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Abstract: In this paper, a mathematical model based on COVID-19 is developed to study and manage
disease outbreaks. The effect of vaccination with regard to its efficacy and percentage of population
vaccinated in a closed population is investigated. To study virus transmission, the system employs
six nonlinear ordinary differential equations with susceptible–exposed–asymptomatic–infected–
vaccinated–recovered populations and the basic reproduction number are calculated. The proposed
model describes for highly infectious diseases (such as COVID-19) in a closed containment area with
no migration. This paper considers that the percentage of vaccinated population has a significant
impact on the number of COVID-19 positive cases during the pandemic wave and examines how
the pandemic rise time is delayed. Numerical simulation to investigate disease outbreaks when
the community is undergoing vaccination is performed, taking the efficacy rate of the vaccine into
account. Sensitivity Index values are calculated for the reproduction number and their relations with
few other parameters are depicted.

Keywords: COVID-19; modified SEAIR model; disease outbreak; human vaccination
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1. Introduction

According to the South China Morning Post, the first case of coronavirus was reported
in China’s Hubei County in December 2019, about a month before the case was reported
in Wuhan, China. The novel Coronavirus SARS-CoV-2 was named COVID-19 by the
World Health Organization in the month of February, 2020. The virus is a zoonotic disease
because it began in animals and then spread to humans. The coronavirus originated in
China and quickly spread throughout the world due to migration. This virus has spread to
around 210 countries [1]. Coronavirus can affect people of any age, according to the World
Health Organization, but people over the age of 60 are particularly vulnerable. Common
symptoms of the disease include a cold, cough, ache, fever, and other symptoms that
appear after a 14-day incubation period. The disease was declared a pandemic on 11 March
2020, due to its alarming spread [2]. A study conducted in Wuhan, China in January 2020
confirmed about 41 patients with COVID-19 [3]. The patients’ symptoms were similar
to severe respiratory problems such as fever and cough, with less common symptoms
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including diarrhoea and headache. People with a history of diseases, like hypertension
and diabetes, made up nearly half of the infected population [3]. Severe Acute Respiratory
Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus
(MERS-CoV) have been found to be similar to this novel COVID-19 disease [4]. Unlike
SARS, which is caused by SARS-CoV, and MERS, which is caused by MERS-CoV, COVID-19
is caused by the SARS-CoV-2 virus. Simulation of Covid-19 pandemic in United Arab
Emirates is performed using SIR model in [5]. A study on the hepatitis B virus (HBV) using
nonlinear incidence rate for developing the epidemic model was also studied [6].

Many authors have worked on mathematical modelling of COVID-19 pandemic. For
example, Yousefpour et al. [7] use a genetic algorithm to investigate optimal control
strategies on COVID-19. Singh et al. [8] estimated the number of coronavirus-related
deaths in various countries around the world. To study SARS-COVID 19 transmission, an
agent-based model is created and parameterized with US demographics. Initially, high-risk
individuals and healthcare professionals were given priority for vaccination, while children
were not taken into consideration [9].

In 2020, the team of [10] investigated the characteristics of the novel coronavirus
disease and provides an explanatory analysis. A report is prepared, addressing the cases
through 11 February 2020 in China. The virus spread outward from Hubei to almost
every country in a short span of time. It is concluded that in a period of 30 days, the
entire land of China got infected with the disease. The number of coronavirus-infected
patients in mainland China has been studied. The number of confirmed coronavirus
infected cases peaked between 31 January and 4 February 2020, but dropped significantly
between 5 February and 9 February 2020. The precautionary control measures taken
by the government at state levels and at many other levels have shown a decline in the
number of confirmed cases [11]. The disease outbreak caused by the new coronavirus
shook the entire world, with 73 million confirmed cases and 1.5 million deaths as of 14
December 2020 [12]. In comparison to the management of an isolated population, it has
been discovered that managing a quarantined population has a significant impact on
disease declination. Quarantined, isolated, and transmission rate modification factors
were investigated and found to be an effective strategy for disease control [12]. Both
types of disease controls, namely control at the basic level and control in reproduction
numbers, are discussed in the paper [12] for the COVID-19 model. A statistical study
of the countries most affected by the new COVID-19 infection was conducted. The data
regarding the infected persons were collected and fitted with various growth models of
different countries. Following that, a comparative study was conducted in order to lower
the infection rate and take preventative measures to address the various factors affecting
the epidemic [13]. A study is conducted for investigating the potential transmission from
the infectious source (bats) to humans by the formation of Bats–Hosts–Reservoir–People
transmission network system [14]. In addition, the basic reproduction number is calculated
for the system to examine the transmission of COVID-19 [14]. The model was created
to investigate the relationship between the infection source (bats), hosts, and the human
population. A simplified version of the model is discussed in [14], which focuses on
the host–human interaction. The reproduction number is calculated to investigate the
transmission process.

Natsuko et al. [15] investigated that human transmission was the only possible cause
of disease outbreak in Wuhan, China. Control measures have the potential to prevent
up to 60 percent of disease transmission. It is quite clear from the earlier outbreaks of
SARS-CoV and MERS-CoV that the number of infections transmitted by a single patient
with COVID-19 is variable in nature. In some cases, there may be multiple secondary
infections, while in others, there may be fewer. Adam et al. [16] conducted research
to predict the early transmission of the novel coronavirus outside of Wuhan, China. A
mathematical model has been developed to better understand the dynamics of human-to-
human transmission and the impact of various control measures. The model is formed
while taking into consideration the four dataries from China and estimated to assess the
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transmission outside China. Various vaccination strategies and an SEIR (Susceptible–
Exposed–Infected–Recovered) model for different populations have been investigated.
To help the system in overcoming the infection, various threshold parameters have been
calculated [17]. In [18], it has been demonstrated that in the case of deadly diseases such as
COVID-19, migration can slow the spread of the epidemic; however, this is at the cost of
contaminating nearby areas.

This worldwide pandemic hit the Kerala state of India on 30 January 2020, when the
first case was detected. The capital then reported the first COVID-19 positive person on
2 February 2020, as a result of an Italian visitor [19]. Various control measures have been
implemented in India, beginning with the lockdown on 24 March 2020, but the number
of active cases continues to rise, particularly in the Delhi and Maharashtra regions of
the country. As of 5 March 2020, around 29 cases were reported in India [20]. Although
the virus is deadly and spreads quickly, it has a low fatality rate when compared to the
previous two viruses. So far, it is noticed that children are the least affected with the
virus [21]. The future of the virus is still uncertain and remains to be predicted. COVID-19
has spread throughout the globe, and billions of people are attempting to combat this
serious issue. As a result, an attempt is being made to study and test this disease using
mathematical modelling. The proposed model is interpretable from a human point of view
and heuristically justifiable. The proposed system has six compartments and is extremely
useful in applied epidemiology.

The current paper is divided into the following sections, with Section 2 dealing with
the creation of mathematical models. The model basic preliminaries, basic reproduction
number and sensitivity analysis are also discussed in Section 2. Numerical discussions and
simulations are used to validate the theory in Section 3. The article concludes with key
points as a conclusion in Section 4.

2. Materials and Methods
2.1. Mathematical Model and Analysis

To study the process of disease transmission as well as the importance of vaccination,
a COVID-19 compartmental model based on the SEIR model is created. The mathemati-
cal modelling presented in this paper demonstrates that mass vaccination greatly aids in
preventing or reducing COVID-19 outbreaks. It is shown that vaccination is an important
tool for preventing pandemics and their impact on public health care systems. Thereafter,
the SEIR model is modified as follows: Firstly, the subsection AC for asymptomatic trans-
missions is introduced. Secondly, vaccination (denoted by VC) compartment is introduced,
thus, creating a SEAIVR model. Unlike the infected compartment (IC), the VC compartment
is assumed to not impart the disease to others, due to vaccination, but a efficacy factor is
introduced within the model. As a result, the key factor of the proposed model is exposed
and infected compartments. The controlling factor, vaccination, is governed by the efficacy
factor. Alternately, it can be stated that conversion of exposed people of the EC compart-
ment to the vaccinated people of VC compartment can adequately constrain this class from
the susceptible population; thereby, it lowers the rate of disease transmission. It is to be
noted that people in EC and IC compartments are considered to be unknown, and people
from the VC compartment are observable.

A parameter ν is used to describe the efficacy of the vaccine. λ2 is the factor of the total
population which is vaccinated and is incorporated in the model. The model demonstrates
that changes in local dynamics can be captured by using a single parameter that represents
the total strength of local interventions at a given stage of the epidemic. Furthermore,
the epidemic trend, i.e., the effect of the percentage of people vaccinated and the efficacy
of the vaccine, are forecasted. In comparison to the classic SIR and SEIR models, the
proposed system has an additional compartment (VC), and the interaction between all
other compartments helps us depict the COVID-19 pandemic situation more accurately.
This model contribution differs from previous work on the compartmental model in a
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way that it more efficiently defines the characteristics of infection–spread dynamics and its
interventions.

Motivated by the work of [16–18], the present paper proposes a SEAIVR model to
show success in eradicating the COVID-19 disease and the effectiveness of vaccination,
based on the findings of initial COVID-19 models. The proposed SEAIVR model differs
from the traditional SEIR model. This model proposes one new compartment; namely,
“vaccinated compartment (VC)” is included in this model. Therefore, the proposed model
consists of six states: susceptible (SC), exposed (EC), asymptomatic (AC), infected (IC),
vaccinated (VC) and recovered (RC). Let N be the total population of the system, i.e.,
N = SC + EC + AC + IC + VC + RC.

Table 1 demonstrates all the parameters of the model. We have considered different
kinds of populations and the related system of ordinary differential equations for their
models, which are summarised below:

Table 1. Details of the parameters in the system.

Parameter Meaning

λ1 Total susceptible population
λ2 Population vaccinated
AI Rate of conversion of susceptible population to infected human population
ν Efficacy rate

AA
Rate of conversion of susceptible population to asymptomatic human
population

p Proportion of asymptomatic human population
r1 Recovery rate of EC
r2 Recovery rate of AC
r3 Recovery rate of IC
r4 Recovery rate of VC
AV Rate of conversion of vaccinated to exposed class

δ
proportion of population removed from the susceptible class either due to death
or by any other factor.

k1 Rate of conversion of exposed individuals to infected class for rate p
a Half saturation rate

Susceptible population: The human population who are prone to the disease but not
infected is denoted by SC. The total inflow of the susceptible human population is denoted
by λ1. AI , AA , and ν represent the rates of conversion of susceptible humans to infected,
asymptomatic, and vaccinated populations respectively. After the close contacts with
infected and asymptomatic individuals, susceptible class of population become exposed
with the disease which is represented in Equation (1) by AI SC IC

N and AASC AC
N respectively.

νSCVC
a+VC

is the modified Holling type II functional response incorporated with the vaccination
factor.

dSC
dt

= λ1 −
νSCVC
a + VC

− AISC IC
N

− AASC AC
N

− δSC. (1)

Exposed population: The human population that is infected with the disease, but is not
generally contagious to other populations, is denoted by EC. A proportion (p) of the
population is under an incubation period and the other (1−p) is under latent period.
Recovery of exposed individuals r1 refers to the individuals who are able to recover, either
on their own, or through effectiveness of the vaccine, in the community.

dEC
dt

=
AISC IC

N
+

AASC AC
N

+
AVSCVC

N
− (1− p)k1EC − pk1EC − r1EC. (2)

Asymptomatic population: Human populations that are infected with the virus but have
not yet developed symptoms in the population are represented by AC.
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dAC
dt

= pk1EC − r2 AC. (3)

Infected population: In this population, we have considered the human population is
infected and in which symptoms of the disease have appeared. Here, the proportion (1−p)
denotes the infected individuals and r3 is their recovery rate.

dIC
dt

= (1− p)k1EC − r3 IC. (4)

Vaccinated population: For the human population who are vaccinated, we have:

dVC
dt

= λ2 −
AVSCVC

N
+

νSCVC
a + VC

− r4VC. (5)

Recovered population: The exposed, asymptomatic, infected, and vaccinated forms of the
recovered population with rates as r1, r2, r3, and r4, and the class of population are denoted
by RC. For that, we have

dRC
dt

= r1EC + r2 AC + r3 IC + r4VC. (6)

Based on the above concepts and Equations (1)–(6), the model becomes:

dSC
dt

= λ1 −
νSCVC
a + VC

− AISC IC
N

− AASC AC
N

− δSC

dEC
dt

=
AISC IC

N
+

AASC AC
N

+
AVVCEC

N
− (1− p)k1EC − pk1EC − r1EC

dAC
dt

= pk1EC − r2 AC

dIC
dt

= (1− p)k1EC − r3 IC

dVC
dt

= λ2 −
AVVCEC

N
+

νSCVC
a + VC

− r4VC

dRC
dt

= r1EC + r2 AC + r3 IC + r4VC

(7)

2.2. Positivity and Boundedness

Lemma 1. Every solution of the system with respect to the initial conditions which exists in [0, ∞]
remain positive for all t > 0.

Proof. As discussed in [22,23], the same procedure follows here. The proposed model with
the initial conditions (SC(0), EC(0), AC(0), IC(0), VC(0), RC(0))T ∈ R6

+ can be written in
the matrix equation form, given as

dH
dt

= G(H(t)),

where H(t) = (SC, EC, AC, IC, VC, RC)
T ,

H(0) = (SC(0), EC(0), AC(0), IC(0), VC(0), RC(0))T ∈ R6
+,

and
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G(H(t)) =



G1(H(t))
G2(H(t))
G3(H(t))
G4(H(t))
G5(H(t))
G6(H(t))



=



λ1 − νSCVC
a+VC

− AI SC IC
N − AASC AC

N − δSC
AI SC IC

N + AASC AC
N + AVVCEC

N − (1− p)k1EC − pk1EC − r1EC
pk1EC − r2 AC

(1− p)k1EC − r3 IC

λ2 − AVVCEC
N + νSCVC

a+VC
− r4VC

r1EC + r2 AC + r3 IC + r4VC


,

where G : R6 → R6
+ and G ∈ C∞(R6). Gi(Hi) |Hi=0 ≥ 0 for i = 1, 2, 3, 4, 5, 6. By [24], the

solution of the matrix equation with initial conditions is such that G(t) ∈ R6
+ for all finite

and positive time t.
It is also clear from Equation (1) that
dSC
dt = λ1 − νSCVC

a+VC
− AI SC IC

N − AASC AC
N − δSC,

which can be written as
dSC
dt +

(
νVC

a+VC
+ AI IC

N + AA AC
N + δ

)
SC = λ1,

The solution is of the form

SC(t) =
∫

λ1.e
∫ ( νVC

a+VC
+

AI IC
N +

AA AC
N +δ

)
dt
> 0.

Such a procedure can also be followed for other equations .

Lemma 2. Every solution of system with respect to initial conditions are bounded for all t ≥ 0.

Proof. Let N(t) = SC(t) + IC(t) + EC(t) + AC(t) + VC(t) + RC(t).
Assuming η > 0 and η ≤ δ, λ = max(λ1, λ2).
Thus, dN

dt + ηN ≤ 2λ.
Hence, we obtain, as in [25],
lim
t→∞

Sup N(t) ≤ 2λ
η .

It can also be seen that
dSC
dt = λ1 − νSCVC

a+VC
− AI SC IC

N − AASC AC
N − AV SCVC

N − δSC,
dSC
dt < λ1 − δSC.

Solving further, we get
SC(t) =

λ1
δ + (SC(0)− λ1

δ )e−δt,
As t tends to ∞, we get
0 < limt→∞ SC(t) < SC(0).
This can similarly be proved for other equations.
This proves the boundedness property.

2.3. Basic Reproduction Number

The system possesses a unique disease-free equilibrium point (SC, 0, 0, 0, 0, RC), where,
SC = λ

δ and RC = 0. The reproduction number is calculated with the help of the next
generation matrix [26,27] given by

F =


AI SC IC

N + AASC AC
N + AVVCEC

N
0
0

νSCVC
a+VC

 (8)
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and

V =


(1− p)k1EC + pk1EC + r1EC

−pk1EC + r2 AC
−(1− p)k1EC + r3 IC

r4VC

. (9)

Using Equations (8) and (9), F = ∂F
∂X =


0 AA AI 0
0 0 0 0
0 0 0 0
0 0 0 νλ

δa

,

V = ∂V
∂X =


k1 + r1 0 0 0
−pk1 r2 0 0

(p− 1)k1 0 r3 0
0 0 0 r4

.

It follows from the above matrix that the reproduction number is given by
Rc = ρ(FV−1), where ρ is the spectral radius of the next-generation matrix.
Therefore,

Rc = max.
(

νλ

δa
,

AA pk1r3 + AIr2(1− p)k1

pk1r2r3

)
. (10)

Hence, it can be stated that disease-free equilibrium is locally asymptotically stable
and infection dies out if Rc < 1. The disease-free equilibrium point is unstable if Rc > 1
and infection persists and increases in the population.

2.4. Sensitivity Analysis

According to the preceding section, the basic reproduction number has the same
format as the control reproduction number. As a result, it is clear that infectious spread
is predicted not only in terms of quarantine population, but also by a variety of other
factors. A sensitivity analysis can indicate the importance of certain parameters in the
spread of infection [28–30]. It is a commonly used practice in data interpretation and in
assessing the weightage of one parameter in comparison with others [30]. In the present
plot, we determine the impact of parameters on Rc and, thereby, various means to tackle the
problem. The normalized forward sensitivity index is used, which is defined as the relative
change in the variable to the relative change in the parameter. It can further be expressed
in terms of partial derivatives. Hence, the formal definition is presented to determine the
normalized forward sensitivity index of a variable, say, t, with respect to a parameter τ.
This is given as

Xt
τ =

∂t
∂τ

τ

t
(11)

For example, the expression of sensitivity of RC with respect to AI and r3 can be found
as follows:

XRc
AI

=
AI(p− 1)k1r2r3

r3(−AV pk1r3 − AVr2r3 + AIr2(p− 1)k1)
> 0 (12)

XRc
r3

=
−k1 AIr2(p− 1)(−AV pk1r3 − AVr2r3 + AIr2(p− 1)k1)

(k1r2r3)2 < 0 (13)

and so on.
The signs of the above expressions depict that Rc increases as the rate of infection

AI increases and vice versa. Similarly, as the recovery rate of IC increases (decreases), Rc
decreases (increases), respectively. The exact numeric values are given in Table 2.
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Table 2. Sensitivity index values.

XRC
AI

XRC
r3 XRC

AV
XRC

AA

1.0 −0.352 0.03929 0.1309

3. Numerical Results and Discussion

Dynamics of the system are depicted in Figure 1. It shows the steady state behaviour
of all the class of populations over the period of time. The contour plots in Figure 2 of
reproduction number show that RC lies between 0 and 20, as the maximum region of
the graph is under that shade. Relationship of RC is depicted in Figure 3 for different
values of p. In order to study the effect of the efficacy of vaccine (ν) and the percentage of
population being vaccinated on the spread of the COVID-19 epidemic/pandemic, a regular
network with size N = 106 was generated by using the Runge–Kutta method. The effect of
efficacy of the vaccination developed for pandemic is simulated in this work. The effect
of vaccinated population is also simulated in this study. Overall, the process of spreading
the pandemic is simulated in the paper. The impact of vaccination in the spread of the
pandemic is shown and demonstrated through simulation with various percentages of
efficacy of vaccine and percentage of population vaccinated in a closed region. Initially, the
parameters are set as Aa = 0.5, AI = 0.25, ν = 0, and λ2 = 0.

Case I. The transmission rate is (Aa) = 0.5, the rate of infected people is (AI) = 0.25, the
efficacy of vaccine is (ν) = 0, and the percentage of initially vaccinated population is λ2 = 0.

In this case, when there is initially no vaccinated population, this could be considered
as the case when the vaccination is not being used for countering any pandemic/COVID-19.
As shown in Figure 4, epidemics with large Aa reach their peak quickly, with the total
number of cases reaching a maximum of 640,000. Figure 4 shows that the total number of
cases reached a maximum of 80,000. (approx.). The pandemic starts to rise rapidly after
100 days.

Figure 1. Solution plot of system 7.
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Figure 2. Contour plots of Rc with respect to AI and ν for different values of AA.
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Case II. The transmission rate is (Aa) = 0.5, the rate of infected people is (AI) = 0.25,
the efficacy of vaccine is (ν) = 0.6, and the percentage of initially vaccinated population is
λ2 = 0.

This represents the case, when 0 percent of the population is initially vaccinated and
the efficacy of the vaccination considered to be 60 percent. It is observed from Figure 5a that
there is a slight delay of approximately 5 days in the rise of pandemic, there is a reduction
of approximately 25 percent in the cumulative number of cases, and reduction of 15 percent
in the total number of current cases.
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Case III. The transmission rate is (Aa) = 0.5, the rate of infected people is (AI) = 0.25,
the efficacy of vaccine is (ν) = 0.6, and the percentage of initially vaccinated population is
λ2 = 0.30.

In this case, the population that is initially vaccinated is considered to be about
30 percent of the total population and the efficacy of the vaccination used is 60 percent.
Figure 5b shows that, compared to Figure 5a of case two, the delay in the onset of the
pandemic has increased to 11 days from 5 days. In addition, compared to case one, when
the vaccination is not used, the number of cumulative cases is reduced by 40 percent and
the total number of cases is reduced by 20 percent.

Version January 31, 2023 submitted to Mathematics 10 of 16

(a) (b)

(c) (d)

(e)
Figure 5. Figure when Aa = 0.5, AI = 0.25, ν = 0.6, a. λ2 = 0, b. λ2 = 0.3, c. λ2 = 0.5, d. λ2 = 0.8, e.
λ2 = 1Figure 5. Figure when Aa = 0.5, AI = 0.25, ν = 0.6, (a). λ2 = 0, (b). λ2 = 0.3, (c). λ2 = 0.5, (d).

λ2 = 0.8, (e). λ2 = 1.

Case IV. The transmission rate is (Aa) = 0.5, the rate of infected people is (AI) = 0.25,
the efficacy of vaccine is (ν) = 0.6, and the percentage of initially vaccinated population is
λ2 = 0.50.

In this case, when the initially vaccinated population has reached around 50 percent
of the total population, it means that 50 percent of the population has been vaccinated
before any pandemic/ensuing wave of COVID-19 exists in the closed state/territory. In
this case, it is observed through Figure 5c that there is a delay of about 15 days in the
rapid rise of pandemic cases as compared to Case I, where 0 percent of the population
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is vaccinated. Additionally, compared to Case I, where the maximum cumulative cases
reached around 640,000 and the total number of cases reached a maximum peak of around
50,000 cases on the 200th day of the pandemic, the maximum cumulative cases reached
around 300,000 cases. This clearly indicates that if even half of the population is fully
vaccinated before the start of any upcoming pandemic wave, there may be a significant
reduction of around or greater than 50 percent of cases, compared to when there is no
vaccination.

Case V. The transmission rate is (Aa) = 0.5, the rate of infected people is (AI) = 0.25,
the efficacy of vaccine is (ν) = 0.6, and the percentage of initially vaccinated population is
λ2 = 0.80.

This is the case when the initially vaccinated population before the pandemic is
approximately 80 percent of the total population of the closed state/area. In comparison to
Case I, there is a reduction of about 70 percent in cumulative cases and around 40 percent
of total cases, as shown in Figure 5d. It is also observed that, in comparison to Case I, the
rapid rise of the pandemic/COVID-19 is approximately shifted by 20 days.

Case VI. The transmission rate is (Aa) = 0.5, the rate of infected people is (AI) = 0.25,
the efficacy of vaccine is (ν) = 0.6, and the percentage of initially vaccinated population is
λ2 = 1.

Now, we consider an ideal case when the complete population of the closed state is
vaccinated before the uprising of the further wave of pandemic, and the efficacy of the
vaccination is 60 percent. It could be seen from Figure 5e that there is a huge reduction in
the number of cumulative and total infected cases as compared to Case I. It can be seen
that cumulative cases have decreased by around 90 percent, demonstrating the importance
of vaccination in the eradication of certain diseases.

Case VII. The transmission rate is (Aa) = 0.5, the rate of infected people is (AI) = 0.25,
the efficacy of vaccine is (ν) = 0.7, and the percentage of initially vaccinated population is
λ2 = 0.

In a new scenario, a case is being considered in which vaccine effectiveness has
improved from 60 percent to 70 percent and the population that was initially vaccinated
is zero. Figure 6a shows that there is a small variation from Case II, when the efficacy of
vaccine was 60 percent. The reduction in the cumulative cases, as compared to Case I, is
around 26 percent, the total cases is around 18 percent, and there is a delay of 7 days in the
fast rising of the pandemic wave.

Case VIII. The transmission rate is (Aa) = 0.5, the rate of infected people is (AI) = 0.25,
the efficacy of vaccine is (ν) = 0.7, and the percentage of initially vaccinated population is
λ2 = 0.3.

In this case, the effect of the previously vaccinated population and the vaccine’s efficacy
have been clearly visible and depicted in Figure 6b. Since the pandemic’s initial rapid rise is
shifted 13 days ahead, there is a reduction of around 44 percent in the number of cumulative
cases and 21 percent in total cases when compared to Case I. In comparison to Case III,
where the initial vaccination population is around 30 percent and vaccination efficacy is 60
percent, it is clear that a modest increase of vaccine effectiveness of about 10 percent (from
60 percent to 70 percent) results in a (cumulative) case reduction of approximately 25,000.
It shows that increasing vaccine effectiveness while also increasing the number of people
who have been vaccinated has a positive impact on epidemic control.

Case IX. The transmission rate is (Aa) = 0.5, the rate of infected people is (AI) = 0.25,
the efficacy of vaccine is (ν) = 0.7, and the percentage of initially vaccinated population is
λ2 = 0.5.

Figure 6c shows that, when the initially vaccinated population is covered up to the total
population of the closed state, the cumulative cases are reduced by around 60 percent, as
compared to around 55 percent in Case IV. In addition, compared to Case IV, the pandemic
rise is delayed by two days, demonstrating the importance of vaccine efficacy in pandemic
coverage.



Mathematics 2023, 11, 821 12 of 15

Version January 31, 2023 submitted to Mathematics 12 of 16

(a) (b)

(c) (d)

(e)
Figure 6. Figure when Aa = 0.5, AI = 0.25, ν = 0.7, a. λ2 = 0, b. λ2 = 0.3, c. λ2 = 0.5, d. λ2 = 0.8, e.
λ2 = 1.Figure 6. Figure when Aa = 0.5, AI = 0.25, ν = 0.7, (a). λ2 = 0, (b). λ2 = 0.3, (c). λ2 = 0.5, (d).

λ2 = 0.8, (e). λ2 = 1.

Case X. The transmission rate is (Aa) = 0.5, the rate of infected people is (AI) = 0.25,
the efficacy of vaccine is (ν) = 0.7, and the percentage of initially vaccinated population is
λ2 = 0.8.

In comparison to Case I, a very good result is obtained, indicating the significant effect
of vaccination and the importance of vaccination during pandemics for human survival.
Figure 6d shows a 76 percent reduction in cumulative cases and a 26-day delay in the rapid
spread of the pandemic when compared to Case I. In comparison to Case V, when the
vaccine’s efficacy was 60 percent and all other factors remained the same, the vaccine’s
efficacy has improved dramatically, resulting in a massive reduction of around 40,000 cases.

Case XI. The transmission rate is (Aa) = 0.5, the rate of infected people is (AI) = 0.25,
the efficacy of vaccine is (ν) = 0.7, and the percentage of initially vaccinated population is
λ2 = 1.

Figure 6e shows that, if 100 percent of the population is vaccinated, there is a 97
percent reduction in cumulative cases compared to Case I. The maximum cumulative case
reaches 20,000. In comparison to Case I, there is a 50-day delay in the rapid spread of
pandemic. It is evident that having a highly vaccinated population can become a major
factor in controlling and declining a pandemic wave.

Case XII. The transmission rate is (Aa) = 0.5, the rate of infected people is (AI) = 0.25,
the efficacy of vaccine is (ν) = 0.8, and the percentage of initially vaccinated population
λ2 = 0.5.
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In this case, it is considered that 50 percent of total population is being vaccinated and
the efficacy of vaccination has reached up to 80 percent. We can conclude, from Figure 7a,
that a reduction of around 65 percent in cumulative cases is obtained as compared to Case
I. In addition, in comparison to Case IV, where vaccine efficacy is 60 percent while all other
factors remain constant, cumulative cases show a reduction of around 10 percent, indicating
the effect of vaccine efficacy on pandemic control.Version January 31, 2023 submitted to Mathematics 14 of 16
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Figure 7. Figure when Aa = 0.5, AI = 0.25, ν = 0.8, a. λ2 = 0.5, b. λ2 = 1.
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Case XIII. The transmission rate is(Aa) = 0.5, the rate of infected people is (AI) = 0.25,
the efficacy of vaccine is (ν) = 0.8, and the percentage of initially vaccinated population is
λ2 = 1.

Figure 7b shows that, in this ideal special case, where the entire population is vac-
cinated and the vaccine efficacy is around 80 percent, the maximum pandemic (cumu-
lative, Case I) is reduced by 99 percent and the pandemic rise is delayed by more than
2 months.The maximum number of cumulative cases has fallen below 7000, indicating the
critical importance of vaccination for human survival, as compared to Case VI and Case
XI, where the efficacy of vaccine is 60 and 70 percent, respectively. It can be seen that the
maximum cumulative cases for both cases are around 70,000 and 20,000, respectively. With
100 percent of population vaccinated, the importance of quality of vaccination also matters.

Case XIV. The transmission rate is (Aa) = 0.5, the rate of infected people is (AI) = 0.25,
the efficacy of vaccine is (ν) = 0.9, and the percentage of initially vaccinated population is
λ2 = 1.

In this case, when 100 percent of the total closed population is vaccinated with a
vaccination with 90 percent efficacy, Figure 8 clearly shows that the maximum number
of cumulative cases has reached 2000 cases. A delay of around 4 months in the rise of
pandemic wave is obtained, clearly indicating that a vaccine with very good efficacy and
percentage of vaccinated population are both important to curb the fatal pandemic waves
and save thousands of lives.

Figure 8. Figure when Aa = 0.5, AI = 0.25, ν = 0.9, λ2 = 1.
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4. Conclusions and Future Work

System dynamics is demonstrated in Figure 1, which represents the steady state
behaviour of different cases of population with respect to time. Represented contour plot
in Figure 2 shows that reproduction number (Rc) lies between 0 and 20. The COVID-19
pandemic is spreading very rapidly. As the number of cases increases, vaccination has
become an important tool in preventing disease spread. The experiment in this study
is carried out by varying the values of two major factors: vaccination’s effectiveness in
controlling epidemic spread and analysing its impact, as well as the percentage of the
population vaccinated, in a closed stage.

Both cases where the initial population was not vaccinated and cases where there is an
increase in vaccination are considered, and it has been discovered that the cumulative cases
decrease with an increase in vaccination, highlighting the importance of vaccine efficacy.
When vaccination is kept consistent and a large percentage of the initial population is
vaccinated, cumulative cases are reduced and epidemics are delayed. Furthermore, when
both vaccine efficacy and the percentage of the total vaccinated population are considered,
the pandemic wave is greatly reduced. If the population vaccinated is above 70 percent
and efficacy of vaccine is considered between 60–90 percent, then the total vaccinated
population percentage factor overpowers the efficacy of vaccine. When vaccination rates
reach 80 percent and the initial total vaccinated population exceeds 50 percent, vaccine
efficacy becomes a more influential factor. It can be inferred that both factors are important
to curb the epidemic, i.e., a vaccine with good efficacy and the total initial vaccinated
population. As a result, multiple types of vaccines with varying efficacy could be used
to vaccinate the entire population at first and a little difference between the efficacy of
vaccines is not a significant factor. In contrast, vaccination of a large population is much
more important in preventing the expected pandemic waves. In the future, a mathematical
delay parameter can be added to the model and the results could be validated.
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