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Abstract: This research work is dedicated to solving the n-generalized Korteweg–de Vries (KdV)
equation in a fractional sense. The method is a combination of the Sumudu transform and the
Adomian decomposition method. This method has significant advantages for solving differential
equations that are both linear and nonlinear. It is easy to find the solutions to fractional-order PDEs
with less computing labor.
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1. Introduction

Many researchers have dedicated a significant amount of time to flourish structured
approaches for handling nonlinear versions of partial differential equations which emerge
in real-life problems related to science and engineering [1–4]. In mathematical writings,
the most repeatedly occurring derivative-operators in the fractional form are the Caputo
and Riemann–Liouville derivatives [5–7]. It has been proven that there is a good har-
mony between fractional-order derivatives and real-life problems rather than integer-order
derivatives. Fractional order differential equations represent many tricky physical and
natural prodigies.

In this research article, the nonlinear PDE Korteweg–de Vries (KdV) [8–11] has been
investigated. We use the Korteweg–de-Vries (KdV) equation to formulate it mathematically
in the study of waves on shallow water surfaces. This equation was established by Boussi-
nesq [12] and reclaimed by Diederik Korteweg and Gustav de Vries (1895) [13]. We can
express the local fractional Korteweg–De Vries (KdV) equation as follows:

D(1)
t v + vD(1)

x v + D(3)
x v = 0. (1)

The KdV equation is crucial to solving many real-world issues, such as in magma
flow, surface waves, Rossby waves, internal waves in a fluid with a stratified density, and
plasma waves [13]. The exact solution to the KdV equation was first provided by Kath
and Smyth [9] using the inverse scattering transform. For further information, see the KdV
equation and associated work [10,14,15].

Additionally, researchers have scrutinized various features of local fractional differential
equations by combining nonidentical techniques and methods. Abdel-Rady [16] has incor-
porated the natural transform method with the Adomain decomposition method, namely
the Adomain decomposition transform method, to resolve the nonlinear PDE [17–22]. From
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the motivation of the above-stated approach, we apply the local fractional Sumudu Ado-
mian decomposition method to investigate the local fractional Korteweg–de Vries (KdV)
equation [23–27].

The Sumudu transform and Adomian decomposition method were combined to
create the local fractional Sumudu decomposition method. This method has significant
advantages for solving differential equations. With less computing labour, this method
makes it easy to find the solutions to fractional differential equations that are both linear
and nonlinear. This method’s ability to solve the nonlinear fractional differential equation
without using He’s polynomials for the nonlinear variables is one of its strongest features.
There are no constraining assumptions or linearization in the proposed approach.

A number of local fractional differential equations, including the local fractional
KdV equation, the local fractional Tricomi equation, the local fractional heat conduction
equation, and others, have been applied to the Cantor fractal sets in recent papers by
Yang et al. [28–31] to describe natural phenomena in fractal-like media. Numerous analyt-
ical techniques have been developed to address nonlinear problems, including the local
fractional Fourier series approach, the Yang–Laplace transform method, the variational
iteration method for local fractional derivatives, and the variational iteration transform
method [4,11,32–39].

The primary goal of the work is to use a fractal Sumudu–Adomian decomposition
method to solve the n-generalized KdV equation in a fractional sense. Consider the
following n-generalized fractional KdV equation.

D(α)
t v + vnD(α)

x + D(3α)
x = F(x, t), 0 < α ≤ 1, (2)

with
v(x, 0) = f (x). (3)

The organization of the article is as follows:

Segment 1: Introduction
Segment 2: Ground Work
Segment 3: Existence and uniqueness of solution of fractional KdV equation
Segment 4: Analysis of the local fractional Sumudu decomposition method (LFSDM)
Segment 5: Application of the local fractional Sumudu decomposition method (LFSDM)
and graphical representation of the solution by using MATLAB software
Segment 6: Conclusions

2. Ground Work

In this piece of work, elementary definitions and vague abstractions of the calculus of
the fractional domain and Sumudu transform are given.

Definition 1. (see [23–27]) For a real-valued function ϕ(r ) such that

|ϕ(r )− ϕ(r0 )| < ∈α,

the local fractal derivative at r = r0 is defined as

ϕ(α)(r ) =
dα ϕ(r)

drα

∣∣∣∣
r=r0

= lim
r→r0

∆α(ϕ(r )− ϕ(r0 ))

(r− r0)
α , (4)

where
∆α(ϕ(r )− ϕ(r0 )) ∼= Γ(1 + α)(ϕ(r )− ϕ(r0 )).

Definition 2. The local fractal integral of ϕ(r ) of order α in the interval (a, b) is defined as
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a Ib
(α)ϕ(r ) = 1

Γ(1+α )

b∫
a

ϕ(τ )(dτ)α

= 1
Γ(1+α )

lim
∆τ→0

j=M−1
∑

j=0
ζ
(
τj
)(

∆τj
)α ,

(5)

where ∆τj = τj+1 − τj, ∆τ = max {∆τ1, ∆τ2, ∆τ3, . . . .} and
[
τj, τj+1

]
, j = 0, . . . , M− 1, τ0 =

a, τM = b is a segregation of (a, b) [30,31].

Definition 3. The Mittag–Leffler function, sine function, and cosine function are defined as [30,31]:

Eα(rα) =
+∞

∑
k=0

rkα

Γ(kα + 1)
, 0 < α ≤ 1, (6)

sinα(rα) =
+∞

∑
k=0

(−1)k r(2k+1)α

Γ((2k + 1)α + 1)
, 0 < α ≤ 1, (7)

cosα(rα) =
+∞

∑
k=0

(−1)k r2kα

Γ(2kα + 1)
, 0 < α ≤ 1. (8)

The following formulae related to the local fractional derivatives and the integral of non-
differentiable functions are mentioned in [30,31].

dα

drα

rkα

Γ(kα + 1)
=

r(k−1)α

Γ((k− 1)α + 1)
, (9)

dα

drα
Eα(rα) = Eα(rα), (10)

dα

drα
sinα(rα) = cosα(rα), (11)

dα

drα
cosα(rα) = sinα(rα), (12)

0 Iα
r

rkα

Γ(kα + 1)
=

r(k+1)α

Γ((k + 1)α + 1)
. (13)

Here, we provide definitions and some properties of the local fractional Sumudu
transform.

New transform operator LFSα : ϕ(r)→ Fα(l) is defined as:

LFSα

{
∞

∑
k=0

akrkα

}
=

∞

∑
k=0

Γ(1 + kα)aklkα. (14)

Few cases are:

LFSα{Eα(iαrα)} =
∞

∑
k=0

ikαlkα. (15)

LFSα

{
rα

Γ(1 + α)

}
= lα. (16)

Definition 4. The local fractional Sumudu transform of function ϕ(r) of order α is elucidated as

LFSα{ϕ(r )} = Fα(l) =
1

Γ(α + 1)

∞∫
0

Eα

(
−rαl−α

) ϕ(r )
lα

(dr)α, 0 < α ≤ 1. (17)



Mathematics 2023, 11, 882 4 of 13

The local fractional inverse Sumudu transform is elucidated as

LFS−1
α {Fα(l)} = ϕ(r ), 0 < α ≤ 1. (18)

Definition 5. (linearity) If LFSα{ϕ(r )} = Fα(l) and LFSα{ψ(r )} = Pα(l), then we have,

LFSα{ϕ(r ) + ψ(r )} = Fα(l) + Pα(l). (19)

Proof. From the Definition 4, we obtain the result.

Definition 6. (1) (The local fractional Sumudu transform of the local-fractional derivative)

If LFSα{ϕ(r)} = Fα(l) then we have,

LFSα

{
dnα ϕ(r)

drnα

}
=

1
lnα

[
Fα(l)−

n−1

∑
k=0

lkα ϕkα(0)

]
. (20)

when n = 1 and n = 2 in (20), we obtain,

LFSα

{
dα ϕ(r)

drα

}
=

1
lα
[Fα(l)− ϕ(0 )]. (21)

LFSα

{
d2α ϕ(r)

dr2α

}
=

1
l2α

[
Fα(l)− ϕ(0 )− lα ϕ(α)(0 )

]
. (22)

(2) (The local fractional Sumudu transform of the local-fractional integral) If LFSα{ϕ(α)} = Fα(l)
then we have,

LFSα

{
0 I(α)r ϕ(r)

}
= lαFα(l). (23)

Proof. see [23].

Definition 7. (local fractional convolution) If LFSα{ϕ(r )} = Fα(l) and LFSα{ψ(r )} = Pα(l),
then we have,

LFSα{ϕ(r) ∗ ψ(r )} = lαFα(l)Pα(l), (24)

with

ϕ(r) ∗ ψ(r ) =
1

Γ(α + 1)

∞∫
0

ϕ(w )ψ(r− w )(dr)α. (25)

Proof. see [23].

3. Existence and Uniqueness of the Solution of the Local Fractional KdV Equation

Generalized Korteweg–de Vries (KdV) equation taken into account is as follows

D(α)
t v + vnD(α)

x v + D(3α)
x v = F(x, t), (26)

v(x, 0) = v0(x), (27)

now we can write the system in operator form as:

Lα[v((x, t) )] = φ[v((x, t) )], (28)

subject to the initial condition
v(x, 0) = v0(x), (29)
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where,

Lα =
∂α

∂tα

and
φ[v(x, t)] = F(x, t)− vnD(α)

x v + D(3α)
x v.

Theorem 1. Let the function defined by

φ[v(x, t)] = F(x, t)− vnD(α)
x v + D(3α)

x v,

be local, fractional, and continuous, which also satisfies the Lipschitz condition i.e.

|φ[v1(x, t)]− φ[v2(x, t)]| ≤ ηα|v1(x, t)− v2(x, t)|, (30)

0 ≤ α ≤ 1, 0 < η < 1.

Then the system
Lα[v((x, t) )] = φ[v((x, t) )],

v(x, 0) = v0(x), (31)

has a unique solution in Cα[a, b], where Cα is a space of a continuous function with a fractal
derivative of order α.

Proof. Let the map P : Cα[a, b]→ Cα[a, b] be defined by

P[v(x, t)] = v0(x) +
1

Γ(1 + α)

∫ τ

α
φ[v(x, s)](ds)α, (32)

we first prove by induction that

‖Pn{v1((x, t) )} − Pn{v2((x, t) )}‖α

≤ ηnα |bα−aα |
Γn(1+α)

n
‖v1((x, t) )− v2((x, t) )‖α, n = 1, 2, 3 . . .

(33)

for n = 1, we get
‖P{v1((x, t) )} − P{v2((x, t) )}‖α

≤
∣∣∣ 1

Γ(1+α)

∫ τ
α φ[v1(x, s)]− φ[v2(x, s)](ds)α

∣∣∣,
‖P{v1((x, t) )} − P{v2((x, t) )}‖α

≤
∣∣∣∣ 1

Γ(1+α)

τ∫
α

ηα|v1((x, s) )− v2((x, s) )|(ds)α

∣∣∣∣.
This implies that

‖P{v1((x, t) )} − P{v2((x, t) )}‖α

≤ ηα |bα−aα |
Γ(1+α) ‖v1((x, t) )− v2((x, t) )‖α.

(34)

Assume the equality holds for n = k∥∥PK{v1((x, t) )} − PK{v2((x, t) )}
∥∥

α

≤ ηkα |bα−aα |
Γk(1+α)

k
‖v1((x, t) )− v2((x, t) )‖α,

(35)

for n = k + 1, consider∥∥∥Pk+1{v1((x, t) )} − Pk+1{v2((x, t) )}
∥∥∥

α

≤
∣∣∣ 1

Γ(1+α)

∫ τ
α φ[Pk{v1(x, s)}]− φ[Pk{v2(x, s)}](ds)α

∣∣∣,
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further it can be written as,∥∥∥Pk+1{v1((x, t) )} − Pk+1{v2((x, t) )}
∥∥∥

α

≤
∣∣∣ 1
|Γ(1+α)

∫ τ
α ηα

∣∣∣Pk{v1((x, s) )} − Pk{v2((x, s) )}
∣∣∣(ds)α

∣∣∣.
This implies that, ∥∥∥Pk+1{v1((x, t) )} − Pk+1{v2((x, t) )}

∥∥∥
α

≤ η(k+1)α |bα−aα |
Γk+1(1+α)

k+1
‖v1((x, t) )− v2((x, t) )‖α,

(36)

hence, it proves our assumptions.
Now, we have

η(k+1)α|bα − aα|
Γk+1(1 + α)

k+1

‖v1((x, t) )− v2((x, t) )‖α → 0 (37)

as n→ ∞.
Thus PK has contraction on Cα[a, b]. Therefore, the system persists to a unique solu-

tion.

4. Analysis of the Local Fractional Sumudu Decomposition Method (LFSDM)

The local fractional non-homogeneous nonlinear KdV equation with the initial condi-
tion is given as follows:

D(α)
t v + vnD(α)

x v + D(3α)
x v = F(x, t), (38)

v(x, 0) = v0(x), (39)

applying the local fractional Sumudu transform to the above equation, we obtain the
following result.

LFSα

[
D(α)

t v
]
+LFSα

[
vnD(α)

x v
]

α
+LFSα

[
D(3α)

x v
]
=LFSα[F(x, t)]. (40)

Using the properties of the local fractional Sumudu transform, we attain

LFSα[v] = v(x, 0) + wα
[LFSα[F(x, t)]

]
−wα

[
LFSα

[
vnD(α)

x v
]

α
+LFSα

[
D(3α)

x v
]]

, (41)

the following is the result of applying the inverse local fractional Sumudu transform on
both sides of (41)

v(x, t) = v(x, 0) + LFS−1
α

{
wα
[LFSα[F(x, t)]

]}
−LFS−1

α

{
wα
[

LFSα

[
vnD(α)

x v
]
+LFSα

[
D(3α)

x v
]]}

,
(42)

now according to the Adomian decompositon method [17–19], we decompose v(x, t) in
infinite series given by

∞

∑
r=0

vr(x, t). (43)

Substituting (43) in (42)

∞
∑

r=0
vr(x, t) = v(x, 0) + LFS−1

α

{
wα
[LFSα[F(x, t)]

]}
−LFS−1

α

{
wα

[
LFSα

(
∞
∑

r=0
Ar

)
+LFSα

[
D(3α)

x
∞
∑

r=0
vr(x, t)

]]}
.

(44)
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Now comparing the terms of both sides of Equation (44), we achieve

v0(x, t) = v(x, 0) + LFS−1
α

{
wα
[

LFSα[F(x, t)]
]}

, (45)

v1(x, t) = −LFS−1
α

{
wα
[

LFSα(A0)+
LFSα

[
D(3α)

x v0(x, t)
]]}

, (46)

v2(x, t) = −LFS−1
α

{
wα
[

LFSα(A1)+
LFSα

[
D(3α)

x v1(x, t)
]]}

, (47)

and so on.
Therefore the solution of Equation (38) is given by:

v(x, t) =
∞
∑

r=0
vr(x, t) = v0(x, t) + v1(x, t) + v2(x, t) + . . . (48)

5. Appliaction

Here, we’ll use the suggested technique, the local fractional Sumudu decomposition
method (LFSDM) to resolve a few cases.

Example 1. In this illustration, we examine the following local fractional non-homogeneous
KdV Equation:

D(α)
t v + vnD(α)

x v + D(3α)
x v = Eα(−xα), (49)

with the initial condition
v(x, 0) = Eα(−xα), (50)

where

Eα(xα) =
+∞

∑
k=0

xkα

Γ(kα + 1)
, 0 < α ≤ 1. (51)

From Equation (44), we can write

∞
∑

r=0
vr(x, t) = Eα(−xα) + LFS−1

α

{
wα
[LFSα[Eα(−xα)]

]}
−LFS−1

α

{
wα

[
LFSα

(
∞
∑

r=0
Ar

)
+LFSα

[
D(3α)

x
∞
∑

r=0
vr(x, t)

]]}
.

(52)

Now, comparing terms on both sides of Equation (52), one has

v0(x, t) = Eα(−xα) + Eα(−xα)
tα

Γ(1 + α)
, (53)

and
v1(x, t) = −LFS−1

α

{
wα
[

LFSα(A0)+
LFSα

[
D(3α)

x v0(x, t)
]]}

, (54)

further, the above equation can be written as

v1(x, t) = −LFS−1
α

[
wαLFSα

{
−En+1

α (−xα) − Eα(−xα)
}]

, (55)

v1(x, t) =
tα

Γ(1 + α)

{
En+1

α (−xα) + Eα(−xα)
}

, (56)

similarly, one can find

v2(x, t) = −LFS−1
α

[
wαLFSα

{
nvn−1

0 v1D(α)
x v0 + vn

0 D(α)
x v1 + D(3α)

x v1

}]
, (57)
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v2(x, t) = −LFS−1
α

wαLFSα


nEn−1

α (−xα) tα

Γ(1+α)

(
En+1

α (−xα) + Eα(−xα)
)

(−Eα(−xα)) + En
α(−xα) tα

Γ(1+α)(
−(n + 1)En+1

α (−xα)− Eα(−xα)
)
+

tα

Γ(1+α)

(
−(n + 1)3En+1

α (−xα)− Eα(−xα)
)



 (58)

v2(x, t) =
t2α

Γ(1 + 2α)

 nE2n+1
α (−xα) + nEn+1

α (−xα)+
(n + 1)E2n+1

α (−xα) + En+1
α (−xα)

+(n + 1)3En+1
α (−xα) + Eα(−xα)

, (59)

and so on.
Therefore, the solution of Equation (49) is given by:

v(x, t) =
∞

∑
r=0

vr(x, t) = v0(x, t) + v1(x, t) + v2(x, t) + . . . (60)

Particular Case: when we substitute n = 1 in Equation (49), we get

D(α)
t v + vD(α)

x v + D(3α)
x v = Eα(−xα), (61)

with the initial condition
v(x, 0) = Eα(−xα). (62)

Then by Equation (56)

v1(x, t) =
tα

Γ(1 + α)

{
E2

α(−xα) + Eα(−xα)
}

, (63)

and from Equation (59)

v2(x, t) = t2α

Γ(1+2α)

[
3E3

α(−xα) + 10E2
α(−xα) + Eα(−xα)

]
, (64)

and so on.
Substituting the above values into Equation (60), we attain the requisite outcome of (49).

The geometrical interpretation of the above result is (Figures 1–6):

Figure 1. Outcome of Example 1 for α = 0.6309 at n = 2.
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Figure 2. Outcome of Example 1 for α = 0.6309 at n = 3.

1 

Figure 3. Outcome of Example 2 for α = 0.932 at n = 2.

Figure 4. Outcome of Example2 for α = 0.932 at n = 3.
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Figure 5. Outcome of Example 2 for α = 0.632 at n = 2.

Figure 6. Outcome of Example 1 for different values of α = 1, 0.9, 0.8, 0.7 at n = 2 and x = 0.25.

Example 2. In this illustration, we consider the following local fractional homogeneous KdV equation:

D(α)
t v + vnD(α)

x v + D(3α)
x v = 0, (65)

with the initial condition
v(x, 0) = sinα(xα), (66)

where the sine function is given by:

sinα(xα) =
+∞

∑
k=0

(−1)k x(2k+1)α

Γ((2k + 1)α + 1)
, 0 < α ≤ 1. (67)

From Equation (44), we get

∞
∑

r=0
vr(x, t) = sinα(xα)−LFS−1

α wα


LFSα

(
∞
∑

r=0
Ar

)
+

LFSα

[
D(3α)

x
∞
∑

r=0
vr(x, t)

]
. (68)

Now, comparing terms on both sides of Equation (68), we get
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v0(x, t) = sinα(xα), (69)

v1(x, t) = −LFS−1
α

{
wα
[

LFSα(A0)+
LFSα

[
D(3α)

x v0(x, t)
]]}

, (70)

substituting the values of A0 and v0(x, t) into the expression of v1(x, t), one gets the following.

v1(x, t) = −LFS−1
α

[
wαLFSα{sinn

α(xα)cosα(xα)− cosα(xα)}
]
,

v1(x, t) =
tα

Γ (1 + α)
[− sinn

α(xα)cosα(xα) + cosα(xα)], (71)

similarly, we can find

v2(x, t) = −LFS−1
α

[
wαLFSα

{
A1 + D(3α)

x v1

}]
, (72)

now, substituting the values of A1 and v1 into v2(x, t), we get

v2(x, t) = −LFS−1
α


wαLFSα


tα

Γ(1 + α)



−2n sin2n−1
α (x)α cos2

α (x)α−
n(n− 1)(n− 2) sinn−3

α (x)α

cos4
α (x)α+(

6n2 − n
)

sinn−1
α (x)α cos2

α (x)α+
sin2n+1

α (x)α − (3n + 2) sinn+1
α (x)α+

sinα(x)α






, (73)

further,
v2(x, t) =

t2α

Γ(1+2α)


2n sin2n−1

α (x)α cos2
α (x)α+

n(n− 1)(n− 2) sinn−3
α (x)α cos4

α (x)α−(
6n2 − n

)
sinn−1

α (x)α cos2
α (x)α−

sin2n+1
α (x)α + (3n + 2) sinn+1

α (x)α − sinα(x)α

 , (74)

and so on.
Therefore the solution of Equation (65) is given by:

v(x, t) =
∞

∑
r=0

vr(x, t) = v0(x, t) + v1(x, t) + v2(x, t) + . . . (75)

Geometrical representation of the above solution is as follows (Figure 7):

Figure 7. Outcome of Example 2 for α = 1, 0.9, 0.8, 0.7 at n = 2 and x = 0.25.
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6. Conclusions

This research work uses a method that merges the Sumudu transform and the Ado-
mian decomposition method. Numerous fractional-order nonlinear PDEs can be solved
effectively with this technique. This research is dedicated to solving the Korteweg–de Vries
(KdV) equation. The applicability of the proposed method is represented in examples.
Graphical representations of the solution demonstrate the relevance of the technique. In
subsequent work, the method may be utilized to resolve coupled nonlinear PDEs and
compare their results to demonstrate the competency of the technique.
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