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Abstract: This article presents a systematic approach to formulate and experimentally validate a 

novel Complex Fractional Order (CFO) Linear Quadratic Integral Regulator (LQIR) design to en-

hance the robustness of inverted-pendulum-type robotic mechanisms against bounded exogenous 

disturbances. The CFO controllers, an enhanced variant of the conventional fractional-order con-

trollers, are realised by assigning pre-calibrated complex numbers to the order of the integral and 

differential operators in the control law. This arrangement significantly improves the structural flex-

ibility of the control law, and hence, subsequently strengthens its robustness against the parametric 

uncertainties and nonlinear disturbances encountered by the aforementioned under-actuated sys-

tem. The proposed control procedure uses the ubiquitous LQIR as the baseline controller that is 

augmented with CFO differential and integral operators. The fractional complex orders in LQIR are 

calibrated offline by minimising an objective function that aims at attenuating the position-regula-

tion error while economising the control activity. The effectiveness of the CFO-LQIR is bench-

marked against its integer and fractional-order counterparts. The ability of each controller to miti-

gate the disturbances in inverted-pendulum-type robotic systems is rigorously tested by conducting 

real-time experiments on Quanser single-link rotary pendulum system. The experimental outcomes 

validate the superior disturbance rejection capability of the CFO-LQIR by yielding rapid transits 

and strong damping against disturbances while preserving the control input economy and closed-

loop stability of the system. 

Keywords: LQIR; fractional-order control; complex fractional orders; differentiation operator;  

integration operator; Quanser single-link rotary pendulum 
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1. Introduction 

Inverted-pendulum-type robots are widely favoured as a benchmark platform to ex-

amine and verify the advanced control methods designed to regulate the behaviour of 

under-actuated nonlinear systems [1]. The principles of inverted pendulum stabilisation 

are extensively used in the development of robust balancing control systems for legged 

humanoid robots, two-wheeled transporters, drones, aerial robots, submarine vessels, sat-

ellites, missiles, rockets, etc. [2]. Robot designs based on the inverted-pendulum require 

fewer actuators for motion control, which results in better control-input efficiency, higher 

dexterity, and a lesser propensity to break down [3].  

Balance control and disturbance rejection are two important requirements for these 

systems in real-time applications, and methodically addressing them is not trivial [4]. In 
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every application of Inverted Pendulum (IP) systems, a well-postulated balancing con-

troller is a prerequisite that enables a robot to stabilise its posture in a structured environ-

ment [5]. Formulating an agile controller for a complex dynamical system is a difficult 

task indeed [6]. With fewer actuators than the degrees of freedom to be regulated, these 

systems represent an under-actuated behaviour [7]. Apart from their under-actuated con-

figuration, these systems pose open-loop kinematic instability, highly nonlinear dynam-

ics, and chaotic behaviour [8]. Furthermore, the system’s performance is prone to being 

affected by random disturbances imparted by environmental indeterminacies [9]. Due to 

the aforementioned nonlinear characteristics, controlling such systems becomes much 

harder under the influence of exogenous disturbances, transients, parametric uncertain-

ties, and varying loads [10]. Therefore, there is a dire need for formulating robust and 

stable closed-loop controllers that yield fast response speeds and strong disturbance com-

pensation behaviour [11]. 

Proportional–Integral–Derivative controllers are reasonably simple to construct, and 

they offer a reliable control yield for IP systems [12]. However, their linear configuration 

lacks the necessary degrees of freedom to effectively compensate for nonlinear disturb-

ances [13]. Moreover, the fixed gains of these pre-designed controllers lack the flexibility 

to address slight variations in the operating conditions or parametric uncertainties [14]. 

Sliding mode controllers are conventionally used to deliver robust control effort to bal-

ance IP systems [15]. They generate highly discontinuous control activity and impose 

large input requirements that induce chattering in the response [16]. Fuzzy controllers 

yield agile balance control decisions for IP-type robot systems due to their flexible design 

[17]. However, synthesising the aforementioned intelligent controllers requires a well-cal-

ibrated rule base and large training data sets that increase the computational expense [18]. 

The Linear–Quadratic Regulator (LQR) is considered the most dominant model-based lin-

ear controller for the proposed IP-type robotic systems [19]. However, its yield gets se-

verely degraded under the influence of unprecedented model variations, identification 

errors, and random noise, which generally lead to the complete collapse of the IP system 

[20]. Hence, the utilisation of the ubiquitous LQR is considered ill suited for controlling 

nonlinear IP-type under-actuated systems under disturbances [21]. 

The limited degrees of freedom of the PID controller, the fragile robustness of the 

LQR, the discontinuous control activity of SMC, and the computational complexity of in-

telligent controllers to regulate IP systems can be addressed by employing fractional-or-

der controllers [22]. Fractional calculus has been extensively used in the scientific litera-

ture to accurately model and control complex and nonlinear dynamical systems [23]. Frac-

tional-Order (FO) control, a well-known application area of fractional calculus, introduces 

control laws that involve fractional-ordered integration and differentiation operators [24]. 

The new parameters introduced in the form of the fractional orders of the aforementioned 

operators increase the controller’s design flexibility, which allows the control law to effi-

ciently compensate for exogenous disturbances [25]. The fractional order of the mentioned 

operators can be selected as real, complex, or variable, depending on the system’s require-

ment [26]. Fractional-order controllers have also been applied to regulate the behaviour 

of IP-type nonlinear systems [27]. 

The extension of conventional FO controllers to formulate Complex Fractional-Order 

(CFO) controllers has recently gained a lot of attraction [28]. These controllers are de-

signed such that the real-numbered fractional orders of differentiation/integration opera-

tors of the control law are replaced with complex orders of the form 𝑧 = 𝑐 + 𝑗𝑑, where 𝑧 

is a complex number, and 𝑐 and 𝑑 represent the coefficients of the real and imaginary 

parts, respectively [29]. The shortcomings associated with the aforementioned controllers 

can be addressed by using fraction-order controllers. The augmentation of the differenti-

ation/integration operators with a well-calibrated imaginary order undertakes to further 

improve the design flexibility of the control law, which significantly enhances the control-

ler’s disturbance rejection capability and robustness against parametric uncertainties [30]. 

The complex orders further increase the controller’s degrees of freedom, thus allowing it 
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to better address the exogenous perturbations while preserving the control efficiency. The 

utilisation of CFO controllers has recently gained a lot of attraction in various modern 

applications [30,31]. Scientific studies justify the usage of CFO controllers to deliver rapid 

transits with relatively stronger damping against disturbances for real-world engineering 

systems [32]. Thus, as compared to the aforementioned conventional control schemes, the 

CFO procedure offers favourable control behaviour across a broad range of operating con-

ditions. 

This article mainly contributes to systematically designing and experimentally vali-

dating an innovative CFO state feedback controller to improve the disturbance rejection 

capability and response speed of the nonlinear and under-actuated inverted-pendulum-

type robotic mechanisms. The proposed control procedure employs the Linear–Quad-

ratic–Integral Regulator (LQIR) as the baseline integer-order controller for the rotary in-

verted pendulum. The standard rotary inverted pendulum is chosen as the benchmarking 

experimental platform in this research due to its nonlinear dynamics, kinematic instabil-

ity, and under-actuated characteristics [33]. The novel contributions of this research work 

are highlighted as follows: 

• Firstly, the differential/integral operators of the baseline controller are retrofitted 

with pre-calibrated real-numbered fractional-order operators to develop an FO-

LQIR.  

• The FO-LQIR is systematically extended to a CFO-LQIR to robustify the control law’s 

performance. This is achieved by replacing the real-numbered fractional order of 

each operator in the control law with pre-configured complex-order operators. The 

new parameters introduced in each control law are empirically tuned by iteratively 

minimising a quadratic objective function that considers the position regulation er-

rors and control input energy.  

• The efficacies and benefits of the proposed CFO-LQIR are benchmarked against the 

integer-order LQIR and FO-LQIR by conducting credible real-time hardware exper-

iments on the Quanser single-link rotary pendulum setup [25].  

The proposed CFO controller offers several benefits. It is evident from the scientific 

literature that FO controllers demonstrate better robustness and stabilisation control ca-

pabilities than their integer-order counterparts for rotary pendulums and other (similar) 

self-balancing robotic applications [25,26]. This establishes a clear motivation to method-

ically transform the ubiquitous FO controller into the proposed CFO controller for the 

rotary pendulum system to achieve superior robustness against disturbances and uncer-

tainties. Furthermore, CFO controllers specialise in effectively handling the highly non-

linear, chaotic, and time-varying dynamics of complex higher-order systems. Inverted-

pendulum-type robotic systems present all the aforementioned properties. Therefore, this 

is another major reason for formulating the CFO-LQIR to address the nonlinear control 

problem in this research. Although there have been some research works simulating the 

idea proposed in this paper [28,29], to the best of authors’ knowledge, the experimental 

validation of this idea has not been thoroughly reported as of today in the available liter-

ature. This essentially lays down the novelty and originality of the proposed research. 

The remaining paper is organised as follows. The system’s dynamic model is derived 

in Section 2. The development of the baseline integer-order LQIR is presented in Section 

3. Section 4 discusses the FO-LQIR design, and the proposed CFO-LQIR is formulated in 

Section 5. Experimental results are analysed and discussed in Section 6. Finally, Section 7 

concludes this research. 

2. System Description 

The Single Rotary Inverted Pendulum (SRIP) is a well-known self-balancing electro-

mechanical system with nonlinear dynamics and an under-actuated configuration. It has 

a single link that needs to be stabilised vertically. The aforementioned characteristics make 
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the SRIP an ideal candidate platform to experimentally investigate and validate the effi-

cacies of the proposed control laws for self-balancing robotic systems. The hardware sche-

matic of a standard rotary pendulum is illustrated in Figure 1. The setup consists of a 

motorised horizontal rotating arm that generates the necessary energy to swing up and 

vertically balance the apparatus rod connected to it. The arm is rotated with the aid of a 

DC-geared servo motor that is coupled to one end of the arm link. The arm’s angular dis-

placement (𝛼) is measured via a rotary encoder that is installed with the motor’s shaft. 

The free end of the arm is attached to the apparatus rod that rotates freely about its pivot. 

The rod’s angular displacement (𝜃) is measured via another encoder that is commis-

sioned at its pivot. 

The system’s dynamic model is derived in terms of its generalised coordinates, 𝛼 and 

𝜃, by using the Euler–Lagrange technique [34]. The system’s Lagrangian (𝐿(𝑡)) is evalu-

ated as the difference between the system’s total potential energy (𝐸𝑃(𝑡)) and kinetic en-

ergy (𝐸𝐾(𝑡)), as given in (1), [15].  

𝐿(𝑡) = 𝐸𝐾(𝑡) − 𝐸𝑃(𝑡)  (1) 

where  

𝐸𝑃(𝑡) = 𝑀𝑝𝑙𝑝𝑔(cos 𝜃(𝑡)), 𝐸𝐾(𝑡) =
1

2
𝐽𝑒(𝛼̇(𝑡))

2
+

1

2
𝑀𝑝 (𝑟𝛼̇(𝑡) −

𝑙𝑝𝜃̇(𝑡)(𝑐𝑜𝑠 𝜃(𝑡)))
2

+
1

2
𝑀𝑝 (−𝑙𝑝𝜃̇(𝑡)(𝑠𝑖𝑛 𝜃(𝑡)))

2

+
1

2
𝐽𝑝 (𝜃̇(𝑡))

2

  
 

The model parameters are identified in Table 1. The Lagrangian is given as 

𝐿(𝑡) =
1

2
(𝐽𝑒 + 𝑀𝑝𝑟2)(𝛼̇(𝑡))

2
+ (

2

3
𝑀𝑝𝑙𝑝

2 +
1

2
𝐽𝑝) (𝜃̇(𝑡))

2

−

𝑀𝑝𝑙𝑝𝑟(cos 𝜃(𝑡))𝛼̇(𝑡)𝜃̇(𝑡) − 𝑀𝑝𝑙𝑝𝑔(cos 𝜃(𝑡))   
(2) 

The nonlinear equations of motion are acquired using the following expressions [34]. 

𝛿

𝛿𝑡
(

𝛿𝐿

𝛿𝛼̇
) −

𝛿𝐿

𝛿𝛼
= 𝜏 − 𝑏𝑣𝛼̇(𝑡),

𝛿

𝛿𝑡
(

𝛿𝐿

𝛿𝜃̇
) −

𝛿𝐿

𝛿𝜃
= 0  (3) 

where 𝜏(𝑡) is the motor control torque, and 𝑏𝑣 represents the viscous friction in the mo-

tor. The value of 𝑏𝑣 is negligible. The motor torque is expressed as follows. 

𝜏(𝑡) =
𝐾𝑡(𝑉𝑚(𝑡)−𝐾𝑚𝛼̇(𝑡))

𝑅𝑚
    (4) 

where 𝑉𝑚(𝑡) is the motor’s voltage. The solution leads to the following equations. 

𝛼̈(𝑡) =
−𝑟𝑀𝑝

2𝑙𝑝
2𝑔(cos 𝜃(𝑡))𝜃(𝑡) − 𝐽𝑝𝑀𝑝𝑟2 cos 𝜃(𝑡) sin 𝜃(𝑡) (𝛼̇(𝑡))

2
− (𝐽𝑝 + 𝑀𝑝𝑙𝑝

2)𝜏(𝑡)

(𝑀𝑝𝑟2(sin2 𝜃(𝑡)) − 𝐽𝑒 − 𝑀𝑝𝑟2)𝐽𝑝 − 𝑀𝑝𝑙𝑝
2𝐽𝑒

 (5) 

𝜃̈(𝑡) =
−𝑀𝑝𝑙𝑝 ((𝑀𝑝𝑟2𝑔(sin2 𝜃(𝑡)) − 𝐽𝑒𝑔 − 𝑀𝑝𝑟2𝑔)𝜃(𝑡) + 𝑟𝐽𝑒 sin 𝜃(𝑡) (𝛼̇(𝑡))

2
− 𝑟𝜏(𝑡) cos 𝜃 (𝑡))

(𝑀𝑝𝑟2(sin2 𝜃(𝑡)) − 𝐽𝑒 − 𝑀𝑝𝑟2)𝐽𝑝 − 𝑀𝑝𝑙𝑝
2𝐽𝑒

  (6) 

where 𝛼(𝑡) and 𝜃(𝑡) represent the angular positions of the arm and the rod, respectively, 

𝛼̇(𝑡) and 𝜃̇(𝑡)  are the angular velocities of the arm and the rod, respectively, and 

𝛼̈(𝑡) and 𝜃̈(𝑡) are the angular accelerations of the arm and the rod, respectively.  
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Figure 1. Simplified schematic of the SRIP system. 

Table 1. Model parameters of QNET rotary pendulum. 

Parameters Description Value Units 

Mp Mass of pendulum 0.027 kg 

lp Pendulum center of mass 0.153 m 

Lp Length of pendulum rod 0.191 M 

r Length of horizontal arm 0.083 M 

Marm Mass of arm 0.028 Kg 

g Gravitational acceleration 9.810 m/s2 

Je Moment about motor shaft 1.23 × 10−4 kgm2 

Jp Moment about pendulum 1.10 × 10−4 kgm2 

Rm Motor armature resistance 3.30 Ω 

Lm Motor armature inductance 47.0 mH 

Kt Motor torque constant 0.028 Nm 

Km Back e.m.f. constant 0.028 V/(rad/s) 

Tm Maximum torque 0.14 Nm 

The system’s model is linearised about the vertical position, where 𝛼(𝑡) =

𝜋 rad. , 𝜃(𝑡) = 0, 𝛼̇(𝑡) = 0, 𝜃̇(𝑡) = 0. The small angular displacements are approximated 

such that sin 𝜃(𝑡) ≈ 0 and cos 𝜃(𝑡) ≈ 1. These approximations yield the following linear-

ised state equations. 

𝛼̈(𝑡) =
1

𝐻
(𝑟𝑀𝑝

2𝑙𝑝
2𝑔𝜃(𝑡) −

(𝐽𝑝 + 𝑀𝑝𝑙𝑝
2)𝐾𝑡𝐾𝑚

𝑅𝑚
𝛼̇(𝑡) +

(𝐽𝑝 + 𝑀𝑝𝑙𝑝
2)𝐾𝑡

𝑅𝑚
𝑉𝑚(𝑡)) (7) 

𝜃̈(𝑡) =
1

𝐻
(𝑀𝑝𝑙𝑝𝑔(𝐽𝑒 + 𝑀𝑝𝑟2)𝜃(𝑡) −

𝑟𝑀𝑝𝑙𝑝𝐾𝑡𝐾𝑚

𝑅𝑚
𝛼̇(𝑡) +

𝑟𝑀𝑝𝑙𝑝𝐾𝑡

𝑅𝑚
𝑉𝑚(𝑡))    (8) 

such that  

𝐻 = 𝐽𝑒𝐽𝑝 + 𝑀𝑝𝑟2𝐽𝑝 + 𝑀𝑝𝑙𝑝
2𝐽𝑒  

The state-space representation of linear dynamical systems is expressed as 

𝑥̇(𝑡) = 𝑨𝑥(𝑡) + 𝐁𝑢(𝑡), 𝑦(𝑡) = 𝐂𝑥(𝑡) + 𝐃𝑢(𝑡) (9) 

where 𝑥(𝑡) is the state vector, 𝑦(𝑡) is the output vector, 𝑢(𝑡) is the control input signal, 

𝑨 is the system matrix, 𝑩 is the input matrix, 𝑪 is the output matrix, and 𝐃 is the feed-

forward matrix. The system’s state and input vectors are provided in (10) [34]. 
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𝑥(𝑡) = [𝛼(𝑡) 𝜃(𝑡) 𝛼̇(𝑡) 𝜃̇(𝑡)]𝑇 , 𝑢(𝑡) = 𝑉𝑚(𝑡) (10) 

The nominal linear state-space model of the SRIP is given by (11) [15]. 

𝐴 = [

0 0 1   0
0 0 0   1
0
0

𝑎1

𝑎3

𝑎2 0
𝑎4 0

] , 𝐵 = [

0
0
𝑏1

𝑏2

] , 𝐶 = [

1 0 0 0
0 1 0 0
0
0

0
0

1 0
0 1

] , 𝐷 = [

0
0
0
0

]  (11) 

where 

𝑎1 =
𝑟𝑀𝑝

2𝑙𝑝
2𝑔

𝐽𝑝𝐽𝑒 + 𝐽𝑒𝑙𝑝
2𝑀𝑝 + 𝐽𝑝𝑀𝑝𝑟2

, 𝑎2 =
−𝐾𝑡𝐾𝑚(𝐽𝑝 + 𝑀𝑝𝑙𝑝

2)

(𝐽𝑝𝐽𝑒 + 𝐽𝑒𝑙𝑝
2𝑀𝑝 + 𝐽𝑝𝑀𝑝𝑟2)𝑅𝑚

, 

𝑎3 =
𝑀𝑝𝑙𝑝𝑔(𝐽𝑒 + 𝑀𝑝𝑟2)

𝐽𝑝𝐽𝑒 + 𝐽𝑒𝑙𝑝
2𝑀𝑝 + 𝐽𝑝𝑀𝑝𝑟2

, 𝑎4 =
−𝑟𝑀𝑝𝑙𝑝𝐾𝑡𝐾𝑚

(𝐽𝑝𝐽𝑒 + 𝐽𝑒𝑙𝑝
2𝑀𝑝 + 𝐽𝑝𝑀𝑝𝑟2)𝑅𝑚

, 

𝑏1 =
𝐾𝑡(𝐽𝑝 + 𝑀𝑝𝑙𝑝

2)

(𝐽𝑝𝐽𝑒 + 𝐽𝑒𝑙𝑝
2𝑀𝑝 + 𝐽𝑝𝑀𝑝𝑟2)𝑅𝑚

, 𝑏2 =
𝑟𝑀𝑝𝑙𝑝𝐾𝑡

(𝐽𝑝𝐽𝑒 + 𝐽𝑒𝑙𝑝
2𝑀𝑝 + 𝐽𝑝𝑀𝑝𝑟2)𝑅𝑚

 

 

The model parameters of the rotary pendulum are identified in Table 1 [35]. 

3. Linear–Quadratic–Integral Regulator (LQIR) 

In this research, the LQIR is adopted as the baseline integer-order state compensator 

to vertically stabilise the pendulum rod and to regulate the arm at its reference position 

while preserving the system’s closed-loop asymptotic stability.  

3.1. LQIR Formulation 

The LQR is designed by minimising a Quadratic Performance Index (QPI) of the state 

and control input variables [36]. The Hamilton–Jacobi–Bellman (HJB) equations are solved 

to minimise the total cost and to deliver an optimal state compensator offline [37]. The 

QPI used in this research is given as 

𝐽𝑙𝑞 =
1

2
∫ (𝑥(𝑡)𝑇𝑸𝑥(𝑡) + 𝑢(𝑡)𝑇𝑹𝑢(𝑡))

∞

0

𝑑𝑡    (12) 

where 𝐐 ∈ ℝ 4×4 is a user-specified positive semi-definite state weighting matrix, and 𝑹 ∈ 

ℝ is a user-specified positive definite input weighting matrix. The 𝐐 and 𝑹 matrices pe-

nalise the system’s state and control input variations, respectively. These matrices are 

symbolically represented as 

𝑸 = diag(𝑞𝛼 𝑞𝜃
𝑞𝛼̇ 𝑞𝜃̇),   𝑹 = 𝜌   (13) 

where 𝑞𝑥 ≥ 0 and 𝜌 > 0 represent the real-numbered coefficients of the respective ma-

trices. The value of 𝜌 is preset to unity to ensure an economical control activity. The co-

efficients of the 𝑸 matrix are carefully calibrated offline by using the tuning procedure 

discussed in the following subsection. The optimised 𝑸 and 𝑹 matrices are used with the 

Riccati Equation, as expressed in (14), to compute its solution 𝑷. 

𝑨𝑇𝑷 + 𝑷𝑨 − 𝑷𝑩𝑹−1𝑩𝑇𝑷 + 𝑸 = 0   (14) 

where 𝑷 ∈ ℝ4×4 is a symmetric positive definite matrix. The matrix 𝑷 is used to calculate 

the state compensator gain vector 𝑲, as shown below. 

𝑲 = 𝑹−1𝑩𝑇𝑷      (15) 

where 𝑲 = [𝑘𝛼 𝑘𝜃 𝑘𝛼̇ 𝑘𝜃̇]. The conventional LQR law is expressed as follows. 

𝑢𝑙𝑞𝑟(𝑡) = −𝑲𝑥(𝑡)   (16) 

The following Lyapunov function is used to prove the asymptotic stability of the con-

trol law [36]. 

𝑀(𝑡) = 𝑥(𝑡)𝑇𝑷(𝑡)𝑥(𝑡) > 0,     for 𝑥(𝑡) ≠ 0     (17) 
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The first derivative of the Lyapunov function is expressed as follows. 

 𝑀̇(𝑡) = 2𝑥(𝑡)𝑇𝑷𝑥̇(𝑡) 
= 2𝑥(𝑡)𝑇𝑷(𝑨 − 𝑩𝑲(𝑡))𝑥(𝑡)   
= 2𝑥(𝑡)𝑇𝑷(𝑨 − 𝑩𝑹−1𝑩𝑇𝑷)𝑥(𝑡)                                              
= 𝑥(𝑡)𝑇(𝑷𝑨 + 𝑨𝑻𝑷)𝑥(𝑡) − 2𝑥(𝑡)𝑇(𝑷𝑩𝑹−𝟏𝑩𝑻𝑷)𝑥(𝑡)      

(18) 

By substituting Eq. 14, the derivative 𝑀̇(𝑡) simplifies, as given in (19).  

𝑀̇(𝑡) = −𝑥(𝑡)𝑇𝑸̅𝑥(𝑡) − 𝑥(𝑡)𝑇(𝑷𝑩𝑹−1𝑩𝑇𝑷)𝑥(𝑡)    < 0      (19) 

The expression of 𝑀̇(𝑡) is negative semi-definite as long as 𝑸 = 𝑸𝑇 ≥ 0 and 𝑹 =

𝑹𝑇 > 0. This condition is sufficient to guarantee the closed-loop asymptotic stability of the 

LQR law.  

To increase the controller’s degrees of freedom, the conventional LQR is retrofitted 

with an auxiliary integral controller that enhances the system’s reference-tracking accu-

racy and damping strength against position regulation errors. The integral controller is 

expressed as the weighted sum of the error integral variables, as given in (20). 

𝑢𝐼(𝑡) = 𝑘𝑖𝛼 ∫ 𝑒𝛼(𝜏)
𝑡

0

𝑑𝜏 + 𝑘𝑖𝜃 ∫ 𝑒𝜃(𝜏)
𝑡

0

𝑑𝜏     (20) 

such that 

𝑒𝛼(𝑡) = 𝛼(0) − 𝛼(𝑡), 𝑒𝜃(𝑡) = 𝜋 − 𝜃(𝑡)  

where 𝑒𝛼 and 𝑒𝜃 represent the error between the actual position and the reference posi-

tion of the arm and the apparatus rod, respectively, and 𝑘𝑖𝛼  and 𝑘𝑖𝜃  are the pre-cali-

brated integral gains associated with the respective error integral variables. The tuning 

procedure used to select the integral gains offline is discussed in the following sub-section. 

The resulting LQIR law is expressed as the linear combination of the conventional LQR 

and the aforementioned integral controller. 

𝑢(𝑡) = 𝑢𝑙𝑞𝑟(𝑡) + 𝑢𝐼(𝑡) (21) 

The LQIR law, in terms of the integer-order differential and integral operators, is ex-

pressed in (22). 

𝑢(𝑡) = −𝑘𝛼𝛼(𝑡) − 𝑘𝜃𝜃(𝑡) − 𝑘𝛼̇𝛼̇(𝑡) − 𝑘𝜃̇𝜃̇(𝑡) + 𝑘𝑖𝛼 ∫ 𝑒𝛼(𝜏)
𝑡

0
𝑑𝜏 + 𝑘𝑖𝜃 ∫ 𝑒𝜃(𝜏)

𝑡

0
𝑑𝜏  (22) 

The control signal, 𝑢(𝑡), is bounded within ±𝑉𝑚𝑎𝑥 = ±18.0 𝑉 to avoid over-heating 

or unnecessary wear and tear of the actuator’s winding [35]. For this purpose, the control 

signal is subjected to the saturation function, as shown below. 

𝑠𝑎𝑡(𝑢(𝑡)) = {

𝑉𝑚𝑎𝑥,                                     𝑢(𝑡) ≥ 𝑉𝑚𝑎𝑥

𝑢(𝑡) ,               − 𝑉𝑚𝑎𝑥 < 𝑢(𝑡) < 𝑉𝑚𝑎𝑥

−𝑉𝑚𝑎𝑥,                                    𝑢(𝑡) ≤ −𝑉𝑚𝑎𝑥

                                  (23) 

3.2. Parameter Tuning Procedure 

The LQR design depends upon the system’s state and control input variations, as 

dictated by 𝐽𝑙𝑞. However, assigning appropriate weights to the aforementioned variables 

is extremely important to ensure an optimal control yield. The trial-and-error-based set-

tings of the 𝑸 and 𝑹 matrices are limited by the designer’s experience and thus may not 

always deliver accurate position regulation and transient recovery behaviour [38]. Hence, 

in this section, a new objective function is introduced that considers the control variations 

as well as the error variations depicted by the time domain responses of 𝛼 and 𝜃. The 

cost function is expressed as 

𝐽𝑐 = ∫ (|𝑒𝛼(𝑡)|2 + |𝑒𝜃(𝑡)|2 + |𝑢(𝑡)|2)
∞

0

𝑑𝑡                    (24) 
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Equal weights are set for the constituents of the aforementioned cost function to ap-

ply an equal impact to the state error minimisation as well as the control signal minimisa-

tion criteria. Applying the same weights to the state error and control input terms tends 

to deliver a good time domain response while economising the control energy expendi-

ture to prevent actuator saturation [39]. The state-weighting factors are searched within 

the range [0, 100]. The offline selection process is initiated by giving equal (unity) weight 

to each state variable, such that 𝑸 = diag(1 1 1 1). The range space is iteratively ex-

plored in the direction of the steepest gradient descent of the aforementioned objective 

function. In every iteration, the pendulum is allowed to vertically balance, the arm main-

tains its stations for 10.0 s, and the consequent cost is evaluated. The iterative tuning is 

terminated only when the minimum cost is achieved. The coefficients of 𝑸 and 𝑹 thus 

optimised are given as 𝑞𝛼 = 32.8, 𝑞𝜃 = 52.2, 𝑞𝛼̇ = 6.1, 𝑞𝜃̇ = 2.5, and 𝜌 = 1. The applica-

tion of the optimised set of the 𝑸 and 𝑹 matrices to the Riccati equation delivers the fol-

lowing state compensator gains: 𝑘𝛼 = −6.21, 𝑘𝜃 = 130.56, 𝑘𝛼̇ = −4.22, and 𝑘𝜃̇ = 17.83. 

The integrals’ gains associated with the control law are also tuned by iteratively minimis-

ing the objective function using the same procedure, as discussed above. The integral 

gains are selected from the range [−5, 0]. Consequently, the integral gains calibrated for 

this research are 𝑘𝑖𝛼 = −2.06 and 𝑘𝑖𝜃 = −7.47 × 10−6.  

4. Fractional-Order LQIR 

This section comprehensively presents the constitution of the FO-LQIR law.  

4.1. Fractional Calculus 

Fractional calculus mainly deals with the integral and differential operators used in 

mathematical computations by assigning them pre-calibrated fractional powers instead of 

the typical integer ones [25]. The symbol used to represent the fractional mathematical 

operator is 𝐷λ, where λ is the generalised fractional order of the operator. The capability 

of fractional calculus to model and control the behaviour of highly chaotic and nonlinear 

systems is mainly attributed to the non-integer characteristics of the fractional orders that 

enables it to realise and address the system’s intrinsic un-modeled nonlinearities [40]. The 

fractional operators are mathematically defined via the well-known definitions given by 

Riemann–Liouville, Gruunwald–Letnikov, and Caputo [41]. These definitions are de-

scribed, respectively, in (25)–(27). 

𝐷λ𝑓(𝑡) =
1

𝛤(𝑛 − λ)

𝑑𝑛

𝑑𝑡𝑛
∫

𝑓(𝜏)

(𝑡 − 𝜏)λ−𝑛+1
𝑑𝜏

𝑡

𝑎

 (25) 

where 𝑓(𝑡) is an arbitrary function, 𝛤(𝑥) is the Euler gamma function, and 𝑛 is an inte-

ger such that 𝑛 − 1 < λ < 𝑛. 

𝐷λ𝑓(𝑡) = lim
ℎ→0

1

ℎ𝑖
∑ (−1)𝑖 (

λ
𝑖
)

(𝑡−𝑎) ℎ⁄

𝑖=0

𝑓(𝑡 − 𝑖ℎ)        (26) 

where (
λ
𝑖
) = 𝛤(λ + 1) 𝛤(𝑖 + 1)⁄ 𝛤(λ − 𝑖 + 1), and ℎ is the step size. 

𝐷λ𝑓(𝑡) =
1

𝛤(λ − 𝑛)
∫

𝑓𝑛(𝜏)

(𝑡 − 𝜏)λ−𝑛+1
𝑑𝜏

𝑡

𝑎

      (27) 

4.2. Fractional-Order Control Law Formulation 

Fractional calculus can be combined with the (typical) integer-order LQIR to trans-

form them into their fractional-order counterpart [42]. Hence, in this research, fractional 

calculus is used to transform the LQIR law synthesised in Section 3 into its fractional order 

counterpart. To realise the FO-LQIR law, the baseline LQIR law is augmented with frac-

tional-order operators, as given in (28). 
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𝑢(𝑡) = −𝑘𝛼𝛼(𝑡) − 𝑘𝜃𝜃(𝑡) − 𝑘𝛼̇ (𝐷𝛽𝛼(𝑡)) − 𝑘𝜃̇(𝐷𝛾𝜃(𝑡)) + 𝑘𝑖𝛼 (𝐷−𝛿𝑒𝛼(𝑡)) + 𝑘𝑖𝜃(𝐷−𝜇𝑒𝜃(𝑡))   (28) 

The control law expressed in (27) uses the six original gains, 𝑘𝛼, 𝑘𝜃, 𝑘𝛼̇, 𝑘𝜃̇, 𝑘𝑖𝛼, and 

𝑘𝑖𝜃, which have already been prescribed in Section 3.2. The control law also introduces 

four new pre-configured parameters, 𝛽, 𝛾, 𝛿, and 𝜇, that serve as the fractional orders of 

the integral and differential operators. The parameters 𝛽 and 𝛾 are the real-numbered 

fractional orders associated with the differential operators of 𝛼(𝑡) and 𝜃(𝑡), respectively. 

The parameters 𝛿 and 𝜇 are the real-numbered fractional orders associated with the in-

tegral operators of 𝑒𝛼(𝑡) and 𝑒𝜃(𝑡), respectively. It is well known that the value of the 

reference signals does not affect the control law design in a typical regulatory control sys-

tem. Hence, to simplify the computations, it is safe to assume that 𝑒𝛼(𝑡) = −𝛼(𝑡) and 

𝑒𝜃(𝑡) = −𝜃(𝑡). The FO-LQIR law can then be expressed as shown in (29). 

𝑢(𝑡) = 𝑢𝛼(𝑡) + 𝑢𝜃(𝑡) (29) 

where 

𝑢𝛼(𝑡) = −𝑘𝛼𝛼(𝑡) − 𝑘𝛼̇ (𝐷𝛽𝛼(𝑡)) − 𝑘𝑖𝛼 (𝐷−𝛿𝛼(𝑡))  

and 

  𝑢𝜃(𝑡) = −𝑘𝜃𝜃(𝑡) − 𝑘𝜃̇(𝐷𝛾𝜃(𝑡)) − 𝑘𝑖𝜃(𝐷−𝜇𝜃(𝑡))  

The transfer functions of the control laws 𝑢𝛼(𝑡) and 𝑢𝜃(𝑡) are identified in (30). 

𝐶𝛼(𝑠) =
𝑈𝛼(𝑠)

𝛼(𝑠)
= −𝑘𝛼 − 𝑘𝛼̇𝑠𝛽 −

𝑘𝑖𝛼

𝑠𝛿
, 𝐶𝜃(𝑠) =

𝑈𝜃(𝑠)

𝜃(𝑠)
= −𝑘𝜃 − 𝑘𝜃̇𝑠𝛾 −

𝑘𝑖𝜃

𝑠𝜇
  (30) 

where 𝑠 is the Laplace operator. The computational implementation of the terms 𝑠𝛽, 𝑠𝛿, 

𝑠𝛾, and 𝑠𝜇 is quite difficult, owing to the fractional orders. Hence, these fractional opera-

tors are approximated via the Oustaloup recursive approximation to simplify their digital 

realisation [43]. The fractional operator 𝑠λ  can be approximated via the Oustaloup 

method, as given in (31). 

𝑠λ = 𝐶 ∏
1 + (𝑠

𝜔𝑧,𝑖⁄ )

1 + (𝑠
𝜔𝑝,𝑖⁄ )

𝑁

𝑖=1

    (31) 

such that 

𝜔𝑧,𝑖 = 𝜔𝐿(
𝜔𝐻

𝜔𝐿
⁄ )

2𝑖−1−λ
2𝑁⁄

, 𝜔𝑝,𝑖 = 𝜔𝐿(
𝜔𝐻

𝜔𝐿
⁄ )

2𝑖−1+λ
2𝑁⁄

  

where 𝑁 is the order of the filter, and 𝜔𝐿 and 𝜔𝐻 are the lower and the upper transla-

tional frequencies of the filter, respectively. The value of 𝐶 is selected such that (𝑗𝜔)λ =

1 at 1.0 rad/s. In this work, a fifth-order Oustaloup recursive filter is employed with 𝜔𝐿 =

10−2 rad/s and 𝜔𝐻 = 102 rad/s to approximate the fractional operators. 

The fractional orders associated with the FO-LQIR law are tuned by iteratively min-

imising the objective function 𝐽𝑐 using the procedure discussed in Section 3.2. The frac-

tional orders are selected from the range [0, 2]. If the value of the fractional orders con-

verges to zero, the integral/differential operators represent a simple proportional control 

term, whereas if the value of the fractional orders converges to unity, the operators mutate 

into the typical integer-order integral/differential control terms. The fractional orders cho-

sen for the FO-LQIR are 𝛽 = 0.865, 𝛾 = 0.882, 𝛿 = 0.479, and 𝜇 = 0.348. 
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5. Complex Fractional-Order LQIR 

Complex fractional order controllers are formulated by augmenting the integer-order 

controllers with integral and differential operators, having complex-numbered orders in-

stead of real-numbered fractional orders. The CFO-LQIR originates from third-generation 

Commande Robuste d’Ordre Non Entier (CRONE) control [44]. The CFO-LQIR proposed 

in this section is formulated such that all the integral/differential operators have a complex 

order, as given in (32). 

𝑢(𝑡) = −𝑘𝛼𝛼(𝑡) − 𝑘𝜃𝜃(𝑡) − 𝑘𝛼̇ (𝐷𝑑𝛼(𝑡)) − 𝑘𝜃̇ (𝐷𝑓𝜃(𝑡)) + 𝑘𝑖𝛼(𝐷−𝑔𝑒𝛼(𝑡)) + 𝑘𝑖𝜃 (𝐷−ℎ𝑒𝜃(𝑡)) (32) 

such that 

  𝑑 = 𝛽 + 𝑗𝜌, 𝑓 = 𝛾 + 𝑗𝜀, 𝑔 = 𝛿 + 𝑗𝜎, ℎ = 𝜇 + 𝑗𝜑  

where 𝜌, 𝜀, 𝜎, and 𝜑 are the coefficients of the complex order’s imaginary part. Using 

the assumptions adopted in Section 4, the CFO-LQIR law can be expressed as given in 

(33). 

𝑢(𝑡) = 𝑢𝛼(𝑡) + 𝑢𝜃(𝑡) (33) 

where 

𝑢𝛼(𝑡) = −𝑘𝛼𝛼(𝑡) − 𝑘𝛼̇ (𝐷(𝛽+𝑗𝜌)𝛼(𝑡)) − 𝑘𝑖𝛼 (𝐷−(𝛿+𝑗𝜎)𝛼(𝑡))  

and 

𝑢𝜃(𝑡) = −𝑘𝜃𝜃(𝑡) − 𝑘𝜃̇ (𝐷(𝛾+𝑗𝜀)𝜃(𝑡)) − 𝑘𝑖𝜃 (𝐷−(𝜇+𝑗𝜑)𝜃(𝑡))  

Owing to the augmentation of the complex orders, the modified transfer functions 

associated with each control law are identified as given in (34) [45]. 

𝐶𝛼(𝑠) = −𝑘𝛼 − 𝑘𝛼̇(𝑠)𝛽+𝑗𝜌 − 𝑘𝑖𝛼 (
1

𝑠
)

𝛿+𝑗𝜎

, 𝐶𝜃(𝑠) = −𝑘𝜃 − 𝑘𝜃̇(𝑠)𝛾+𝑗𝜀 − 𝑘𝑖𝜃 (
1

𝑠
)

𝜇+𝑗𝜑

  (34) 

To understand their functionality, consider the following generalised transfer func-

tion of a complex controller. 

𝐶𝑝(𝑠) = −𝑘𝑝 − 𝑘𝑝̇(𝑠)𝑎+𝑗𝑏 − 𝑘𝑖𝑝 (
1

𝑠
)

𝑐+𝑗𝑑

   (35) 

where 𝑝 represents 𝛼 or 𝜃. The differential operator in (35) can be written as 
(𝑠)𝑎+𝑗𝑏 = (𝑠)𝑎(𝑠)𝑗𝑏 

= (𝑠)𝑎𝑒𝑙𝑛(𝑠)𝑗𝑏
 

= (𝑠)𝑎𝑒𝑗𝑏𝑙𝑛(𝑠) 

= (𝑠)𝑎[cos(𝑏 × 𝑙𝑛(𝑠)) + 𝑗 sin(𝑏 × 𝑙𝑛(𝑠))]  

(36) 

In practice, the complex-ordered controller is required to yield a real output in re-

sponse to a physical input signal. Hence, the complex operator is realised by considering 

only the real part of the expression, as given in (37). 

(𝑠)𝑎+𝑗𝑏 = (𝑠)𝑎 cos(𝑏 × 𝑙𝑛(𝑠)) (37) 

Similarly, the integral operator can be written as 

(
1

𝑠
)

𝑐+𝑗𝑑

= (
1

𝑠
)

𝑐

(
1

𝑠
)

𝑗𝑑

                (38) 

Using similar computations to simplify the differential operator, the integral operator 

is simplified as given in (39). 

(
1

𝑠
)

𝑐+𝑗𝑑

= (
1

𝑠
)

𝑐

cos (𝑑 × 𝑙𝑛 (
1

𝑠
)) (39) 
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With the aforementioned simplifications in place, the transfer function of each con-

trol law is expressed as given in (40) and (41). 

𝐶𝛼(𝑠) = −𝑘𝛼 − 𝑘𝛼̇(𝑠)𝛽 cos(𝜌 × 𝑙𝑛(𝑠)) − 𝑘𝑖𝛼 (
1

𝑠
)

𝛿

cos (𝜎 × 𝑙𝑛 (
1

𝑠
)) (40) 

𝐶𝜃(𝑠) = −𝑘𝜃 − 𝑘𝜃̇(𝑠)𝛾 cos(𝜀 × 𝑙𝑛(𝑠)) − 𝑘𝑖𝜃 (
1

𝑠
)

𝜇

cos (𝜑 × 𝑙𝑛 (
1

𝑠
))    (41) 

Upon simplification, the CFO-LQIR looks similar to the conventional FO-LQIR with 

additional terms that compute the cosine of the natural logarithms of the integer-order 

derivatives/integrals of the respective state variables. Each of the 𝑙𝑛(. )  terms are 

weighted with the coefficient of the complex order’s imaginary part. The control laws 

𝑢𝛼(𝑡) and 𝑢𝜃(𝑡) can thus be written as 

𝑢𝛼(𝑡) = −𝑘𝛼𝛼(𝑡) − 𝑘𝛼̇ (𝐷𝛽𝛼(𝑡)) cos(𝜌 × 𝑙𝑛|𝛼̇(𝑡)|) − 𝑘𝑖𝛼 (𝐷−𝛿𝛼(𝑡)) cos (𝜎 × 𝑙𝑛 |∫ 𝑒𝛼(𝜏)
𝑡

0

𝑑𝜏|)  (42) 

𝑢𝜃(𝑡) = −𝑘𝜃𝜃(𝑡) − 𝑘𝜃̇(𝐷𝛾𝜃(𝑡)) cos(𝜀 × 𝑙𝑛|𝜃̇(𝑡)|) − 𝑘𝑖𝜃(𝐷−𝜇𝜃(𝑡)) cos (𝜑 × 𝑙𝑛 |∫ 𝑒𝜃(𝜏)
𝑡

0

𝑑𝜏|)   (43) 

The finalised CFO-LQIR law is synthesised as 𝑢(𝑡) = 𝑢𝛼(𝑡) + 𝑢𝜃(𝑡). The value of the 

auxiliary cos(. ) term commutes between zero and unity. Under disturbances, the magni-

tude of the error integral or state derivative becomes large, causing the cos(. ) term to 

converge to zero. Under nominal conditions, the magnitude of the error integral or state 

derivative tends to reduce, causing the cos(. ) term to converge to unity. This arrange-

ment not only increases the transient recovery speed and the damping against disturb-

ances but also prevents the control law from imposing large servo control requirements 

upon the actuator. The final CFO-LQIR law is expressed as given in (44). 

𝑢(𝑡) = −𝑘𝛼𝛼(𝑡) − 𝑘𝜃𝜃(𝑡) − 𝑘𝛼̇(𝑡) (𝐷𝛽𝛼(𝑡)) − 𝑘𝜃̇(𝑡)(𝐷𝛾𝜃(𝑡)) + 𝑘𝑖𝛼(𝑡) (𝐷−𝛿𝑒𝛼(𝑡)) + 𝑘𝑖𝜃(𝑡)(𝐷−𝜇𝑒𝜃(𝑡)) (44) 

where  

𝑘𝛼̇(𝑡) = 𝑘𝛼̇ cos(𝜌 × 𝑙𝑛|𝛼̇(𝑡)|) , 𝑘𝜃̇(𝑡) = 𝑘𝜃̇ cos(𝜀 × 𝑙𝑛|𝜃̇(𝑡)|) , 𝑘𝑖𝛼(𝑡) = 𝑘𝑖𝛼 cos (𝜎 × 𝑙𝑛 |∫ 𝑒𝛼(𝜏)
𝑡

0

𝑑𝜏|) ,

𝑘𝑖𝜃(𝑡) = 𝑘𝑖𝜃 cos (𝜑 × 𝑙𝑛 |∫ 𝑒𝜃(𝜏)
𝑡

0

𝑑𝜏|) 
 

The cos(. ) term adaptively modulates the differential and integral gains of the con-

trol law, as the error conditions vary. The cos(. ) term is saturated to zero if the internal 

argument becomes less than 0 rad. The term is saturated to unity if the internal argument 

exceeds 𝜋
2⁄  rad. This condition is observed to maintain the asymptotic stability of the 

control law. The block diagram representing the CFO-LQIR structure is shown in Figure 

2. The proposed scheme uses the same values for the real parts of the complex orders (𝛽, 

𝛾, 𝛿, and 𝜇), as prescribed in Section 4. However, the scheme also introduces four new 

parameters, 𝜌, 𝜀, 𝜎, and 𝜑, as the fractional order’s imaginary part. From a functional 

point of view, these parameters decide the variation rate of the cos(. ) term. The new pa-

rameters are also tuned by iteratively minimising the objective function 𝐽𝑐 using the pro-

cedure discussed in Section 3.2. They are selected from the range [0, 2]. If the imaginary 

orders are made to be zero, the integral/differential operators reduce to real-numbered 

fractional order terms. The coefficients of the imaginary parts selected for the CFO-LQIR 

are 𝜌 = 1.482, 𝜀 = 1.365, 𝜎 = 0.053, and 𝜑 = 0.079. 
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Figure 2. Block diagram of the proposed CFO-LQIR law. 

6. Experimental Evaluation and Discussions 

This section presents the details of the real-time experiments conducted on the hard-

ware setup and analyses the results to compare the robustness of the aforementioned con-

trollers in a physical environment. 

6.1. Experimental Setup 

The efficacies of the controllers under discussion, i.e., LQIR, FO-LQIR, CFO-LQIR, 

and MCFO-LQIR, are investigated by conducting hardware-in-the-loop experiments on 

the Quanser SRIP setup, shown in Figure 3. The real-time angular displacements of the 

rod and the arm are acquired from their respective rotary encoders at a sampling fre-

quency of 1000 Hz by using the NI-ELVIS data acquisition board. The encoder readings 

are digitised and serially transmitted to the software control application at 9600 bps. The 

customised control application is developed by using the ‘Block Diagram’ tool in Lab-

VIEW, which runs on a 64-bit and 1.8 GHz personal computer with 8.0 GB RAM. The 

software provides the necessary libraries and filter blocks to implement the fractional op-

erators. Hence, the prescribed control laws are easily realised without putting any recur-

sive computational burden on the computer. The control application uses the updated 

state and control input variations in conjunction with the pre-configured compensator 

gains, as well as the real and imaginary fractional orders, to re-compute the control signal 

after every sampling interval. The re-adjusted control signals are serially transmitted to 

the onboard motor driver and amplifier circuit. The aforementioned circuit modulates the 

incoming control signals to drive the DC motor. The standard onboard motor driver cir-

cuit is capable of safely handling the highly discontinuous control activity with large con-

trol input peaks. The control application also provides a graphical interface that logs and 

displays the real-time changes in 𝛼(𝑡), 𝜃(𝑡), and 𝑉𝑚(𝑡). The following limitations are im-

posed on the system variables during the experiments. 

• Rod displacement limit: |𝑒𝜃(𝑡)| < 30.0o. 

• Arm displacement limit: |𝑒𝛼(𝑡)| < 180.0o. 
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• Control input limit: |𝑉𝑚(𝑡)| < 18.0 𝑉. 

These hardware limitations are identified as per the scientific literature [46]. 

 

Figure 3. QNET rotary pendulum setup. 

6.2. Tests and Results 

The proposed CFO-LQIR is compared with the conventional LQIR, FO-LQIR, and 

MCFO-LQIR in the physical environment by conducting five unique hardware experi-

ments, listed below. Each test case is designed to assess the controller’s resilience against 

a specific disturbance source. The simulated disturbance signals are applied in compliance 

with the aforementioned constraints. 

A. Position regulation and station keeping: This experiment serves to analyse the vertical 

position regulation of the apparatus rod and the station-keeping capability of the arm 

in the absence of exogenous disturbances. The responses of 𝛼(𝑡), 𝜃(𝑡), and 𝑉𝑚(𝑡) are 

depicted in Figure 4. 

B. Impulsive disturbance rejection: The second experiment aims to investigate the control-

ler’s robustness against the impulsive disturbances that are typically caused by the 

application of sudden yet short-term parametric variations and random forces. The 

test is performed by artificially applying a −5.0 V pulse with a duration of 100 ms in 

the control input profile at regular intervals. The responses of 𝛼(𝑡), 𝜃(𝑡), and 𝑉𝑚(𝑡) 

are shown in Figure 5. 

C. Step disturbance rejection: This experiment characterises the controller’s ability to reject 

sudden yet permanent load variations caused by constant exogenous forces. The pen-

dulum is perturbed by artificially injecting a −5.0 V step signal in the control signal at 

t ≈ 6.0 s. The responses of 𝛼(𝑡), 𝜃(𝑡), and 𝑉𝑚(𝑡) are shown in Figure 6. 

D. Sinusoidal noise attenuation: This experiment analyses the controller’s ability to attenu-

ate the lumped disturbances caused by mechanical vibrations, measurement noise, 

and the chattering caused by the hysteresis in parasitic impedances. The test is per-

formed by artificially injecting a sinusoidal signal of the form d(t) = sin(20πt) in the 

control signal. The responses of 𝛼(𝑡), 𝜃(𝑡), and 𝑉𝑚(𝑡) are shown in Figure 7. 

E. Modeling error compensation: The final experiment investigates the controller’s ability 

to compensate for the unprecedented modeling errors that are typically caused by 

inaccurate model identification or permanent model changes during the trials. The 
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test is performed by attaching a 0.10 kg mass beneath the pendulum rod arm joint at 

t ≈ 6.0 s, as shown in Figure 4. This arrangement abruptly changes the actual system’s 

physical dynamics as compared to the reference model, which inevitably induces fluc-

tuations in the state response(s). The responses of 𝛼(𝑡), 𝜃(𝑡), and 𝑉𝑚(𝑡) are shown in 

Figure 8. 

 

Figure 4. SRIP’s response under normal conditions. 

 

Figure 5. SRIP’s response under impulsive disturbances. 
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Figure 6. SRIP’s response under step disturbance. 

 

Figure 7. SRIP’s response under sinusoidal disturbance. 
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Figure 8. SRIP’s response under model variation. 

6.3. Discussion 

The experimental outcomes are analysed as per the following Key Performance Indi-

cators (KPIs). 

• ex_RMS: The root-mean-square value of error (𝑒𝛼 or 𝑒𝜃), ∑ √(𝑒𝑥(𝑡))
2

𝑛
. 

• ex_ITAE: The integral time-weighted absolute value of error (𝑒𝛼 or 𝑒𝜃), ∫ 𝑡|𝑒𝑥(𝑡)| 𝑑𝑡. 

• ts,θ: The time taken by the pendulum’s apparatus rod to recover from a transient dis-

turbance.  

• |Mp,x|: The magnitude of peak overshoot (or undershoot) contributed by the transi-

ent disturbances.  

• αoff: The offset in the arm’s position contributed by the step disturbance. 

• αp-p: The peak-to-peak amplitude of post-disturbance oscillations in the arm.  

• MSVm: The mean-square value of DC motor voltage. 

• Vp: The peak value of DC motor voltage under transient disturbances. 

These standard KPIs are used in the scientific literature to correctly quantify the time 

domain performance of the SRIP system [47,48]. The quantitative analysis of the experi-

mental results is presented in Table 2. The experimental results justify the enhanced ro-

bustness of CFO-LQIR in every experiment.  

In experiment A (see Figure 4), the LQIR shows poor vertical position regulation ac-

curacy of the rod and station keeping of the arm. The FO-LQIR exhibits mediocre im-

provement in the time domain behaviour. The CFO-LQIR manifests the best reference 

tracking accuracy while maintaining relatively economical control activity.  

In experiment B (see Figure 5), the LQIR manifests large overshoots and a slow re-

sponse speed. The FO-LQIR significantly improves the transit speed while suppressing 

the peak magnitude of the overshoots. The CFO-LQIR yields a relatively faster transient 

recovery speed while applying strong damping control effort to attenuate the overshoots. 

Furthermore, the CFO-LQIR also imposes minimal control input requirements upon the 

actuator under said disturbance conditions.  

In experiment C (see Figure 6), the disturbance source renders highly disrupted con-

trol activity, which inevitably displaces the LQIR-driven pendulum arm with a large offset 

and induces large post-disturbance fluctuations in the arm as well as the apparatus rod. 

The FO-LQIR significantly improves the disturbance rejection capability, which leads to a 
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smaller offset and fluctuations in the responses. The CFO-LQIR effectively minimises the 

offset in the arm’s position as well as the amplitude of post-disturbance fluctuations while 

expending less input energy and exhibiting smoother variations in the control profile.  

In experiment D (see Figure 7), the LQIR and FO-LQIR both demonstrate weak im-

munity against the lumped disturbance along with large control input requirements. The 

CFO-LQIR effectively lowers the control input cost while effectively attenuating the chat-

tering induced by the disturbance.  

In experiment E (see Figure 8), the behaviour of the LQIR-driven system gets consid-

erably degraded by the introduction of the parametric model variation. The FO-LQIR de-

livers reasonable modeling error compensation capability. The CFO-LQIR demonstrates 

the optimum model error rejection ability. The CFO-LQIR exhibits strong resilience 

against the modeling error and effectively damps the perturbations induced by it while 

curbing the overall control energy expenditure.  

Table 2. Summary of experimental results. 

Experiment 
KPI Control Scheme 

Symbol Unit LQIR FO-LQIR CFO-LQIR 

A 

eθ_RMS degrees 0.53 0.43 0.36 

eθ_ITAE s.degrees 7.84 6.15 5.35 

eα_RMS degrees 15.69 11.85 10.08 

eα_ITAE s.degrees 263.50 196.18 167.61 

MSVm V2 8.47 8.20 7.18 

B 

eθ_RMS degrees 0.71 0.64 0.47 

eθ_ITAE s.degrees 9.64 9.30 6.44 

|Mp,θ| degrees 2.77 2.48 2.23 

ts,θ s 0.72 0.58 0.51 

eα_RMS  degrees 11.51 10.34 9.68 

eα_ITAE s.degrees 189.14 168.30 161.69 

MSVm V2 9.61 8.22 6.39 

Vp V −9.85 −9.63 −8.47 

C 

eθ_RMS degrees 1.12 0.56 0.42 

eθ_ITAE s.degrees 18.27 8.32 7.52 

eα_RMS degrees 32.47 28.10 22.06 

eα_ITAE s.degrees 524.41 458.96 380.65 

αoff degrees −38.46 −33.02 −23.72 

αp-p degrees −28.74 −30.75 −21.61 

MSVm V2 27.93 28.68 25.35 

Vp V −11.73 −10.52 −10.34 

D 

eθ_RMS degrees 0.46 0.32 0.29 

eθ_ITAE s.degrees 7.24 5.13 4.50 

eα_RMS degrees 10.14 9.85 9.53 

eα_ITAE s.degrees 160.08 165.78 160.63 

MSVm V2 12.62 11.73 10.50 

E 

eθ_RMS degrees 1.06 0.90 0.78 

eθ_ITAE s.degrees 15.83 12.82 11.88 

eα_RMS degrees 16.01 12.97 11.78 

eα_ITAE s.degrees 281.17 223.89 201.48 

MSVm V2 11.44 10.63 9.48 

The superior disturbance rejection capability and response speed of the proposed 

CFO-LQIR are attributed to the enhanced flexibility in the controller design contributed 
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by the complex orders associated with the integral/differential operators. These auxiliary 

terms increase the controller’s degrees of freedom to execute better realisation of the dis-

turbances and thus perform better self-reasoning to flexibly manipulate the control input 

as the error conditions change. From an operational point of view, the cos(. ) terms in the 

proposed control law (see (42)) act as gain modulators that depend on state error dynam-

ics to regulate the differential and integral gains online. This arrangement not only in-

creases the transient recovery speed and the damping against disturbances but also pre-

vents the system from demanding large control input requirements. Although the tuning 

of a multitude of parameters poses a cumbersome task, the enhanced robustness and the 

flexibility to manipulate the control effort offered by the FO-LQIR outweighs this demerit. 

6.4. A Special Comparison Case  

In this article, a slightly modified variant of the proposed CFO-LQIR is also imple-

mented and compared with the original CFO-LQIR procedure. The proposed modifica-

tion is inculcated by changing the weight assignment in the cost function 𝐽𝑐 to tune the 

controller parameters. Thus, the controller parameters are re-calibrated offline by apply-

ing unequal weights to the constituents of the cost function, as shown below. 

𝐽𝑐
′ = ∫ (|𝑒𝛼(𝑡)|2 + 2|𝑒𝜃(𝑡)|2 + |𝑢(𝑡)|2)

∞

0

𝑑𝑡           (45) 

In this case, a larger weight is intentionally applied to the arm’s state error minimi-

sation criteria in 𝐽𝑐
′  to observe its implications on the overall control behaviour of the pro-

posed control law. The redesigned control law is referred to as the Modified CFO-LQIR 

(MCFO-LQIR). The tuning procedure prescribed in Section 3.2 is used. The coefficients of 

the 𝑸 and 𝑹 matrices thus selected are given as 𝑞𝛼 = 39.4, 𝑞𝜃 = 55.2, 𝑞𝛼̇ = 7.6, 𝑞𝜃̇ =

2.3, and 𝜌 = 1.02. The re-calibrated matrices deliver the following state compensator 

gains: 𝑘𝛼 = −6.28 , 𝑘𝜃 = 146.87 , 𝑘𝛼̇ = −4.72 , and 𝑘𝜃̇ = 19.14 . The modified integral 

gains are 𝑘𝑖𝛼 = −2.68 and 𝑘𝑖𝜃 = −6.95 × 10−6. The real and imaginary parts of the new 

complex fractional orders chosen for the MCFO-LQIR law are 𝛽 = 0.938, 𝛾 = 0.894, 𝛿 =

0.619, 𝜇 = 0.315, 𝜌 = 1.861, 𝜀 = 1.385, 𝜎 = 0.077, and 𝜑 = 0.086. The position regula-

tion and station-keeping capability of the SRIP system regulated by the MCFO-LQIR is 

compared with the CFO-LQIR under nominal conditions. The resulting responses of 𝛼(𝑡), 

𝜃(𝑡), and 𝑉𝑚(𝑡) are depicted in Figure 9. 

The comparison reveals that the MCFO-LQIR scheme exhibits significant improve-

ment in the arm’s position regulation accuracy as compared to the original CFO-LQIR. 

However, this improvement is achieved at the cost of highly discontinuous control activ-

ity and large control signal requirements, which inevitably inject chattering into the pen-

dulum rod’s response, 𝜃(𝑡). The results of this experiment are quantified in Table 3. This 

behaviour is caused by the application of unequal weights to the state error and control 

minimisation criteria in the cost function, which puts a relatively larger impact on the arm 

position regulation behaviour while affecting the overall control energy expenditure and 

the response of the apparatus rod. 
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Figure 9. Response of CFO-LQIR versus MCFO-LQIR under nominal conditions. 

Table 3. Summary of experiment to compare MCFO-LQIR with CFO-LQIR. 

KPI Control Scheme 

Symbol Unit CFO-LQIR MCFO-LQIR 

eθ_RMS degrees 0.36 0.40 

eθ_ITAE s.degrees 5.35 6.32 

eα_RMS degrees 10.08 7.34 

eα_ITAE s.degrees 167.61 121.65 

MSVm V2 7.18 13.50 

Vp V 7.05 −14.61 

7. Conclusions 

This article systematically designs and implements an innovative complex-order con-

troller to improve the robustness and disturbance rejection capability of an under-actu-

ated and nonlinear SRIP system. For this purpose, a pre-calibrated set of complex-order 

integral and differential operators are augmented with a ubiquitous LQIR to improve the 

KPIs of the time domain performance. The proposed CFO-LQIR controller is compared 

against the integer-order LQIR and FO-LQIR. Especially, the introduction of the imagi-

nary orders in the proposed CFO-LQIR increases the controller’s degree of freedom and 

improves its flexibility and adaptability to realise and reject the bounded exogenous dis-

turbances. This augmentation equips the system to robustly handle nonlinear disturb-

ances and parametric uncertainties. The aforementioned propositions are justified by an-

alysing the experimental results collected from physical hardware. The proposed CFO-

LQIR outperforms the other two controller variants in every test case by showing rela-

tively faster transient recovery behaviour, lesser position regulation error, and stronger 

disturbance rejection. It remains optimum in every testing scenario by delivering rapid 

transits and strong damping against overshoots/undershoots as compared to its integer-

order and fractional-order counterparts. Furthermore, the CFO-LQIR exhibits economical 

control energy expenditure and minimal position regulation error in the rod as compared 

to those of the MCFO-LQIR variant. In the future, the efficacies of using complex-order 

controllers with adaptively self-adjusting real and imaginary orders for under-actuated 

systems can be investigated. Furthermore, the mentioned control scheme has the potential 

to be extended and applied to other nonlinear dynamical and cyber-physical systems. 
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