eij

Eij

)
(5)

where, m is the number of intervals, k is the number of classes, Aij is the number of samples
in the ith interval of the jth class, Ri is the number of samples in the ith interval, Cj is the
number of samples in the jth class, N is the total number of samples, and is the expected
frequency of Aij(Eij = Ri ∗ Cj/N).

2.2. Wrapper Method

Wrapper methods employ a specific learning algorithm to assess the accuracy per-
formance of a potential feature subset, leading to improved solutions [13]. In wrapper
methods, a model is trained using a subset of features. Based on the performance of the
model on these features, features are either added or removed from the subset. Some
popular wrapper methods include forward selection, backward elimination, exhaustive
feature selection, recursive feature elimination, and recursive feature elimination with
cross-validation. Forward selection methods start with zero features and add up features
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according to relevance. After this, the final set of selected features is returned. Elimination
methods start with the set of all features and eliminate features in every iteration until the
desired number of features is obtained.

However, as this method requires training of the model on every iteration, it has
a high computational cost [14]. As the number of features grows, the space of feature
subsets grows exponentially. This becomes critical when tens of thousands of features
are considered, for example, in a genomics dataset. As a result, the wrapper approach is
largely avoided.

2.3. Embedded Method

Embedded methods are a combination of filter and wrapper methods that are iterative
in nature. They differ from other feature selection methods, as they involve the incorpo-
ration of feature selection as a part of the training process [8]. During each iteration of
the model training process, embedded methods carefully extract features that contribute
the most to the training. Unlike wrapper methods, the link between feature selection
and classification algorithms is stronger in embedded methods, as they use classification
algorithms that contain their own built-in ability to select features [15].

3. Related Work

Filter methods in feature selection can be divided into two categories: feature weight-
ing and subset search algorithms. Feature weighting algorithms determine which features
are most important by assigning scores to individual features and ranking them based on
these scores. On the other hand, subset search algorithms evaluate the goodness of entire
feature subsets and choose the best one according to a certain evaluation measure [16].

A study merged two feature selection/extraction algorithms, independent component
analysis (ICA) and fuzzy backward feature elimination (FBFE), and applied them to five
DNA microarray datasets [17].

In a study by Yasmin et al., a graph-based feature selection approach was presented for
language identification using rough-set boundary regions [18]. A new system was proposed
that leverages the rough set theory to enhance the accuracy of language identification by
using roughness from the theory to construct a weighted graph.

Reimann et al. tackle real-world-sized vehicle routing problems through their re-
search [19]. They evaluate both established benchmark instances and new, larger-scale
vehicle routing problem instances. The authors show that their approach not only improves
efficiency, but also increases the algorithm’s effectiveness, leading to a highly effective tool
for resolving real-world-sized vehicle routing problems.

Song et al. introduce a fast clustering-based feature subset selection algorithm that
is designed for high-dimensional data [20]. The FAST algorithm consists of two phases.
In the first phase, graph-based methods are utilized to classify features into clusters. In
the next stage, the most significant features that have a strong association with the target
classes are chosen from each cluster to form a subset of features.

Zhao et al. developed a recursive divide-and-conquer approach for sparse principal
component analysis [21]. The approach divides the complex problem of sparse PCA into
simpler sub-problems with known solutions and then solves each sub-problem recursively,
resulting in a highly efficient algorithm for sparse PCA.

In the field of improving classification accuracy, multiple techniques have been pro-
posed that aim to assign a shared discriminative feature set to the local behavior of data in
different parts of the feature space [22,23]. One such method is localized feature selection
(LFS), introduced by Armanfard et al. in which a subset of features is selected to fit a
specific group of samples [23].

The class label of a new sample is assigned based on its similarity to the representative
sample of each region in the feature space. The similarity is calculated for the sample’s arbi-
trary query. Some feature selection methods rank features by using aggregated sample data,
such as in the case of the approaches introduced by Tibshirani et al. and Chen et al. [24,25].
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Some of the feature selection approaches that would be used for comparison with the
proposed feature selection methods are discussed below:

3.1. Minimum Redundancy Maximal Relevance Criteria (mRMR)

In mRMR, the maximum dependency condition (mutual information) is transformed
into an equivalent form for incremental feature selection at the first order. This is followed
by the application of a two-stage feature selection algorithm which merges mRMR with
feature selection techniques, such as the wrapper method, leading to a cost-effective feature
selection process [26].

3.2. Least Angle Regression (LARS)

In “least angle regression (LARS)”, three key properties are established [27]. The LARS
algorithm is a less aggressive version of traditional forward selection methods and can be
modified in three ways:

1. A slight adjustment to LARS implements LASSO and calculates all possible LASSO
estimates for a given problem.

2. Another variation of LARS efficiently executes forward stagewise linear regression.
3. A rough estimate of the degrees of freedom of a LARS estimate is available, allowing

for a calculated prediction error estimate based on Cp. This enables a deliberate choice
among the possible LARS estimates.

3.3. Hilbert–Schmidt Independence Criterion LASSO (HSIC-LASSO)

In HISC-LASSO, a kernelized LASSO is utilized to identify nonlinear relationships
between inputs and outputs [28]. By selecting appropriate kernel functions, features that
have a strong statistical relationship with the target can be identified using the Hilbert–
Schmidt independence criterion, a kernel-based measure of independence. These selected
features are not redundant, and the globally optimal solution can be efficiently calculated,
making this method suitable for high-dimensional problems.

3.4. Conditional Covariance Minimization (CCM)

The CCM method utilizes kernel-based independence measures to identify a subset
of covariates that possess the maximum predictiveness of the response [29]. It achieves
feature selection through an optimization problem that involves the trace of the conditional
covariance operator.

3.5. Binary Coyote Optimization Algorithm (BCOA)

The binary constrained optimization algorithm (BCOA) [29] is an extension of the con-
strained optimization algorithm (COA) [30]. It performs feature selection by evaluating the
performance of a binary classification algorithm. This is achieved by using the hyperbolic
transfer function as a wrapper model to determine the optimal features.

4. Proposed Method

The proposed feature selection method employs the divide-and-conquer technique.
This approach is recognized for its recursive execution of the same algorithm at lower levels,
and eventually concludes after a finite period of time, as detailed in studies by Rosler [31]
and Smith [32].

The divide-and-conquer method has the advantage of being able to tackle large
problems efficiently by breaking them down into smaller sub-problems that can be solved
individually [19]. This approach enables us to apply feature selection methods on large
datasets, even if they are not capable of handling a huge number of features. The process
involves dividing the features into smaller sets and then applying the selection methods to
these subsets, leading to efficient resolution of the problem.

The aim is to select the top n features from a huge set of features (F). We achieve
this by first dividing F into various subsets and finding the top features of these subsets
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using a feature selection method (such as the filter method). These subsets are then ranked
according to their importance, and a new set of features is selected from this sorted set
of features. The new set of top-selected features is further divided into subsets, and the
process is repeated until we find the top n features of F. Now the problem we face is
that any feature selection method can only select a certain number of features in desired
constant time due to its computational efficiency. This limits the usability of that particular
feature selection method. However, we can overcome this problem by using the divide-
and-conquer approach.

To obtain the set of subsets of features shown in Figure 2, we first decide the size of
this set of subsets of features. All the subsets will be of equal size because some of the
features will be left out; these features will initially not be included in these subsets but
will be evaluated later in the next iteration. L represents this set of features. We remove
L from G and divide the remaining features into smaller subsets. A total of X subsets is
formed. Each of these subsets is denoted by Gi, where i ranges from 0 to X.

Figure 2. Visual representation of dividing G into subsets.

Now we will apply a filter method for feature selection in these X subsets and score
each of the features in these subsets [33]. The filter method used in this paper is based on
mutual information. Information gain, also known as mutual information, evaluates the
impact of a feature on the accuracy of predicting the target. The concept assumes that if
two random variables are independent, the information gain would be zero.

The selection of fuzzy functions is based upon a fuzzy entropy measurement. Since
fuzzy entropy may better differentiate model distribution, it is used to evaluate the separa-
bility of each characteristic. The membership function used here is the Gaussian function.
The Gaussian function is also known as the normal distribution function; it is often used
in probability and statistics. The Gaussian function is used to represent fuzzy sets where
the degree of membership for a given value is defined by the curve’s height at that value.
The mean parameter (µ) determines the center of the curve, and the standard deviation
parameter (σ) determines the curve’s width. The area under the Gaussian curve equals 1,
meaning that the membership function is normalized.

Intuitively, the lower the fuzzy entropy of a characteristic, the higher the capacity for
discernment of the characteristic. The Shannon probabilistic entropy may be defined as [34]

H1(A) = −
n

∑
j=1

(µA(xj)logµA(xj) + (1− µA(xj))log(1−muA(xj))) (6)

where µA(xj) are the fuzzy values. This fuzzy entropy measurement is considered a
measurement of fuzziness and assesses the overall deviations from the standard series type,
i.e., any crisp set A0 lead to h (A0) = 0. Note that the fuzzy set A with µA(xj) = 0.5 acts as
the maximum element in the defined order by H. Newer fuzzy entropy measures [35] may
improve the performance.

Apply a filter method for every Gi and arrange the features in descending order of
importance in that subset. The first feature of each subset will be the most important feature
of that subset. Using this, we will arrange every subset Gi according to its importance,
i.e., arrange the subsets Gi in descending order of importance of their first feature. All the
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features are now sorted in each subset Gi, and all the subsets Gi are also sorted with respect
to each other.

Let,
U = number of features; efficiently selected by feature selection method
from a group of features.

U will be the number of features in each subset, any feature selection
method would have to select a maximum of U features from each subset.
To divide the features into equal subsets,

Let,
G = some set of features.
Initially, we will take the original set of features,
G = F.

Let,
X = number of subsets,
L = set of features left after the division of G into equal subsets,
Gi = subset of G, i = 1, 2, 3, . . . , X;

Then,
sizeof(G) = X × U + sizeof(L)
sizeof() represents the size of a set in single dimension.

Given the values of G and U, we can find the value of X and L by,
X = b sizeo f (G)

U c,
sizeof(L) = sizeof(G) - X × U

The resulting matrix will have the most important features in the upper left corner,
and the least important ones in the bottom right corner (according to the filter method’s
score). We will split this matrix into two parts according to n (number of features required)
and select the features in the upper part of the matrix to form a new set of features. G′ will
now become the newly obtained set of features, and the process will be repeated until the
top n features are selected.

The matrix is divided into two parts, i.e., Gi and Gi−1. Each jth feature in Gi has more
importance than (j− 1)th. Similarly, for the feature in Gi−1 (j = 1, 2, 3, . . . , we do not know
whether if the least important feature of Gi is more important than the most important
feature of Gi−1 or not. This is because the features of a subset are scored with respect to
each other (i.e., scoring of features is done within the subset) and not with the features
of another subset. Therefore the features that could potentially be the top n features are
as follows.

top n features of G1,
or top n-1 features of G1 + top feature of G2,
or top n-2 features of G1 + top 2 features of G2,
or top n-2 features of G1 + top feature of G2 + top feature of G3,
or top n-3 features of G1 + top 3 features of G2,
or top n-3 features of G1 + top 2 features of G2 + top feature of G3,
.
.
.
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Keeping this in mind, the new subset of features(G) will be selected as,
G’ = {}, initially it will be an empty set,
For every subset of features Gi, i = 1, 2, . . . , X

Let,
y = max(0, n− i + 1),
G′ = G′ + top y feature of Gi

The previous set of features G will be updated as,

G = G′ + L

This process is repeated until the size of G is smaller than U. Now we apply the filter
method to this final set of features to obtain the top n features of the original set of features,
as the number of features to select (n) is smaller than U. The final number of features to be
selected (i.e., n) should be smaller than U in order for the method to work.

The proposed feature selection method is shown in Figure 3. It was applied to each
dataset, with 20, 30, 40, 50, and 60 features selected in each run. The selected features were
then used to fit and train the modes, which included hyperparameter tuning. The time
utilized by the proposed feature selection method was also recorded. The results were then
compared to other feature selection methods.

Figure 3. Flowchart of the process.

The pseudocode of the proposed approach is explained in Algorithm 1.
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Algorithm 1 Pseudocode of the proposed approach.

Require:
- import required libraries
- set upper limit of algorithm as 500
- set number of features to extract

Function-1: Data(InputFile, numberOfFeatures)
- define n as numberOfFeatures
- define dataframe by reading input csv file
- apply data pre-processing and split the data into train and test set

Function-2: FeatureDivider(features, upper_limit)
#This function will divide the given set of features into smaller set of features
- Calculate the number of features that will be in each smaller set of features and divide
the bigger set of features accordingly
- Return the set of features and the features left out of the perfect sets

Function-3: Feature_selector(featureSets, k, mod)
#This function will select top k features from each subset and sort them
#define the feature selection method as SelectKBest
for i in every feature subset

- define curr_df as a feature subset
- sort the features in this subset

- sort the subsets with themselves by compare in the best features of each subset
for i in range(number of subsets)

for j in range(number of subsets)
- sort the subsets in ascending order according to their top feature

- return the sorted subset of features as sorted_top_k

Function-4: upper_matrix(sorted_top_k,left,left_features)
#This function will select features from upper matrix and add left out features to int
- Take out the features from upper matrix of sorted_top_k and append them into fi-
nal_features
- Append the left out features to final features
- return final_features

Main Function: main_fun(features,upper_limit,mod,k)
#This function will remove undesired features in each iteration
while number of features left > upper_limit

- left_features, feature_sets = feature_divider(features,upper_limit)
- sorted_top_k = feature_selector(feature_sets,k,mod)
- final_features = upper_matrix(sorted_top_k,left_features)
- features = final_features

- run one final iteration which will select out desired number of features
- selector = SelectKBest(mod,k=k)
- selector_fit = selector.fit(x_train[features],y_train)
- top_n_features = selector_fit.get_feature_names_out()
- write these features into a text file

Call the Main Function:
# call the data function to execute the program
- data(InputFile,20)

5. Experimental Results

The proposed method will be evaluated against seven leading feature selection tech-
niques: mRMR [26], LARS [27], HSIC-LASSO [28], Fast-OSFS and Scalable [36], group-
SAOLA [37], CCM [29], and BCOA [38]. The implementation of the proposed method has
been made available in the form of code [39].
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5.1. Dataset Used

Datasets were selected from the NCBI database [40]. NCBI is a provider of online
biomedical and genomic information resources. The data found in the database is in soft
file format and was transformed into CSV using an R program [41,42]. The program also
cleaned the data, resulting in a reduction of features. The standardized data was then
transformed using a standard scaler to enhance classifier performance.

Table 1 describe the dataset used in the experiment. A total of eight datasets were
used for the experiment. The target features of these datasets were divided into two, three,
and four classes, with approximately 192 samples in each dataset.

Table 1. Description of the dataset used for the experiment.

Datasets Samples Original Features Cleaned Features Labels

GDS-1615 127 22,200 13600 Three

GDS-2546 167 12,600 9500 Four

GDS-968 171 12,600 9100 Four

GDS-2545 171 12,600 9300 Four

GDS-3929 183 24,500 19,300 Two

GDS-1962 180 54,600 29,100 Four

GDS-531 173 12,600 9300 Two

GDS-2547 164 12,600 9300 Four

5.2. Classifier Used

The prediction models used are support vector machine (SVM) and random forest [43]. SVM
is a classification algorithm that identifies the most influential cases, called support vectors, to
form a decision boundary or hyperplane. Random forest, on the other hand, operates in four
stages. It selects random samples from the dataset, builds a decision tree for each sample, obtains a
prediction from each tree, and chooses the prediction with the most votes through a voting process.

The accuracy of the SVM [44] and random forest classifiers [45] can be improved by
tuning their parameters. The experiment utilized grid search cross-validation to optimize
the parameters of both classifiers. This approach trains the model using every combination
of the specified parameters to find the optimal set, which results in increased accuracy.
The parameters of grid search CV for RF used in the experiment were:

’n estimators’: np.arange(50,200,30)
’max features’: np.arange(0.1, 1, 0.1)
’max depth’: [3, 5, 7, 9, 50, 100]
’max samples’: [0.3, 0.5, 0.8, 1]
where,

• n_estimators: The quantity of trees in the forest.
• max_features: The number of features considered to find the optimal split.
• max_depth: The highest level of the tree.
• max_samples: The number of samples taken from X to train each base estimator.
• np.arange: Produces evenly spaced values within a specified range.

The parameters of grid search CV for SVM used in the experiment were:

’c’ :[0.01, 1, 5, 10, 100]
’kernel’:(’linear’, ’poly’, ’rbf’, ’sigmoid’)
’gamma’ :(’scale’, ’auto’)
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where,

• c: A regularization constant.
• kernel: Determines the type of kernel used in the algorithm.
• gamma: The kernel coefficient for ‘rbf’, ‘poly’, and ‘sigmoid’.

5.3. Result and Discussion

Table 2 shows the quantity of selected features, the accuracy obtained, and the duration
in seconds of each run of the proposed method for each dataset.

Table 2. Comparativeperformance of accuracy using random forest and support vector machine.

Datasets Features Selected RF SVM Time Taken (sec)

GDS1615

20 86.31 83.15 41.29

30 88.42 86.31 41.2

40 86.31 82.1 43.25

50 87.36 88.42 43.87

60 86.31 88.42 44.97

GDS968

20 76.52 77.41 35.9

30 74.89 75.84 36.43

40 73.35 74.21 37.26

50 76.55 78.8 38.4

60 78.06 81.26 38.82

GDS531

20 84.49 78.27 29.44

30 85.29 79.84 22.32

40 86.86 86.06 22.52

50 86.09 83.75 22.9

60 86.83 83.75 23.75

GDS2545

20 72.67 68.76 37.98

30 78.09 71.04 38.49

40 75.01 73.29 38.9

50 70.15 69.53 39.84

60 75.01 71.81 40.82

GDS1962

20 79.25 72.59 129.13

30 78.51 73.33 116.72

40 80 77.77 129.6

50 79.25 76.29 130.06

60 79.25 76.29 130.82

GDS3929

20 74.44 69.33 46.38

30 72.93 69.41 45.37

40 76.66 67.88 45.91

50 74.36 67.91 46.37

60 75.26 67.88 48.54

GDS2546

20 95.2 84 37.87

30 95.2 85.59 38.01

40 96 80.8 38.66

50 95.2 82.4 36.88

60 95.2 80 38.39
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Table 2. Cont.

Datasets Features Selected RF SVM Time Taken (sec)

GDS2547

20 69.23 67.59 37.77

30 70.03 68.39 38.2

40 70.06 67.56 39.1

50 70.83 68.39 38.07

60 70.86 65.93 38.79

Table 3 presents the average number of selected features and average classification
accuracy obtained over 10 separate runs using SVM and RF on the described datasets. The
accuracy of the proposed method is based on the average of five runs, with the number
of selected features set to 20, 30, 40, 50, and 60, respectively, and the parameter U fixed at
500 in each run.

Fuzzy backward feature elimination helps to identify the most relevant features in
a dataset. By eliminating features that are less important or irrelevant, the algorithm can
improve the performance of the model and make it more interpretable. Additionally, it can
also help to identify potential sources of noise or bias in the dataset, which can improve the
overall accuracy and generalizability of the model.

The proposed features selection method achieved better accuracy than the existing
methods in the majority of the cases in a considerably smaller amount of time as compared
to the existing methods. It also had considerably low computation requirements, which is
beneficial, as this method can be used by anyone on low-performance machines, such as
personal computers. This gain in efficiency might not be very observable in small datasets,
but it drastically reduces the time required in feature selection in huge dimension datasets.

Figure 4 compares different feature selection techniques using a support vector ma-
chine and random forest on different datasets. The techniques compared include traditional
methods, such as mutual information and correlation-based feature selection, as well as
more recent methods, such as recursive feature elimination and LASSO. The results indicate
that the proposed feature selection method surpasses all other techniques in terms of accu-
racy and computational efficiency. This is likely because the proposed method considers
the interactions between features, whereas traditional methods focus solely on individual
feature importance. The proposed method’s ability to select the most relevant features for
the task at hand results in a more robust and accurate model.

Figure 4. Comparison of different feature selection techniques using support vector machine and
random forest on different datasets.

The empty spaces in Table 3 mean that those specific feature selection methods do
not run on the datasets. The accuracy achieved by the proposed method is better than
other methods in most cases for SVM and random forest classifiers. The number of features
selected was higher than in other methods. As the number of features selected was increased,
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the accuracy was increased in some cases but did not vary much, which shows that the
method is rational.

This method does not require high computational power and can run on most ma-
chines. This was possible because of the divide-and-conquer approach, which reduced the
complexity of the problem. The time taken by the proposed method was significantly less,
keeping the required time under 1 m for five datasets, 30 s for one dataset, and about 2 m
for one dataset.

Table 3. Comparative performance of different feature selection techniques over five runs for each
method. Format: accuracy (number of features).

Classifier Datasets mRMR LARS HSIC Fast Group CCM BCOA Proposed
LASSO OSFS SAOLA CCM BCOA Work

SVM

GDS1615 87.37(40) 91.67(26) 91.35(18) 84.31(17) 83.13(12) 80.82(29) 84.9(33) 88.42(50)

GDS968 80.87(39) 83.73(38) - 72.41(19) 70.53(14) 78.82(34) 76.19(32) 81.26(60)

GDS531 69.78(30) 79.96(27) 67.93(4) 77.43(26) 77.7(11) 80.82(30) 74.17(32) 86.06(40)

GDS2545 75.9(34) 79.02(33) 76.4(33) 74.95(18) 75.55(12) 70.82(30) 75.4(29) 73.29(40)

GDS1962 65.12(39) 76.56(32) 76.81(31) 65.15(24) 66.59(10) 66.82(40) 66.89(35) 77.77(40)

GDS3929 73.57(41) 83.78(41) - 83.11(40) 76.97(21) 75.82(39) 72.12(41) 69.41(30)

GDS2546 74.13(33) 83.51(32) 77.69(27) 81.25(26) 80.88(17) 73.82(35) 72.98(32) 85.59(30)

GDS2547 67.31(39) 73.88(32) 71.16(12) 73.13(23) 76.85(24) 66.82(28) 67.35(26) 68.39(30)

RF

GDS1615 81.96(32) 88.24(20) 92.88(22) 82.34(15) 82.26(13) 79.55(31) 81.08(30) 88.42(30)

GDS968 79.44(44) 79.77(42) - 72.84(19) 71.28(18) 77.53(41) 76.42(40) 78.06(60)

GDS531 63.69(23) 71.44(20) 67.82(4) 75.48(14) 74.67(16) 77.36(23) 73.92(21) 86.86(40)

GDS2545 79.31(31) 75.81(33) 80.64(33) 74.16(14) 76.05(12) 74.82(34) 75.63(33) 78.09(30)

GDS1962 72.37(29) 72.41(30) 78.45(42) 69.88(21) 63.28(13) 69.17(32) 67.95(30) 80(40)

GDS3929 71.94(29) 73.44(28) - 70.49(28) 71.56(15) 67.5(28) 65.13(24) 76.66(40)

GDS2546 70.53(36) 75.86(34) 83.09(45) 77.04(25) 78.46(18) 72.9(36) 75.28(31) 96(40)

GDS2547 68.44(22) 71.68(24) 81.67(32) 75.85(30) 77.1(20) 69.7(25) 71.28(24) 70.86(60)

6. Application of the Proposed Work

The proposed method, apart from genomic datasets, can be used in various areas,
such as in healthcare datasets, where the number of features for a given individual can
be massive (i.e., blood pressure, blood group, resting heart rate, height, weight, immune
system status, surgery history, nutrition, and existing conditions), in financial datasets,
where the number of features for a given stock can be quite large, and in ecological datasets.

Contour shape analysis is a demonstration of data analysis in infinite dimensions,
specifically, analysis on the projective spaces of a Hilbert space. This method involves using
high-dimensional approximations and operates within the framework of a Hilbert manifold.

The proposed method uses the divide-and-conquer technique with fuzzy backward
feature elimination (FBFE) that helps to find the important features quickly and accurately.
To show the robustness of the proposed method, it is applied to eight different datasets
taken from the NCBI database. The only requirement is that the selection method scores
each feature for the divide-and-conquer approach to work. This opens up a vast area of
research where few feature selection methods can be used over this method.

7. Conclusions

This paper presents a feature selection method to select the top n important features
from a huge dimensional dataset. The novelty of our method is that it can run on a huge
set of features in less time and use less computational power. It uses a divide-and-conquer
approach to select the top n important features from the datasets. The proposed method
performed well compared to other state-of-the-art feature selection methods on the datasets.
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This method can be made more accurate by using other feature selection methods, such as
wrapper and exhaustive feature selection methods, instead of filter methods.

In this paper, the focus was only on genomics datasets, as these are widely accepted,
and only a few dimension reduction algorithms work well on these datasets. In future
work, we aim to revise our feature selection method and use wrapper methods with this
proposed method.
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