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Abstract: The reliability of software has a tremendous influence on the reliability of systems. Soft-
ware dependability models are frequently utilized to statistically analyze the reliability of software.
Numerous reliability models are based on the nonhomogeneous Poisson method (NHPP). In this
respect, in the current study, a novel NHPP model established on the basis of the new power function
distribution is suggested. The mathematical formulas for its reliability measurements were found and
are visually illustrated. The parameters of the suggested model are assessed utilizing the weighted
nonlinear least-squares, maximum-likelihood, and nonlinear least-squares estimation techniques.
The model is subsequently verified using a variety of reliability datasets. Four separate criteria
were used to assess and compare the estimating techniques. Additionally, the effectiveness of the
novel model is assessed and evaluated with two foundation models both objectively and subjectively.
The implementation results reveal that our novel model performed well in the failure data that
we examined.

Keywords: mean value function; reliability function; maximum-likelihood estimation; intensity
function; mean time between failures

MSC: 60E05; 62N05; 62Fxx

1. Introduction

In order to advance and make breakthroughs, development and science today need
high-excellence hardware and high-characteristic software. Software’s capacity to integrate
has enabled developers to come up with more optimistic systems that have a wider and
more interdisciplinary scope. The extensive use of software elements is primarily liable for
the high level of general complicated numerous system designs. It is vital to addressing
concerns such as the product’s reliability in order to optimize software utilization. Software
engineers can develop various testing programs or automate testing equipment according
to the technical specifications, timeframe, and costs of the client using tools, techniques,
and approaches [1]. Through the formation of models that regulate software breakdowns
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centered on different fundamental presumptions, considerable work has been put into
determining the level of a software system’s reliability [2]. “Software reliability models
(SRMs)” refers to all of these models. These models’ main objectives are to assess the time to
failure centered on software test data, fit a theoretical distribution to time-between-failure
data, estimate software system reliability, and design a terminating guideline to choose
when the software should be provided after testing in the market [3,4].

The most important factor in the software lifecycle, particularly throughout the devel-
opment and operating phases, is software reliability. Various SRMs are employed at various
stages of the software formation lifespan. Software development companies must manage
quality accomplishments and assessments in light of the rising demand for high-quality
software [5,6]. When testing software, it is common to expect that fixing flaws does not
result in the introduction of new ones, and that the product would become more reliable
as bugs are found and fixed. Software reliability growth models (SRGMs) are employed
during the testing phase. Nonhomogeneous Poisson process (NHPP) models, a broad
class of good stochastic process models employed in dependable technology, have been
utilized to analyzed hardware reliability issues with success [7]. They are especially helpful
in defining the features of failure processes that exhibit particular tendencies, including
reliability growth and deterioration. As a result, it is simple to apply NHPP models to
software reliability analysis [8,9]. A model is NHPP if its primary premise is that the
malfunction mechanism is adequately captured by NHPP. The primary aspect of these
models, aside from their wide usefulness in the field of testing, is the existence of a mean
value function that is expressed as the anticipated number of failures up to a particular
period. In a real sense, SRM is an NHPP’s mean value function. Since they can simulate
both continuous and discrete stochastic processes, these models are adaptable [10,11]. In
order to fit an exponential reliability growth curve, earlier SRGMs, often referred to as
exponential SRGMs, were formed. Additionally, a few exponential models were created to
account for various testing scenarios [12–14].

Over the years, a number of researchers have employed reliability models on the basis
of the NHPP [15,16]. A revised NHPP model based on the partial differential equation
was proposed by Xu and Yao [17], and their model had a better fit with the data. An
NHPP model based on the two-parameter log-logistic distribution was newly developed
by Al-Turk [18]. Through the use of the software reliability modeling techniques of the
reliability fitness test and predictive power analysis, Xiao and Dohi [19] examined the
effectiveness of Weibull distribution features. Pham [20] introduced a novel distribution
function to define utilizing the failure rate function, and a method for estimating the failure
rate’s confidence interval. After examining the variables impacting software reliability
using exponential–exponential distribution, Kim [21] took on a challenge regarding the
autonomous error detection technique, taking into account both the learning effect set by
the testing manager and the unexplained error. An SRGM depending on Gaussian novel
distribution was proposed in [22]. Studies showed that the suggested model performed
better at fitting data and performing predictions than alternative dependability models
do. Yang [23] used the NHPP software reliability model to study and assess reliability
properties on the basis of Weibull lifetime distribution. Additionally, Yang [24] offered per-
formance characteristics depending on exponential distribution characteristics for software
development cost and release time. Studies showed that the suggested model performed
better at fitting data and performing predictions than alternative reliability models do.
Kim and Moon [25] studied the reliability performance evaluation of a software reliability
model using a modified intensity function. Kim and Shin [26] analyzed the comparative
study of the NHPP software reliability model on the basis of exponential and inverse
exponential distributions. Dohi et al. [27] summarized the so-called Burr-type software reli-
ability models (SRMs) on the basis of the nonhomogeneous Poisson process (NHPP), and
comprehensively evaluated the model performance by comparing it with that of existing
NHPP-based SRMs. Because of this, after using the exponential family and nonexponential
family distributions employed in the field of reliability in the finite failure NHPP software
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reliability model, we recently examined the reliability properties of the new model, which
belongs to the NHPP class and nonexponential family distributions, in order to explore if
our findings could improve the estimation accuracy of the models.

Many scholars have been motivated to examine and explore the PF distribution’s
further extensions and applications in various practical fields because of its usefulness and
simplicity. Dallas [28], for example, established a connection between the PF and Pareto
distributions. PF distribution was used by Meniconi and Barry [29] to model data for
electrical components, Tavangar [30] described the PF distribution using dual generalized
order statistics, and Chang [31] explored the independence of record values on the basis of
the characterization of the PF distribution.

As a result, the performance characteristics of the selected distributions were newly
compared and examined on the basis of the NHPP reliability model in this study after
choosing PF distributions that are efficient in the field of reliability testing. The beta version
of the PF was developed by Cordeiro and Brito [32], who also discussed its application
to data on milk production and petroleum reservoirs. The Weibull-G class was used by
researchers [33] to generalize the PF and apply it to data in the shape of a bathtub.

The reliability sciences are interested in the current scientific zeal to find novel NHPP
software reliability models with numeric and analytical approaches for solving reliabil-
ity problems with nonlinearity, such as nonlinear least-squares estimation (NLSE) and
weighted nonlinear least-squares estimation (WNLSE). The primary objective of this paper
is to propose an SRGM based on new power function (NPF) distribution to improve the
estimation accuracy of the models, and to investigate various numerical methods to handle
dynamic software reliability data in order to see if our findings could be expanded and
validated.

The suggested model’s behavior is also precisely predicted in this study using different
nonlinear techniques, including maximum-likelihood estimates. In the literature, there
are no studies that optimized and predicted reliability analyses of NHPP–NPF software
reliability model using different methods. While estimation approaches are usable by
a variety of reliability engineers and software modeling, this article provides a real-life
implementation to assess and predict the NHPP–NPF software reliability model. This study
aims to fill a significant gap in the pool of the literature.

2. NHPP–NPF Model Description

Below is a detailed discussion of the NHPP–NPF model.

2.1. NHPP-NPF Model Formation

The PF model is a flexible lifespan model that may effectively fit a variety of failure
datasets [34]. In theory, one particular illustration of a beta model is the PF model. It was
extracted from Pareto distribution using the inverse transformation. Additionally, it belongs
to the Pearson Type I model’s subclass [35]. Iqbal et al. [36] explored the new power function
(NPF) distribution. In order to quickly obtain failure rates and reliability measurements,
the majority of engineers prefer to use simpler distributions. As a result, it is advised that
NPF distribution be studied at as a straightforward choice that, in some circumstances, can
give failure data a better fit, and more pertinent information on dependability and hazard
rates. The distribution function (DF) and probability density function (PDF) of the NPF
model with scale µ and shape λ are

^
G( t| µ, λ) = 1−

(
1− t

1 + µt

)λ

, (1)

^
g ( t| µ, λ) =

λ(µ + 1) (1− t)λ−1

(1 + µt)λ+1 , −1 < µ < ∞, λ > 0, t ∈ (0, 1). (2)

The NHPP model’s primary objective is to evaluate and predict the expected number
of identified faults up to a particular time, which is accessible using its mean value function
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(MVF). If
^
G(t) is the distribution function of time between two successive failures, and

^
m(t) is the total number of defects identified at time t, then the NHPP model’s MVF can be
stated as follows [37]:

^
m(t) = ξ

^
G(t), (3)

Contrasted to the corresponding intensity function being

^
δ (t) =

d
^
m(t)
dt

= ξ
^
g (t), (4)

where ξ > 0 is the expected frequency of errors, (3) and (4) are updated using (1) and (2),
respectively; we obtain the NHPP–NPF model’s MVF in the manner described below:

^
m( t| ξ, µ, λ) = ξ

{
1−

(
1− t

1 + µt

)λ
}

, (5)

and the following intensity function in relation to it:

^
δ ( t| ξ, µ, λ) =

ξλ(µ + 1)(1− t)λ−1

(1 + µt)λ+1 . (6)

2.2. Model Characteristics

Reliability metrics from the NHPP model are highly helpful in explaining failure
scenarios. The key mathematical formulas of these metrics for the new model are provided
in this section. Initially, the NHPP–NPF model’s remaining fault count is defined by

^
η (t) = ξ −^

m(t), (7)

^
η (t) = ξ

(
1− t

1 + µt

)λ

. (8)

Subsequently, the following definition of the error detection rate also represents the
average failure rate caused by faults that can be used:

d(t) =

^
δ (t)

ξ −^
m(t)

, (9)

d(t) =
λ(µ + 1)

(1− t)(1 + µt)
. (10)

in contrast, the mean time between failures (MTBF) is:

MTBF( t| _) =
1

^
δ (t)

, MTBF( t| ξ, µ, λ) =
(1 + µt)λ+1

λξ(µ + 1)(1− t)λ−1 . (11)

Conditional reliability R(x|t) is expressed by the probability that an undetected fault
is found in the (t, t + x) interval; given that a fault occurred at time t ≥ 0, x > 0 is the interval
of operational time according to some practical or administrative requirements [38]. The
NHPP–NPF model’s conditional reliability can be calculated mathematically as follows:

R(x|t ) = exp
{
−^

m(t + x)−^
m(t)

}
, (12)

R(x|t ) = exp

[
ξ

{
−
(

1− (t + x)
1 + µ(t + x)

)λ

−
(

1− t
1 + µt

)λ
}]

. (13)
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2.3. Diagrams of Model Attributes

Figures 1–6 display the plots of the NHPP–NPF model’s features for various chosen
input parameters. The MVF, which depicts the fluctuation in the number of errors identified
with regard to time, is shown in Figure 1a–c. Defects found during testing were first quite
high, but subsequently became steady. Greater values of parameter ξ also generated a
higher MVF form. Additionally, Figure 1 displays how the scale µ and shape λ parameters
evolved on the MVF profile. When µ and λ > 1, it produces a jump impact on the MVF
profile, which decreased as µ < 1 and λ ≤ 1. Figure 2 illustrates how the intensity function
(IF) changed across the various chosen parameters and had a high bathtub-shaped level
with a greater value ξ (see Figure 2c). The IF profile exhibits monotone growing (when
µ , λ > 1) and declining (µ < 1 and λ ≤ 1) behavior (see Figure 2a,b).
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Figure 1. Visualization of the MVF of the NHPP–NPF model.

As the testing duration grew, the number of remaining error functions was reduced,
as shown in Figure 3a–c; smaller values of parameter ξ resulted in fewer appearances of
the number of the remaining errors’ function. Figure 3b shows the behavior of µ and λ on
the number of the remaining errors functions’ profile.

Higher values (µ , λ > 1) of µ and λ tended to enhance the profile of the remaining
errors functions. When µ < 1 and λ ≤ 1 and ξ was constant, the profile of the remaining
error functions was diminished. According to Figure 4a–c, the error detection rate function
(EDRF) grew as testing duration grew; a higher value of the ξ parameter resulted in bathtub
shapes, which are desirable qualities in a lifetime model. When µ < 1 and λ ≤ 1, ξ was
constant, and µ , λ > 1, the EDRF increased as the testing period increased, resulting in a
rising form of the failure occurrence rate per fault of the software function. These adaptable
EDRF forms are great for including monotonic (MNT) and nonmonotonic (NMNT) EDRF
trends that are typically present in practical applications. With the passage of testing time,
the MTBF function profile in Figure 5a,b shows monotonic increasing behavior and bathtub
shapes. Figure 6a,b shows that the conditional reliability approached zero as t increased to
infinity.
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R(x|t ) at different levels of λ and ξ demonstrates an initial rise to maximum and late
fall to stationary of zero, at earlier time, most of the faults are yet removed; with elapsing
time, more are debugged and this leads to a fall in software reliability; when the system
is cleared of all faults, R(x|t ) reaches a stationary state. Therefore, later timeframe also
presents a sharper drop to zero.

3. Estimation Techniques

The nonlinear least-squares (NLS), nonlinear weighted least-squares (NWLS), and
maximum-likelihood (ML) techniques are employed in this section to estimate the parame-
ters of the NHPP–NPF model.

NLSE, NWLSE and MLE Techniques

Suppose that, after T units of testing, n defects were found in the software system. Let
0 < t1 < t2 < . . . < tn < T be the times when the failures were noticed.

^
m(t|ξ, λ, µ ) is the

MVF with parameters ξ, λ and µ. The parameters were, thus, obtained from n observed
data pairs:

(
^
m0, t0

)
,
(
^
m1, t1

)
, . . . ,

(
^
mn, tn

)
where

^
mi is the sum of all defects recorded

throughout time (0, ti). The NLSE approach then needed to minimize the following function:

NLSE( t| ξ, λ, µ) =
n

∑
i=1

{
^
mi −

^
m(ti|ξ, λ, µ )

}2

=
n

∑
i=1

{
^
mi − ξ

(
1−

(
1− ti

1 + µti

)λ
)}2

, (14)

Using (14) partial derivative
(

∂LSE( t| .)
∂.

)
with regard to ξ, λ and µ, we obtain, respectively,

∂LSE( t| ξ, λ, µ)

∂ξ
= −2

n

∑
i=1

{
^
mi − ξ

(
1−

(
1− ti

1 + µti

)λ
)}(

1−
(

1− ti
1 + µti

)λ
)

, (15)

∂LSE( t| ξ, λ, µ)

∂µ
= −2λξ

n

∑
i=1

ti

(
1−ti

1+µti

)λ
{
^
mi − ξ

(
1−

(
1−ti

1+µti

)λ
)}

1 + µti
, (16)

∂LSE( t| ξ, λ, µ)

∂λ
= 2ξ

n

∑
i=1

(
1− ti

1 + µti

)λ

ln
(

1− ti
1 + µti

){
^
mi − ξ

(
1−

(
1− ti

1 + µti

)λ
)}

. (17)

The WNLSE technique, on the other hand, needs to minimize the following function:

NWLSE( t| ξ, λ, µ) =
n

∑
i=1

Θi

{
^
mi −

^
m(ti|ξ, λ, µ )

}2
, (18)

WLS( t| ξ, λ, µ) =
n

∑
i=1

Θi

{
^
mi − ξ

(
1−

(
1− ti

1 + µti

)λ
)}2

, (19)

where Θi > 0, and i = 1, 2, . . . , n are positive weights
n
∑

i=1
Θi = n [39]. Using (19) partial

derivative
(

∂LSE( t| .)
∂.

)
with regard to ξ, λ and µ, we obtain, respectively,

∂WLSE( t| ξ, λ, µ)

∂ξ
= −2

n

∑
i=1

Θi

{
^
mi − ξ

(
1−

(
1− ti

1 + µti

)λ
)}(

1−
(

1− ti
1 + µti

)λ
)

, (20)

∂WLSE( t| ξ, λ, µ)

∂µ
= −2λξ

n

∑
i=1

Θi

ti

(
1−ti

1+µti

)λ
{
^
mi − ξ

(
1−

(
1−ti

1+µti

)λ
)}

1 + µti
, (21)
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∂LSE( t| ξ, λ, µ)

∂λ
= 2ξ

n

∑
i=1

Θi

(
1− ti

1 + µti

)λ

ln
(

1− ti
1 + µti

){
^
mi − ξ

(
1−

(
1− ti

1 + µti

)λ
)}

. (22)

It is difficult to obtain the closed-form expression for the NLS and NWLS estimates of
ξ, λ and µ. Therefore, parameter estimates can be obtained by numerically solving nonlinear
Equations (15)–(17) and (20)–(22), and one can estimate

^
m( t| ξ, λ, µ) by substituting these

estimates into Equation (5).
The log-likelihood function of the finite-failure NHPP model is obtained using (5) and (6)

as follows.

l( t| ξ, γ, µ) = log
n

∏
i=1

ξλ(µ + 1)(1− ti)
λ−1

(1 + µti)
λ+1 exp

(
−ξ

{
1−

(
1− tn

1 + µtn

)λ
})

. (23)

l( t| ξ, γ, µ) = n log ξ + n log λ + n log(µ + 1) + (λ− 1)
n

∑
i=1

log(1− ti)− (λ + 1)
n

∑
i=1

log(1 + µti)− ξ

{
1−

(
1− tn

1 + µtn

)λ
}

. (24)

Our objective was to obtain the MLEs. In order to do this, we first maximized (24),
and computed partial derivatives with respect to unknown parameters and equal to zero
in accordance with those results.

∂l( t| ξ, λ, µ)

∂ξ
=

n
ξ
−
{

1−
(

1− tn

1 + µtn

)λ
}

, (25)

∂l( t| ξ, λ, µ)

∂λ
=

n
λ
+

n

∑
i=1

log{1− ti} −
n

∑
i=1

log(1 + µti) + ξ

(
1− tn

1 + µtn

)λ

log
(

1− tn

1 + µtn

)λ

, (26)

∂l( t| ξ, λ, µ)

∂µ
=

n
1 + µ

− ξ
λtn

(1 + µtn)

(
1− tn

1 + µtn

)λ

−
n

∑
i=1

(1 + λ)ti
(1 + µti)

. (27)

The final three nonlinear equations failed to yield the exact answers for MLEs and
the ideal values of the estimates of ξ, λ and µ. MLEs could be evaluated numerically using
statistical software [40].

4. Performance Evaluation

To study the effectiveness of our suggested models more, numerical experiments were
conducted. The three techniques of estimation for the proposed model were compared
using the illustrations of five real datasets. In order to compare the effectiveness of the
suggested model with that of two other models, we also conducted comparative research.
At the conclusion of this article, practical findings based on the real examined datasets are
given and discussed. A software program that simplifies mathematical computation was
created using Mathematica 12 and R language 3.6.1.

4.1. Failure Datasets

Five published datasets with different sizes were chosen for our evaluation study.
References for the selected datasets are shown in Table 1.

4.2. Model Performance Measures

On the basis of (28)–(32), we utilized the following three criteria to assess how well
the considered models performed. The discrepancy between the expected values and the
actual observations is the mean square error (MSE), defined as follows:

MSE =
n

∑
i=1

 (
^
mi(ti)−

_
^
mi(ti))

2

n− k

 (28)
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where n is the number of measurements, k is the number of parameters to be estimated,
and

^
mi(ti) is the total cumulative number of errors seen in the range of times (0, ti). MVF

_
^
mi(ti) is the estimated cumulative number of errors at time ti, obtained using the fitting
mean value function. More trust in the model and hence better performance are indicated
by a lower MSE score. The coefficient of determination (R2) is defined as the difference
between the sum of squares from the trend model and the constant model, and is defined
as follows:

R2 = 1−

n
∑

i=1

(
^
mi(ti)−

_
^
mi(ti)

)2

n
∑

i=1

(
^
mi(ti)−

^
mi(ti)/n

)2 . (29)

R2 ∈ [0, 1] R calculates how much of the total variation is measured. The fitted curve
is explained by the mean. The greater that R2 is, the more effectively the model describes
the data’s variation. Predictive validity [41] is the proportional discrepancy between the
observed and estimated numbers of faults at time t. Predicted relative error (PRE) is

PRE(t) =

_
^
m(t)−^

m(t)
^
m(t)

, (30)

where
_
^
m(t) and

^
m(t) are the estimated and observed faults determined at time t. Therefore,

PRE(t) → 0 is sought for a better fit to the data [42]. Bias is the mean of the prediction
errors (PEs). A prediction error is the sum of the prediction defects. Measures of the
variance in the forecasts are frequently based on bias and its standard deviation.

Bias =
n

∑
i=1

PE(ti)

n
, (31)

where PE (ti) =
_
^
m(t)−^

m(t).
Predicted relative variation (PRV) is the term for the standard deviation of PRV [43].

Lower values of PRV and bias improve the quality of fit.

PRV =

√√√√√ n
∑

i=1
(PE(ti)− Bias)2

n− 1
. (32)

The suggested software reliability model’s analytical algorithm is as follows.

1. Under all approaches of estimation, the parameter estimates for the suggested model
are estimated.

2. Mean square error (MSE), the coefficient of determination (R2), predicted relative
variation (PRV), and bias are calculated for effective model selection.

3. The MVF of the suggested models is examined by comparing the estimation techniques.
4. By examining the performance of the suggested model, research information on the

ideal model is provided.

After analyzing the performance of the suggested model using the aforementioned
techniques, we provide information on the model that software developers need.
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Table 1. References for the datasets.

Dataset References Detected Failure

1 Hayakawa and Telfar [44] 30

2 Liu et al. [45] 15

3 Li and Pham, [45] 14

4 Wood [46] 20

5 Liu et al. [45] 17

5. Results and Discussion

We first utilized our framework to analyze how the suggested model behaved under
various techniques and when using statistical data; then, we evaluated the software’s
reliability.

5.1. Evaluation of the Estimation Techniques

On the basis of five datasets, this section assesses the effectiveness of the MLE, NLSE
and WNLSE approaches for the NHPP–NPF model. Table 2 presents the outcomes. The
values of the evaluation criteria in Table 2 led us to the following conclusions:

• The NHPP–NPF framework supports values that represent a more accurate model
for the majority of the evaluation criteria in most situations when utilizing all three
approaches.

• The outcomes of the many evaluation criteria varied, which suggests that it is necessary
to research multiple criteria when comparing them.

• The actual and fitted curves of software failures using the MLE, NLSE, and WNLSE
approaches are shown in Figure 7a–e. These graphs show that our novel model,
when applied to the MLE or WNLSE approaches, ensured that all datasets under
consideration were well-fitted. In particular, when employing the WNLSE, NLSE, and
MLE approaches, the suggested model was better suited for simulating the failure
datasets. The suggested model, however, did not perform well when using the NLSE
approach for DSI instead of the MLE and WNLSE methods.

• Figure 8a–e shows the PRE outcomes for our NHPP–NPF model. The similarities
among the three approaches may be seen in their early significant estimation error
(deviation from zero) and later steadily moving toward observation. This was expected
because there were initially few data that could be used to determine the parameters
of the models; as time passed and more data became available, the models’ accuracy
increased and their PRE decreased until it was zero.

Table 2. Estimated values of parameters and assessment metrics of the NHPP–NPF model.

Dataset Method of
Estimation Evaluation Criteria

^
ξ

^
λ

^
µ MSE R-Squared PRV Bias

DS1 MLE 4.5742 1.9311 0.1297 0.0258 0.9160 0.2957 0.1429

NLSE 2.7767 1.1877 1.8450 0.0132 0.5723 0.6538 0.3134

WNLSE 2.7548 1.7996 1.7997 0.0012 0.9959 0.0602 0.0301

DS2 MLE 2.1665 2.5853 0.2602 0.0142 0.9373 0.2048 0.0963

NLSE 1.7548 2.1456 1.5465 0.0024 0.9895 0.0849 0.0401

WNLSE 1.7646 2.1458 1.5960 0.0012 0.9947 0.0597 0.0281
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Table 2. Cont.

Dataset Method of
Estimation Evaluation Criteria

^
ξ

^
λ

^
µ MSE R-Squared PRV Bias

DS3 MLE 1.8977 0.7488 0.4875 0.0008 0.9820 0.0522 0.0250

NLSE 1.8344 0.6999 0.9199 0.0003 0.9945 0.0279 −0.0132

WNLSE 1.7910 0.7340 0.8923 0.0004 0.9922 0.0486 −0.0161

DS4 MLE 1.7814 1.6657 1.1161 0.0002 0.9941 0.0223 0.0107

NLSE 1.7999 1.6999 1.1001 2.9 × 10−10 1.0000 3.1 × 10−5 1.4 × 10−5

WNLSE 1.8001 1.6998 1.1000 3.4 × 10−10 1.0000 3.4 × 10−5 1.6 × 10−5

DS5 MLE 4.4177 1.2913 0.4699 0.0037 0.9642 0.1126 0.0545

NLSE 3.7680 1.1952 1.0991 0.0001 0.9988 0.0202 0.0097

WNLSE 3.7548 1.1752 1.0659 0.0015 0.9858 0.0695 0.0334
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5.2. Performance Evaluation of the SRGMs on Certain Real Datasets

We evaluated the accuracy of the suggested model, which is novel in terms of software
reliability prediction and estimation with the SRGMs of NHPP power function Lehmann
Type I (PFLI) and NHPP power function Lehmann Type II (PFLII), two benchmark PF
models. The MLE was employed as the estimation method in our comparison analysis,
which was based on five datasets. Table 3 presents the findings. We may see the following
from the table:

• The MSE values for all investigated models were fairly similar; suggesting that all
investigated models could accurately describe the five selected systems with just little
variations in performance. The NHPP–NPF model ranked first for all datasets.

• The R2 for all examined models was close to 1. As a result, all examined models are
appropriate for modeling the software projects under consideration. The NHPP–NPF
model positioned second for DSI, while it ranked first for DS2 to DS5.

• Figure 9a–e shows the actual and predicted results depending on the four models
under consideration. The figures demonstrate how well-fitted each of the chosen
models was in analyzing the failure data. Specifically, the suggested model was
among the best candidates for modeling the chosen datasets.

Table 3. Results of model comparisons for various datasets.

Criteria Dataset PFLII PFLI NHPP–NPF

DS1 0.0414 0.0938 0.0258

MSE DS2 0.7098 0.0494 0.0132

DS3 0.0445 0.2279 0.0008

DS4 0.0342 0.0071 0.0002

DS5 0.0774 0.0334 0.0037

R-squared DS1 0.9296 0.8135 0.9160

DS2 0.6323 0.9355 0.9373

DS3 0.8618 0.5218 0.9820

DS4 0.8766 0.9873 0.9941

DS5 0.8209 0.9372 0.9642
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Table 3. Cont.

Criteria Dataset PFLII PFLI NHPP–NPF

PRV DS1 0.3570 0.5284 0.2957

DS2 1.3944 0.3821 0.2048

DS3 0.3820 0.8151 0.0522

DS4 0.3398 0.1423 0.0223

DS5 0.5135 0.3068 0.1126

Bias DS1 0.1679 −0.2465 0.1429

DS2 0.6323 −0.1765 0.0963

DS3 0.1802 −0.3749 0.0250

DS4 0.1622 −0.0654 0.0107

DS5 0.2456 −0.1400 0.0545
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Using the NPF distribution as a foundation, we provided a novel reliability model
in this work. Our proposed model, the NHPP–NPF model, has a number of crucial
properties. Utilizing the NLSE, WNLSE, and MLE approaches, the model parameters
under consideration were estimated. On the basis of eight datasets, various criteria were
used to assess the performance of the estimators for each investigated approach. On the
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