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Abstract: The Cox proportional hazard model may predict whether an individual belonging to
a given group would likely register an event of interest at a given time. However, the Cox model
is limited by relatively strict statistical assumptions. In this study, we propose decomposing the
time-to-event variable into “time” and “event” components and using the latter as a target variable
for various machine-learning classification algorithms, which are almost assumption-free, unlike
the Cox model. While the time component is continuous and is used as one of the covariates, i.e.,
input variables for various classification algorithms such as logistic regression, naïve Bayes classifiers,
decision trees, random forests, and artificial neural networks, the event component is binary and thus
may be modeled using these classification algorithms. Moreover, we apply the proposed method to
predict a decrease or non-decrease of IgG and IgM blood antibodies against COVID-19 (SARS-CoV-2),
respectively, below a laboratory cut-off, for a given individual at a given time point. Using train-test
splitting of the COVID-19 dataset (n = 663 individuals), models for the mentioned algorithms,
including the Cox proportional hazard model, are learned and built on the train subsets while tested
on the test ones. To increase robustness of the model performance evaluation, models’ predictive
accuracies are estimated using 10-fold cross-validation on the split dataset. Even though the time-to-
event variable decomposition might ignore the effect of individual data censoring, many algorithms
show similar or even higher predictive accuracy compared to the traditional Cox proportional hazard
model. In COVID-19 IgG decrease prediction, multivariate logistic regression (of accuracy 0.811),
support vector machines (of accuracy 0.845), random forests (of accuracy 0.836), artificial neural
networks (of accuracy 0.806) outperform the Cox proportional hazard model (of accuracy 0.796), while
in COVID-19 IgM antibody decrease prediction, neither Cox regression nor other algorithms perform
well (best accuracy is 0.627 for Cox regression). An accurate prediction of mainly COVID-19 IgG
antibody decrease can help the healthcare system manage, with no need for extensive blood testing,
to identify individuals, for instance, who could postpone boosting vaccination if new COVID-19
variant incomes or should be flagged as high risk due to low COVID-19 antibodies.
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1. Introduction

In survival analysis, the time-to-event variable is usually dependent, i.e., a response
variable, and describes whether an individual may expect to experience an event of interest
and, if so, when they should do it. If an individual does not experience the event of interest
for some reason, we call the individual censored. The event of interest could be whatever
defined and detectable event that is not related to censoring [1].

In statistics and survival analysis, the time-to-event variable is commonly treated as
a random variable and modeled using traditional approaches, including estimating, both
parametric and non-parametric, of a cumulative distribution function and others, namely
survival function and hazard function and its moment characteristics. While the survival
function depicts a probability that time to an event of interest is greater than a given time
constant, i.e., that an individual would survive a certain time, the hazard function is a rate
of probability that the event of interest is registered for in an infinitely short time after
a given time period of non-registering the event [2].

The above-mentioned approach enables the application of statistical inference on
the time-to-event variable and its derivations for one or more groups of individuals. Be-
sides survival functions, comparison between groups of individuals, considering explana-
tory covariates, the hazard function might be modeled within a regression framework
using a Cox proportional hazard model [3].

The Cox proportional hazard model is routinely used for modeling an association
between the covariates as independent variables and the hazard function as a dependent
variable. However, the Cox model is relatively strictly limited by statistical assumptions [4].
Supposing that there is a categorical independent variable determining which group an
individual belongs to, the limiting fact is that proportions of hazard functions for each
pair of groups should be constant across all time points; this is why the Cox model is
called “proportional” [5,6]. There are several options for how to overcome the violation
of non-proportionality of hazard curves, e.g., some covariates in the Cox model may
be stratified for different values or groups of individuals that enable the relaxing of the
strict assumption that mutual pair hazard curves’ proportions should be equal to one
constant [7,8]. Even more, if needed, not only time-invariant covariates but also time-
variant explanatory variables could be modified in time-varying models [9], or intervals
of time points might be split within time-partitioned models [10]. Various possibilities
of the Cox model assumptions’ violation treatment within the large family of Cox non-
proportional hazard models suggest that not one of them is an optimal “remedy” for all
new assumptions coming from them. The Cox non-proportional hazard models are highly
complex, usually require a sufficient amount of data and advanced erudition and experience
in their usage, and could bring new assumptions, sometimes even more complex [11].
Besides the Cox models, parametric survival models use log-normal or Weibull baseline
hazard function. Although applied to real-world data, these sometimes work better than
the Cox regression [12], some others fail, compared to the Cox model [13]. The parametric
survival models might suffer an initial choice of the baseline hazard function. In addition,
even these models assume the proportionality of hazard functions among individuals or
cohorts across time points [14].

In this study, we address the latter issue and propose an alternative to the Cox pro-
portional hazard model that is almost assumption-free. We introduce a principle of time-
to-event variable decomposition into two components; first, a time component that is
continuous and is used as an explanatory covariate in a machine-learning classification
model, and second, an event component that is binary and could be predicted using various
classifiers in the classification models, containing, besides others, the time component as an
input covariate. Finally, once a classification model is learned and built, then, for a given
combination of values of explanatory covariates, including a time point since the time
component is one of the covariates, we may predict whether an event of interest is likely to
happen for the given covariates’ values combination. The same prediction might be made
using the Cox proportional hazard model—the model estimates the posterior distribution
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of hazard function, which enables obtaining the point estimate of the probability that an
individual with given covariates’ values combination would likely experience the event of
interest. If the probability is greater than or equal to a defined threshold, we obtain qualita-
tively the same prediction as using our proposed method. This opens room for comparison
of predictive accuracy between our introduced method based on time-to-event variable
decomposition and the Cox proportional hazard model. While the Cox proportional hazard
model considers the non-experiencing event of interest within a given time scope as the
censoring, machine-learning classifiers understand the experiencing and non-experiencing
event of interest as two potentially equal states and, thus, might sideline the censoring in
this manner. However, if we prefer the prediction paradigm rather than the inference one,
censoring as a kind of incomplete information might be sidelined as far as the prediction
work with high enough performance.

The first ideas on time-to-event variable decomposition came from the eighties when
Blackstone et al. tried to decompose the time-to-event variable into consecutive phases
and model a constant hazard function for each phase [15]. The approach was revisited
during the last several years by [16,17] since time-varying and time-partitioning models
became popular. However, papers dealing with the combination of time-to-event variable
decomposition and machine-learning predictions on the components seem to be rare; some
initial experiments come from [18], where authors tried to predict survival in patients with
stomach cancer.

The machine-learning classification models might differ in their predictive accuracy;
however, regardless of the built classifiers, these are usually assumption-free or assumption-
almost-free [19]. We consider several classification algorithms in the study—multivariate
logistic regression, naïve Bayes classifier, decision trees, random forests, and artificial
neural networks.

To obtain an idea of how the proposed methodology works on real data, we apply the
time-to-event decomposition and ongoing prediction on a dataset of COVID-19 patients
that includes, besides others, a variable depicting whether, and if so, when an individual
experienced a decrease of their COVID-19 antibody blood level below a laboratory cut-off.
Some of the individuals in the dataset did experience the antibody blood level decrease; the
other ones did not. Thus, the variable is appropriate to be treated as a time-to-event one.
COVID-19 is an infectious disease caused by the virus SARS-CoV-2 that started with the first
clinically manifesting cases at the end of the year 2019 and quickly spread worldwide [20].
Thus, from early 2020 up to the present, there has been more or less a severe long-term
pandemic in many regions all around the world [21,22]. Individuals’ COVID-19 blood
antibodies, particularly IgG antibodies that are more COVID-19-specific, protect them from
COVID-19 manifesting disease [23]. Therefore, if we predict their decrease below laboratory
cut-off accurately enough, we can, for instance, quickly, and with no need for extensive or
expensive blood testing, preselect which individuals should undergo boosting vaccination
first if a new COVID-19 variant would income.

Thus, in this article, we address the following research gap. First, we investigate how
possible it is to predict a decrease of antibodies against COVID-19 in time using various
individuals’ covariates and a Cox proportional hazard model. Moreover, we introduce
a novel method for predicting an event of interest’s occurrence in time using time-to-
event decomposition, where the event component is classified using machine-learning
classification algorithms. In contrast, the time component is used as one of the covariates.
Finally, we compare the predictive performance of Cox regression and our proposed
method using predictive accuracy and other metrics.

The paper proceeds as follows. Firstly, in Section 2, we introduce and explain ideas
of our proposed methodology, mostly the logic and principles of the time-to-event de-
composition. Then, we illustrate the principles, assumptions, and limitations of the Cox
proportional hazard model. In addition, we describe how the prediction of an event of inter-
est’s occurrence could be made using the Cox model. Then, we depict all machine-learning
classification algorithms’ principles. Next, in Section 3, we show the numerical results we
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have obtained so far and, in particular, compare predictions based on the Cox proportional
hazard model with other predictions, using classifiers and time-to-event decomposition.
Finally, in Section 4, we discuss the results, explain them, and last but not least, we highlight
important findings in Section 5.

2. Methodology and Data

A description of the fundamentals of survival variables’ characteristics, the Cox pro-
portional hazard model, the proposed methodology, and the dataset we used for algorithms’
predictive performance, respectively, follow.

2.1. Fundamentals of Survival Variables’ Characteristics

Let us assume that a random variable T is the survival time, i.e., a length of time
an individual does not experience an event of interest [24]. Firstly, let us define survival
function S(t) as a probability that survival time is greater than some time constant t, so

S(t) = P(T > t) = P(T ≥ t)− P(T = t) = P(T ≥ t)− 0 = P(T ≥ t). (1)

Let cumulative distribution function F(t) be a probability that survival time T would
not be greater than time constant t; then, density function f (t) is a derivative of F(t) with
respect to t, so

f (t) =
dF(t)

dt
=

dP(T ≤ t)
dt

=
d(1− P(T > t))

dt
=

d1
dt
− dP(T > t))

dt
=

= 0− dP(T > t))
dt

= −dP(T > t)
dt

(1)
= −dS(t)

dt
(2)

and also

f (t) = −dP(T > t)
dt

= lim
∆t→0

P(t + ∆t > T ≥ t)
∆t

. (3)

The hazard function, λ(t), is an instantaneous probability that an individual experi-
ences the event of interest in an indefinitely short time interval 〈t, t + ∆t) once they survive
through time t up to the beginning of the interval 〈t, t + ∆t), so

λ(t) = lim
∆t→0

P(T ∈ 〈t, t + ∆t) | T ≥ t)
∆t

= lim
∆t→0

P(t + ∆t > T ≥ t | T ≥ t)
∆t

=

= lim
∆t→0

P(t + ∆t > T ≥ t ∧ T ≥ t)
∆t · P(T ≥ t)

= lim
∆t→0

P(t + ∆t > T ≥ t)
∆t · P(T ≥ t)

(1)
=

(1)
=

1
S(t)

lim
∆t→0

P(t + ∆t > T ≥ t)
∆t

(3)
=

1
S(t)

f (t)
(2)
= − 1

S(t)
dS(t)

dt
= −S′(t)

S(t)
. (4)

Since hazard function λ(t) = lim∆t→0
P(T∈〈t,t+∆t)|T≥t)

∆t describes an instantaneous
probability of an event of interest experiencing just after a specific time t, we could estimate
cumulative hazard function Λ(t) as an accumulation of the hazard of the event of interest
over time until constant t, having estimates λ̂(tj), based e.g., on observed data, for each
time point from the beginning to the end of the observed period. That being said,

Λ(t) ≈ ∑
∀tj :tj≤t

λ̂(tj),

or more precisely as

Λ(t) =
∫ t

0
λ(τ)dτ, (5)
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which may help us to derive a relationship between the survival function and hazard
function as follows:

Λ(t) =
∫ t

0
λ(τ)dτ

(4)
=
∫ t

0
−S′(τ)

S(τ)
dτ = [− log S(τ)]t0,

and since S(0) = P(T > 0) = P(T ≥ 0) = 1, we obtain

Λ(t) = [− log S(τ)]t0 = − log S(t)− (− log S(0)) =

= − log S(t) + log 1 = − log S(t) + 0 =

= − log S(t). (6)

Finally, by exponentiation of Formula (6), we obtain a direct relationship between the
survival function and cumulative hazard function,

S(t) = e−Λ(t), (7)

which enables us to predict survival probability for a given time point, based on the Cox
proportional hazard model.

2.2. Principles, Assumptions and Limitations of Cox Proportional Hazard Model

The Cox proportional hazard model is frequently used for regression modeling of an
association between a hazard function for an event of interest as a dependent variable and
multiple independent variables, also called covariates.

Sir Cox [3] suggested to model the hazard function λ(t) in relation to other k ∈ N
covariates Xi = (Xi,1, Xi,2, . . . , Xi,k)

T for individual or group i in the following way:

log λ(t) = log λ0(t) + βTxi, (8)

where λ0(t) is the baseline hazard function, i.e., the hazard function when each of the
covariates is equal to zero; β = (β0, β1, β2, . . . , βk)

T is a vector of linear coefficients, each
matched to an appropriate covariate, and xi = (1, xi,1, xi,2, . . . , xi,k) is a vector of covariates’
values for individual or group i. The linear coefficients β = (β0, β1, β2, . . . , βk)

T in the
Cox model following Formula (8) can be estimated using the partial maximum likelihood
approach [25,26].

By exponentiation Formula (8), we obtain another form of the Cox model,

λ(t) = elog λ0(t)+βT xi = elog λ0(t) · eβT xi = λ0(t) · eβT xi . (9)

Considering the Cox model following Formula (9) for two groups with indices r and s,

λ(t | xr) = λ0(t) · eβT xr

λ(t | xs) = λ0(t) · eβT xs ,

we could take a proportion of left-hand and right-hand sides of the equations, obtaining

λ(t | xr)

λ(t | xs)
=

λ0(t) · eβT xr

λ0(t) · eβT xs
=

eβT xr

eβT xs
. (10)

Assuming the model’s coefficient following Formula (8) or Formula (9) are esti-
mated taking into account, for all individuals or groups, xi = (xi,1, xi,2, . . . , xi,k) for
∀i ∈ {1, 2, . . .}, i.e.,

βTxr = const. and βTxs = const.,
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we may derive—using Formula (10)—that the proportion

λ(t | xr)

λ(t | xs)
=

eβT xr

eβT xs
= const.

of hazard functions for two any groups r, s ∈ {1, 2, . . .} is supposed to be constant. This is
why the Cox model is called the Cox proportional hazard model, and the constant proportion
of the hazard functions across all time points for any two groups is one of its statistical
assumptions. Moreover, if the hazard functions’ ratio should be constant, then also survival
functions’ ratio should be constant, as we may see using Formulas (5) and (7),

λ(t | xr)

λ(t | xs)
=

∫
λ(t | xr)dt∫
λ(t | xs)dt

=
e−
∫

λ(t|xr)dt

e−
∫

λ(t|xs)dt
=

e−Λ(t|xr)

e−Λ(t|xs)
=

S(t | xr)

S(t | xs)
= const.

However, real-world data often violate this assumption in practice, as Figures 1 and 2
illustrate.
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Figure 1. An example of two random survival curves crossing each other.
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Figure 2. An example of two random survival curves; the first one is leveling off while the second
one is dropping to zero.

In Figure 1, the survival functions are estimated in a non-parametric way as polygonal
chains cross each other; this means that, while the proportion of the survival function for
the solid line to the survival function for the dashed line is greater than 1 till the time point
of the crossing, it becomes lower than 1 after the crossing. Thus, the survival functions’
proportion could not be constant across all time points.

Similarly, in Figure 2, the proportion of the survival function for the solid line to the
survival function for the dashed line is finite until the time point the dashed line drops to
zero, then the proportion becomes infinite. Therefore, the survival functions’ ratio could
not be constant across all time points.
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Considering the Cox model from Formula (8) and using Formula (7), we can predict
whether an event of interest is likely to be experienced by an individual from a given group
at a given time point. Survival function, i.e., a probability that an individual does not
experience the event of interest before time t, if ever, is

S(t) = P(T > t) = e−Λ(t) = e−
∫ t

0 λ(t)dt = e−
∫ t

0 λ0(t)·eβT xi dt,

and using estimates coming from the Cox model following Formula (8),

Ŝ(t) = P̂(T > t) = e−Λ̂(t) = e−
∫ t

0 λ̂(t)dt = e−
∫ t

0 λ̂0(t)·eβ̂T xi dt. (11)

2.3. Principles of Proposed Time-to-Event Variable Decomposition and Prediction

The Cox proportional hazard model, following the Formula (8) or Formula (9), esti-
mates the posterior hazard function using covariates X = (X1, X2, . . . , Xk)

T , i.e., it models
the posterior probability of an event of interest’s occurrence in time [27].

Let us mark the time to the event of interest for any individual or group as a random
variable T, and the occurrence or non-occurrence of the event of interest for any individual
or group as a random variable Y. Obviously, Ti ≥ 0, and Yi ∈ {c1, c2}, or generally
Yi ∈ {c`} considering ` ∈ {1, 2}, for individual or group i, where c1 stands for the event
of interest occurrence before time t and c2 stands for the event of interest non-occurrence
before time t, respectively.

With respect to the task refining above, the Cox proportional hazard model uses covari-
ates X = (X1, X2, . . . , Xk)

T and their values xi = (xi,1, xi,2, . . . , xi,k)
T for estimation, a pair

[Ti, Yi] for individual or group i, i.e., how likely individual or group i would experience
(Yi = c1), or would not experience (Yi = c2) the event of interest until time Ti = t.

Inspecting Formula (11), we may see that the time T = t is a parameter of the
survival estimate Ŝ(t). However, the event of interest’s occurrence or non-occurrence
Y ∈ {c1, c2} requires another derivation. Once the Cox model is built, the coefficients
β = (β0, β1, β2, . . . , βk)

T are estimated using all dataset rows xi = (1, xi,1, xi,2, . . . , xi,k)
for ∀i ∈ {1, 2, . . .}, the survival Ŝ(t) might be estimated using Formula (11). Since
S(t) = P(T > t), we may expect that the event of interest does probably not occur
before time t if Ŝ(t) = P̂(T > t) is high enough. Let us suppose the event of interest is
likely not to happen, Y = c2, before time t, if ever does, whenever Ŝ(t) is greater than or
equal to a given threshold pthreshold; otherwise, the event of interest does probably occur,
Y = c1, before time t. Thus,

Ŷ =

{
c1, i.e., the event of interest does occur before time t Ŝ(t) < pthreshold
c2, i.e., the event of interest does not occur before time t Ŝ(t) ≥ pthreshold

(12)

A natural choice for the threshold seems to be pthreshold = 1
2 , but may be grid-searched

and adjusted, e.g., to maximize the Cox model’s predictive accuracy.
Schematically, the logic of the Cox model is in Figure 3. Covariates X = (X1, X2, . . . , Xk)

T

are on input and make the Cox model’s estimation possible. Once the Cox model is
built, we could predict the event of interest occurrence Y ∈ {c1, c2} in time T = t us-
ing Formulas (11) and (12). Thus, on the input of the Cox model, there are k covariates
{X1, X2, . . . , Xk}, and on output, there is the time-to-event pair variable [T, Y].

covariates Cox’s regressionX
time-to-event

pair [T, Y]

Figure 3. A logic of prediction based on the Cox proportional hazard model. Covariates X =

(X1, X2, . . . , Xk)
T on input are used for the Cox model building, which enables us to estimate output,

i.e., how likely the event of interest’s occurrence Y is in time T (and for specific values of other
covariates X).
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We refine the task of time-to-event prediction the following way. Firstly, we decompose
the time-to-event variable into time component T and event component Y. The time
component T is continuous and is used as another covariate on input for a machine-
learning classification model or, shortly, a classifier. The machine-learning classification
model predicts the event component Y on output, i.e., whether the event of interest likely
occurs (Y = c1) or not (Y = c2) before time t, using values of covariates (X1, X2, . . . , Xk)

T =
(x1, x2, . . . , xk)

T and a value of time T = t as explanatory variables. Thus, on input of the
classifier, there are k + 1 covariates {X1, X2, . . . , Xk, T}, and on output, there is the event
component Y, as the scheme in Figure 4 illustrates.

covariates,
classifier

{X, T}

event
componenttime component

Y

Figure 4. A logic of prediction based on a classification model. Covariates X = (X1, X2, . . . , Xk, T)T

on input are used for the classifier’s building, which enables us to estimate output, i.e., the event of
interest’s occurrence Y (in time T and for specific values of other covariates X). The classifier is an
algorithm from the following set: {multivariate logistic regression, naïve Bayes classifiers, decision trees,
random forests, artificial neural networks}.

As a classification algorithm, various approaches, such as multivariate logistic regres-
sion, naïve Bayes classifiers, decision trees, random forests, or artificial neural networks,
might be chosen, e.g., to maximize the model’s predictive accuracy.

2.4. Machine-Learning Classification Algorithms

Following the logic of time-to-event variable decomposition and classification-based
prediction of an event of interest’s occurrence as demonstrated in the scheme in Figure 4,
we describe principles of selected classifying algorithms used for the model building and
predicting a COVID-19 antibody blood level decrease below laboratory cut-off.

In general, all classifiers listed below employ covariates X = (X1, X2, . . . , Xk, T)T on
input and classify into two classes, either c1, or c2 of a target variable Y, i.e., an event of
interest occurrence or non-occurrence before time t.

2.4.1. Multivariate Logistic Regression

Multivariate logistic regression classifies into one of the classes {c1, c2}, i.e., an event
of interest occurrence and non-occurrence, of the target variable Y using k + 1 covari-
ates X1, X2, . . . , Xk, T. A formula of the multivariate logistic regression [28] follows for
individual i a form of

log
P(Yi = cl | xi, ti)

1− P(Yi = c1 | xi, ti)
= β0 +

k

∑
j=1

β jxi + βk+1ti + εi,

where β0 is an intercept, β j are linear coefficients each matched to covariate Xj for j ∈
{1, 2, . . . , k}, βk+1 is a linear coefficient matched to time component T, vector xi = (xi,1, xi,2,
. . . , xi,k) contains values of appropriate covariates Xj for individual i, where j ∈ {1, 2, . . . , k},
and εi is a residual for individual i.

The linear coefficients are estimated numerically using maximal likelihood [29]. Indi-
vidual i’s value of variable Y is classified using a maximum-a-posteriori principle into final
class c∗` so that

c∗` = arg max
`∈{1,2}

{P(Y = c` | xi, ti)}.
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2.4.2. Naïve Bayes Classifier

Naïve Bayes classifier also predicts the most likely class c∗` ∈ {c1, c2} of the target
variable Y, where c1 stands for the event of interest occurrence and c2 for the event of
interest non-occurrence, respectively [30]. Once we apply Bayes theorem, we obtain

P(Yi = c` | xi, ti) =
P(xi, ti | Yi = c`)P(Yi = c`)

P(xi, ti)
. (13)

Assuming we have a given dataset, i.e., a matrix containing n vectors such as xi =
(xi,1, xi,2, . . . , xi,k, ti) for ∀i ∈ {1, 2, . . . , n}, the probabilities P(Yi = c`) and P(xi, ti) are
constant, since

P̂(Yi = c`) =
# of rows where Yi = c`

n
(14)

and
P̂(xi, ti) =

# of rows where Xi = xi and Ti = ti
n

. (15)

Moreover, if the dataset is well balanced, then for ∀` ∈ {1, 2} P̂(Yi = c`) = 1
2 and for

∀p, q ∈ {1, 2, . . . , n} is P̂(xp, tp) = P̂(xq, tq). Thus, we may write for ∀` ∈ {1, 2} and for
∀i ∈ {1, 2, . . . , n}

P̂(Yi = c`)
P̂(xi, ti)

= κ = const. (16)

Thus, using Formulas (14)–(16), we might rewrite Formula (13) as follows:

P(Yi = c` | xi, ti) =
P(xi, ti | Yi = c`)P(Yi = c`)

P(xi, ti)
=

= P(xi, ti | Yi = c`)
P(Yi = c`)

P(xi, ti)︸ ︷︷ ︸
=κ

=

= P(xi, ti | Yi = c`) · κ ∝

∝ P(xi, ti | Yi = c`) (17)

Assuming mutual independence of covariates X1, X2, . . . , Xk, T, we improve For-
mula (17) as

P(Yi = c` | xi, ti) ∝ P(xi, ti | Yi = c`) ∝

∝ P(Xi,1 = xi,1 ∧ Xi,2 = xi,2 ∧ · · · ∧ Xi,k = xi,k ∧ Ti = ti | Yi = c`) ∝

∝
k

∏
j=1

P(Xi,j = xi,j | Yi = c`) · P(Ti = ti | Yi = c`),

and individual i’s value of variable Y is classified into final class c∗` ∈ {c1, c2}, using the
maximum-a-posteriori principle, so

c∗` = arg max
`∈{1,2}

{
k

∏
j=1

P(Xi,j = xi,j | Yi = c`) · P(Ti = ti | Yi = c`)

}
.

The probabilities P(Xi,j = xi,j | Yi = c`) and P(Ti = ti | Yi = c`) for categorical
covariates could be estimated as

P̂(Xi,j = xi,j | Yi = c`) =
# of rows where Xi,j = xi,j and Yi = c`

# of rows where Yi = c`
and
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P̂(Ti = ti | Yi = c`) =
# of rows where Ti = ti and Yi = c`

# of rows where Yi = c`
,

for continuous variables, P̂(Xi,j = xi,j | Yi = c`) and P̂(Ti = ti | Yi = c`) are estimated [31]
using conditional normal cumulative distribution function P̂(Xi,j = xi,j | Yi = c`) =

Φ(Xi,j = xi,j ± ε | Yi = c`) and P̂(Ti = ti | Yi = c`) = Φ(Ti = ti ± ε | Yi = c`), both for
small ε > 0.

2.4.3. Support Vector Machines

Support vector machines natively split the space of all covariates X1×X2× · · · ×Xk × T
into two subspaces by a hyperplane that maximizes the margins between the hyperplane
and the points from both subspaces that are the closest to the hyperplane [32]; see Figure 5.

wT x + b > 0

wT x + b = 0

wT x + b < 0

1
‖w‖

Figure 5. Assuming a two-dimensional case and linear separability of the points belonging to different
classes, the margin between the support vector machines’ splitting hyperplane (solid line) and both
subspaces’ closest points defines two boundary hyperplanes (dashed lines), should be maximized.
The three points, two “white” and one “black”, on the boundary hyperplanes determine the slope of
the splitting and boundary hyperplanes and, therefore, are called support vectors.

More technically, assuming we have vectors such as xi = (xi,1, xi,2, . . . , xi,k, ti)
T , i.e.,

in other words, these vectors are points in (k + 1)-dimensional space with coordinates
[xi,1, xi,2, . . . , xi,k, ti], that belongs either to class Y = c1, or to class Y = c2, any hyperplane
in the given universe follows a form of

wTxi − b,

where w is a vector orthonormal, or at least orthogonal to the hyperplane, and b is a toler-
ated margin’s width, i.e., a user’s hyperparameter, so that b

‖w‖ is the offset of the hyperplane
from the universe system of coordinates’ origin along the normal vector w.

The splitting hyperplane follows an equation wTxi − b = 0. For all points that belong
to class Y = c1 (and are “above” the splitting hyperplane), we suppose to find a boundary
hyperplane that is parallel to the splitting hyperplane, so it should have an equation
wTxi − b > 0. Similarly, all remaining points of class Y = c2 should be on or “below”
a boundary hyperplane with equation wTxi − b < 0. If points of class Y = c1 are “above”
and points of class Y = c2 are “below” the splitting hyperplane does not matter much and
is addressed by δ ∈ {−1,+1} term in other equations. Assuming linear separability of
the points from different classes and formally assigning Y = c1 ≡ +1 and Y = c2 ≡ −1,
the distance between these two boundary hyperplanes is equal to 2

‖w‖ and should be as
large as possible, so the searching for max-margin splitting hyperplane means to find
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max
{

2
‖w‖

}
subject to δ(wTxi − b) ≥ 1,

where δ ∈ {−1,+1} term guarantees to work “plus” and “minus” notation if the points of
class Y = c1 ≡ +1 or Y = c2 ≡ −1, respectively, would be “below” or “above” the splitting
hyperplane, respectively.

If the points that belong to different classes are not linearly separable, we may use
the kernel trick, i.e., to increase dimensionality of the covariates’ universe X1 × X2 × · · · ×
Xk × T by one or more dimensions that could enable to find a separating hyperplane [33],
as illustrated in Figure 6.

X1

X2

X1

Z1

X2

Figure 6. A visualization of the kernel trick’s principle. The dimensionality of the original covariates’
universe (simplified to) X1 × X2 is increased by one (Z1) or more dimensions, which could enable
making the clouds of points from different classes linear separable and could help to find a separating
“splitting” hyperplane (with dashed borders).

2.4.4. Decision Trees and Random Forests

Decision trees divide the universe of all covariates X1 × X2 × · · · × Xk × T into disjunc-
tive orthogonal subspaces related to maximally probably distribution of individual classes
of the target variable Y, see Figure 7 for demonstration [34].

Using node rules employing covariates and their grid-searched thresholds that mini-
mize given criterion, e.g., deviance, entropy, or Gini index, a dataset is repeatedly split into
new and new branches, while the tree containing node rules, i.e., logic formulas with the
covariates and their thresholds, grows up. Once the tree is completely grown, a set of the
tree’s node rules from a root node to leaves enables the classification of an individual into
one of the classes c1 or c2.

More technically spoken, let πnτ ,` be a proportion of individuals that belong to class
cell based on node nτ’s rule.

If node nτ is not a leaf one, then the node rule is created so that an impurity criterion
Qnτ is minimized. The commonly used impurity criterion is

• misclassification error,
Qnτ = 1− πnτ ,`,

• Gini index,

Qnτ =
2

∑
`=1

πnτ ,`(1− πnτ ,`),

• and deviance (cross-entropy),

Qnτ = −
2

∑
`=1

πnτ ,` · log πnτ ,`.
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If node nτ is a leaf one, then all observations that are constrained by all node rules
from root one up to the leaf one nt are classified into final class c∗` ∈ {c1, c2} of target
variable Y, so that

c∗` = arg max
`∈{1,2}

{πnτ ,`}.

X1

0 X214

8
Y = c2

Y = c1

Y = c2

X2 ≥ 14

yes

Y = c2

no

X1 ≥ 8

yes

Y = c2

no

Y = c1

Figure 7. Linear splitting of the variables’ (simplified) space X1 × X2 according to the likely distribu-
tion of target variable Y’s classes (on the left) and an appropriate tree representation with two node
rules, X2 ≥ 14 and X1 ≥ 8 (on the right).

Decision trees natively tend to overfit the classification since, whenever there is at
least one leaf node classifying into two or more classes, it is repeatedly split into two
branches until each leaf node classifies just into one class. To reduce the overfitting, grown
trees are pruned. A pruned subtree, derived from the grown tree, minimizes the following
cost-complexity function,

Cκ = ∑
nt∈{nt}

|{xroot→nt}| ·Qnτ + κ · |{nt}|,

where {nt} is a set of all nodes in the tree, {xroot→nt} is a set of all nodes in the tree structure
from the root to the leaf note nt, and κ is a tuning parameter governing the trade-off between
tree complexity and size (low κ), and tree reproducibility to other similar data (high κ).

Many trees together create a random forest. To ensure that trees in a random forest are
mutually independent and different enough, each tree is grown using a limited number
of covariates that are selected for node rules [35]. Thus, each tree’s node might be deter-
mined using only k∗ < k + 1 covariates, which are randomly picked using bootstrap from
{X1, X2, . . . , Xk, T}, which ensures that trees of one random forest are sufficiently different
one from another. A voting scheme determines the final class—an individual i is classified
into class c∗` ∈ {c1, c2} which a maximum of all trees in the random forest classifies into.
If there are two classes with maximum trees voting for, one is picked randomly.

2.4.5. Artificial Neural Networks

Artificial neural networks we used in our study are weighted parallel logistic regression
models [36], called neurons, as in Figure 8, following an atomic formula:

yl,j = σ
(

wT
l−1zl−1 + bl

)
,

where yl,j is a signal, i.e., either 0, or 1, of j-th neuron in l-th layer of neurons aiming at
the next (l + 1)-th layer, σ(•) is sigmoid activating function, wl−1 is a vector of weights
coming from axons of neurons in the previous (l − 1)-th layer, bl is l-th layer’s activating
threshold, and, finally, zl−1 is a vector of incoming signals from (l − 1)-th layer, i.e., it
is either a vector of individual i’s covariates’ values xi = (xi,1, xi,2, . . . , xi,k, ti)

T when the
neurons are of the first layer (l = 1), so it is a vector of signals yl−1 = (yl−1,1, yl−1,2, . . .)T

coming from (l − 1)-th layer (l > 1).
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zl−1,2 wl−1,2 Σ σ

activating
function

yl,1

output
zl−1,1 wl−1,1

zl−1,3 wl−1,3

weights

bias bl

inputs

Figure 8. A scheme of one neuron in l-th layer, gaining signals of a form Σ = wT
l−1zl−1 =

wl−1,1zl−1,1 + wl−1,2zl−1,2 + wl−1,3zl−1,3 from (l − 1)-th layer and transcending signal of a form

yl,1 = σ(Σ + bl) = σ
(

wT
l−1zl−1 + bl

)
= σ

(
(wl−1,1zl−1,1 + wl−1,2zl−1,2 + wl−1,3zl−1,3) + bl

)
to next,

(l + 1)-th layer.

A number of layers and neurons in each layer are hyperparameters of the neural
network’s architecture and should be chosen by an end user. Within a procedure called
backpropagation, the vectors of weights w1, w2, . . . are iteratively adjusted by a small gra-
dient per each epoch to minimize loss functions, typically an L1 or L2 norm of current
and previous neuron’s output yl,j and y′l,j, i.e., |y′l,j − yl,j| or |y′l,j − yl,j|2, respectively [37].
The learning rate determines the size of the small gradient adjusting weights in each itera-
tion. Although many exist, the commonly applied activating function is a sigmoid one and
follows a form of

σ(ζ) =
1

1 + e−ζ
.

In the classification framework, the number of output neurons is equal to the number
of classes of target variable Y; each output neuron y{# of layers}, 1 or y{# of layers}, 2 represents
one of the classes {c1, c2} and final class c∗` ∈ {c1, c2} is

c∗` = arg max
`∈{1,2}

{
y{# of layers}, `

}
.

2.5. Evaluation of Classification Algorithms’ Performance

Considering individual i’s true value of variable Y, i.e., either Yi = c1, or Yi = c2,
an algorithm may predict the true value correctly, Ŷi = Yi or incorrectly, Ŷi 6= Yi. We may
evaluate the performance of a classification algorithm using a proportion of a number
of predicted classes equal to true classes to a number of all predicted classes. Assuming
a confusion matrix [38] as in Table 1, the number of correctly predicted classes corresponds
to n1,1 + n2,2, while the number of all predictions is n1,1 + n1,2 + n2,1 + n2,2.

Table 1. A confusion matrix for two true classes Y ∈ {c1, c2} (in rows) and two predicted classes
Ŷ ∈ {c1, c2} (in columns).

Predicted Class (Ŷ)

c1 c2

True class (Y) c1 n1,1 n1,2
c2 n2,1 n2,2

Thus, the predictive accuracy of an algorithm, i.e., what is a point estimate of the
probability for which an individual’s class would be predicted correctly by the algorithm, is

accuracy =
n1,1 + n2,2

n1,1 + n1,2 + n2,1 + n2,2
=

∑2
i=1 ni,i

∑2
i=1 ∑2

j=1 ni,j
. (18)
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Even more, assuming that classes Yi = c2 and Ŷi = c2 are of “positive” meaning or are
of our special interest, then [39], the precision is a point estimate of the probability that an
individual classified to Ŷi = c2 class is truly of class Yi = c2, so

precision = P
(
Yi = c2|Ŷi = c2

)
=

P
(
Yi = c2 ∧ Ŷi = c2

)
P
(
Ŷi = c2

) =
n2,2

n1,2 + n2,2
, (19)

and the recall is a point estimate of the probability that an individual belonging to class
Yi = c2 is classified to class Ŷi = c2,

recall = P
(
Ŷi = c2|Yi = c2

)
=

P
(
Ŷi = c2 ∧Yi = c2

)
P(Yi = c2)

=
n2,2

n2,1 + n2,2
. (20)

Putting the precision and recall together, so-called F1 score is of form,

F1 score = 2 · precision · recall
precision + recall

, (21)

and, inspecting Formula (21) above, since F1 score keeps balance between the precision
and recall, it is sometimes considered as a metric of an overall model predictive perfor-
mance [39].

To avoid any bias in the performance measures’ estimation, we estimate them multiple
times using f -fold cross-validation [40], see Figure 9. Before each iteration of the f -fold
cross-validation, the entire dataset is split into two parts following a ratio ( f − 1) : 1 for
training and testing subset, respectively, where f ∈ N and f > 1. Within each iteration,
a portion of f−1

f of all data are used for training of an algorithm, while the remaining 1
f

portion of all data are used for testing a model based on the trained algorithm.

training data testing data

iteration #1 M̂1

iteration #2 M̂2

iteration #3 M̂3

...
...

...

iteration # f M̂ f

M̄

Figure 9. A scheme of f -fold cross-validation, where f ∈ N and f > 1. Training data are colored in
white, while testing data are in grey.

The j-th iteration of the f -fold cross-validation outputs a defined estimate M̂j of
a performance metric, so, in our case, M ∈ {accuracy, precision, recall, F1 score} following
Formulas (18)–(21). The estimates are eventually averaged to obtain a more robust estimate

M̄ =
1
f

f

∑
j=1

M̂j,

thus, in our case,
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accuracy =
1
f

f

∑
j=1

̂accuracyj,

precision =
1
f

f

∑
j=1

̂precisionj,

recall =
1
f

f

∑
j=1

r̂ecallj,

{F1 score} = 1
f

f

∑
j=1

̂{F1 score}j.

Finally, considering all f iterations of the f -fold cross-validation, we also report
a confusion matrix containing medians of numbers of matches and mismatches between
true classes Y and predicted ones Ŷ. Using the matrix in Table 1, the median confusion matrix
is the matrix in Table 2, where ñi,j for ∀i ∈ {1, 2} and ∀j ∈ {1, 2} is median value over all
values ni,j from the 1-st, 2-nd, . . . , f -th iteration of the f -fold cross-validation.

Table 2. A median confusion matrix for two true classes Y ∈ {c1, c2} (in rows) and two predicted
classes Ŷ ∈ {c1, c2} (in columns). Assuming that value 1ni,j comes from the 1-st iteration, value 2ni,j

comes from the 2-nd iteration, . . . , value f ni,j comes from the f -th iteration, then ñi,j is median over
values {1ni,j, 2ni,j, . . . , f ni,j}.

Predicted Class (Ŷ)

c1 c2

True class (Y) c1 ñ1,1 ñ1,2
c2 ñ2,1 ñ2,2

Summation of each median confusion matrix should be approximately equal to a por-
tion 1

f of all data since each median confusion matrix is produced by the testing, i.e.,
predicting procedure within an iteration of f -fold cross-validation.

2.6. Asymptotic Time Complexity of Proposed Prediction Based on Time-to-Event
Variable Decomposition

Let us briefly analyze the asymptotic time complexity of the proposed method, i.e., the
time-to-event variable decomposition and prediction of an event of interest’s occurrence
in time using time and event components, covariates, and machine-learning classification
algorithms.

Assuming we have n ∈ N individuals in a dataset in total, time-to-event variable
decomposition is a unit time operation made for each of them, so its asymptotic time
complexity, using Bachmann–Landau notation [41], is Θ(n). Picking a machine-learning
classifier, let us suppose that it takes Θ(λ(n)) time when training on n observations (and all
their covariates’ values), whereas it takes Θ(π(n)) time if testing or predicting an output
for n observations (both testing and predicting procedures could be considered the same
regarding their asymptotic time complexity since they use a trained model and only output
target variable values for input). Firstly, the training, testing, and prediction are linear
procedures with respect to a number of observations, i.e., training, testing, or prediction
considering 2n observations would take approximately double the time than considering
only n observations.

Θ(λ(`n)) ≈ Θ(` · λ(n)) ≈ ` ·Θ(λ(n))

Θ(π(`n)) ≈ Θ(` · π(n)) ≈ ` ·Θ(π(n)),
(22)
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however, using Bachmann–Landau logic, linear multipliers do not change asymptotic time
complexity, so it is as well

` ·Θ(λ(n)) ≈ Θ(λ(n))

` ·Θ(π(n)) ≈ Θ(π(n)).
(23)

In addition, we may assume that training a model is generally not faster than testing
a model or using it for prediction, considering n observations, so

Θ(λ(n)) & Θ(π(n))

and neither training nor testing nor even predicting considering n observations is faster
than n-times performed unit time operation, so

Θ(λ(n)) & Θ(π(n)) & Θ(n). (24)

Applying derivations from the previous section, within each iteration of f -fold cross-
validation, we build a model on f−1

f n portion of the dataset, test it on 1
f n portion of

the dataset. This is repeated f ∈ N times since there are f iterations in the f -fold cross-
validation. Thus, applied to n observations, the time-to-event variable decomposition,
f -fold cross-validation containing training and testing all f models and prediction on
output, respectively, would asymptotically take Θ(•), such that

Θ(•) ≈ Θ(n) + f ·
(

Θ
(

λ

(
f − 1

f
n
))

+ Θ
(

π

(
1
f

n
)))

+ Θ(π(n))
(22)
≈

(22)
≈ Θ(n) + f ·

(
f − 1

f
·Θ(λ(n)) +

1
f
·Θ(π(n))

)
+ Θ(π(n)) ≈

≈ Θ(n) + ( f − 1) ·Θ(λ(n)) + Θ(π(n)) + Θ(π(n))
(23)
≈

(23)
≈ Θ(λ(n)) + Θ(π(n)) + Θ(n), (25)

so, improving Formula (25), it is obviously

Θ(•) ≈ Θ(λ(n)) + Θ(π(n)) + Θ(n) &

& Θ(λ(n)) (26)

and also

Θ(•) ≈ Θ(λ(n)) + Θ(π(n)) + Θ(n)
(24)
.

(24)
. Θ(λ(n)) + Θ(λ(n)) + Θ(λ(n)) ≈

≈ 3 ·Θ(λ(n))
(23)
≈

(23)
≈ Θ(λ(n)). (27)

Putting Formulas (26) and (27) together, we obtain

Θ(λ(n)) & Θ(•) & Θ(λ(n));

thus,
Θ(•) ≈ Θ(λ(n)),

and, finally, asymptotic time complexity Θ(•) of the time-to-event decomposition, followed
by prediction of an event of interest’s occurrence in time using machine-learning classifica-
tion algorithms is approximately equal to asymptotic time complexity of training of the
classification algorithm, regardless of its kind. In other words, the proposed method does
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not take significantly longer computational time when performed from beginning to end
than the classifier used within the technique.

2.7. Description of Used Dataset

The dataset used to confirm the proposed methodology’s feasibility comes from the
Department of Occupational Medicine, University Hospital Olomouc. The data contain
covariates’ values in about COVID-19 non-vaccinated 663 patients; there are 34 covariates
describing COVID-19 antibody blood level values and their decrease below laboratory
cut-off for IgG and IgM antibodies in various time points and multiple biometric and other
variables, continuous and categorical. All patients have been informed in advance about
using their data for the study, following ideas of Helsinki’s declaration [42].

Regarding the covariates, there are

• continuous variables such as age (in years), weight (in kilograms), height (in centime-
ters), body mass index (in kilogram per squared meters), COVID-19 IgG antibody
blood level, COVID-19 IgM antibody blood level, a total count of COVID-19 defined
symptoms, the time between beginning and end of COVID-19 symptoms (in days),
the time between laboratory-based proof of COVID-19 and antibody blood sampling
(in days), the time between COVID-19 symptoms’ offset and antibody blood sampling
(in days);

• categorical variables such as sex (male/female), COVID-19 IgG antibody blood level
decrease below laboratory cut-off (yes/no), COVID-19 IgM antibody blood level
decrease below laboratory cut-off (yes/no), COVID-19 defined symptoms such as
headache (yes/no), throat pain (yes/no), chest pain (yes/no), muscle pain (yes/no),
dyspnea (yes/no), fever (yes/no), subfebrile (yes/no), cough (yes/no), lack of appetite
(yes/no), diarrhea (yes/no), common cold (yes/no), fatigue (yes/no), rash (yes/no),
loss of taste (yes/no), loss of smell (yes/no), nausea (yes/no), mental troubles (yes/no),
and insomnia (yes/no).

As a time-to-event variable, a COVID-19 IgG antibody blood level decrease below the
laboratory cut-off or COVID-19 IgM antibody blood level decrease below the laboratory
cut-off, respectively, is considered the event component. In contrast, the time between
laboratory-based proof of COVID-19 and antibody blood sampling is taken into account
for the time component.

3. Results

We applied the Cox proportional hazard model and proposed methodology han-
dling time-to-event decomposition and classification on the dataset as described in the
previous sections. All computations were performed using R statistical and programming
language [43].

Firstly, we performed and built the Cox proportional hazard model, considering
COVID-19 antibody blood level decrease or non-decrease below laboratory cut-off (for IgG
and IgM antibodies, respectively) as an event of interest that does or does not occur when
antibody blood sampling is carried out a varying time period after COVID-19 symptoms’
onset is laboratory proven.

Assuming Cox proportional hazard model for the prediction of COVID-19 IgG antibody
blood level decrease or non-decrease below laboratory cut-off, the prediction of IgG anti-
body decrease below the cut-off was repeated ten times within 10-fold cross-validation and
output the predictive accuracy about 0.796, precision about 0.889, recall of 0.951, and F1
score about 0.884; see Table 3. The median confusion matrix for Cox proportional hazard
model predicting IgG antibody decrease below cut-off is in Figure 10. An average value of
threshold pthreshold over all iterations of 10-fold cross-validation for IgG decrease prediction
was about p̄threshold = 0.070. Cox proportional hazard model predicted COVID-19 IgM
antibody blood level decrease or non-decrease below laboratory cut-off with predictive
accuracy 0.627, precision of 0.598, recall of 0.519 and F1 score about 0.507; see Table 4.
The median confusion matrix for Cox proportional hazard model predicting IgM anti-
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body decrease below cut-off is in Figure 11. An average threshold pthreshold over 10-fold
cross-validation’s iterations when IgM decrease predicted was about p̄threshold = 0.765.
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Figure 10. Median confusion matrices for predicting COVID-19 IgG antibody blood level decrease or
non-decrease below laboratory cut-off using the listed algorithms.
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Figure 11. Median confusion matrices for predicting COVID-19 IgM antibody blood level decrease or
non-decrease below laboratory cut-off using the listed algorithms.

Let us proceed to the proposed technique. Supposing multivariate logistic regression as
a tool for the prediction of COVID-19 IgG antibody blood level decrease or non-decrease
below laboratory cut-off, the prediction of IgG antibody decrease was repeated ten times
within 10-fold cross-validation and ended with the predictive accuracy about 0.811, preci-
sion about 0.820, recall of 0.984, and F1 score about 0.894, see Table 3. The median confusion
matrix for multivariate logistic regression predicting IgG antibody decrease below cut-off is
in Figure 10. Multivariate logistic regression predicted COVID-19 IgM antibody blood level
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decrease or non-decrease below laboratory cut-off with predictive accuracy 0.578, precision
about 0.530, recall of 0.429, and F1 score about 0.468, see Table 4. The median confusion
matrix for multivariate logistic regression predicting IgM antibody decrease below cut-off
is in Figure 11.

Table 3. Predictive accuracy, precision, recall and F1 score of COVID-19 IgG antibody blood level
decrease below laboratory cut-off’s estimation for the listed algorithms, both traditional Cox’s model
and classifiers using a decomposed time-to-event variable, calculated using 10-fold cross-validation.

Algorithm Predictive Accuracy Precision Recall F1 Score

Cox proportional hazard model 0.796 0.889 0.951 0.884

multivariate logistic regression 0.811 0.820 0.984 0.894
naïve Bayes classifier 0.771 0.841 0.896 0.865
support vector machines 0.845 0.845 1.000 0.913
decision trees 0.783 0.833 0.920 0.874
random forests 0.836 0.850 0.980 0.908
artificial neural networks 0.806 0.827 0.953 0.881

Table 4. Predictive accuracy, precision, recall and F1 score of COVID-19 IgM antibody blood level
decrease below laboratory cut-off’s estimation for the listed algorithms, both traditional Cox’s model
and classifiers using a decomposed time-to-event variable, calculated using 10-fold cross-validation.

Algorithm Predictive Accuracy Precision Recall F1 Score

Cox proportional hazard model 0.627 0.598 0.519 0.507

multivariate logistic regression 0.578 0.530 0.429 0.468
naïve Bayes classifier 0.574 0.532 0.373 0.428
support vector machines 0.527 0.506 0.347 0.393
decision trees 0.583 0.551 0.412 0.461
random forests 0.555 0.556 0.419 0.467
artificial neural networks 0.516 0.443 0.402 0.518

Naïve Bayes classifier, when predicting COVID-19 IgG antibody blood level decrease
or non-decrease below laboratory cut-off, was repeated ten times within 10-fold cross-
validation and returned the predictive accuracy about 0.771, precision about 0.841, recall
of 0.896, and F1 score about 0.865; see Table 3. The median confusion matrix for the naïve
Bayes classifier predicting IgG antibody decrease below cut-off is in Figure 10. Naïve
Bayes classifier predicted COVID-19 IgM antibody blood level decrease or non-decrease
below laboratory cut-off with predictive accuracy 0.574, precision about 0.532, recall of
0.373, and F1 score about 0.428, see Table 4. The median confusion matrix for naïve Bayes
classifier predicting IgM antibody decrease below cut-off is in Figure 11.

When support vector machines using nonlinear kernel trick were considered for predic-
tion of COVID-19, IgG antibody blood level decrease or non-decrease below laboratory
cut-off, the algorithm ended with the predictive accuracy about 0.845, precision about 0.845,
recall of 1.000, and F1 score about 0.913; see Table 3. The median confusion matrix for
support vector machines predicting IgG antibody decrease below cut-off is in Figure 10.
Support vector machines predicted COVID-19 IgM antibody blood level decrease or non-
decrease below laboratory cut-off with predictive accuracy 0.527, precision about 0.506,
recall of 0.347, and F1 score about 0.393; see Table 4. The median confusion matrix for
support vector machines predicting IgM antibody decrease below cut-off is in Figure 11.

Decision trees predicted COVID-19 IgG antibody blood level decrease or non-decrease
below laboratory cut-off using 10-fold cross-validation with the predictive accuracy about
0.783, precision of 0.833, recall of 0.920, and F1 score about 0.874, see Table 3. The pruning
parameter we used for model training has been adopted from default and recommended
setting, i.e., κ = 0.01. The median confusion matrix for decision trees predicting IgG
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antibody decrease below cut-off is in Figure 10. Decision trees predicted COVID-19 IgM
antibody blood level decrease or non-decrease below laboratory cut-off with predictive
accuracy 0.583, precision about 0.551, recall of 0.412, and F1 score about 0.461, see Table 4.
The median confusion matrix for decision trees predicting IgM antibody decrease below
cut-off is in Figure 11.

Random forests were also repeated ten times within 10-fold cross-validation to predict
COVID-19 IgG antibody blood level decrease or non-decrease below laboratory cut-off.
Each model of the random forests consisted of 1000 decision trees. The random forests’
predictive accuracy of IgG antibody decrease below cut-off is about 0.836, precision about
0.850, recall of 0.980, and F1 score about 0.908; see Table 3. The median confusion matrix
for random forests predicting IgG antibody decrease below cut-off is in Figure 10. Random
forests predicted COVID-19 IgM antibody blood level decrease or non-decrease below
laboratory cut-off with predictive accuracy 0.555, precision about 0.556, recall of 0.419,
and F1 score about 0.467; see Table 4. The median confusion matrix for random forests
predicting IgM antibody decrease below cut-off is in Figure 11.

Finally, artificial neural networks with backpropagation, we performed ten times within
10-fold cross-validation to predict COVID-19 IgG antibody blood level decrease or non-
decrease below laboratory cut-off, output the predictive accuracy of IgG antibody decrease
below cut-off about 0.806, precision about 0.827, recall of 0.953, and F1 score about 0.881;
see Table 3. For each iteration of the 10-fold cross-validation, we used two hidden layers
with 10 and 5 neurons, respectively, and set the learning rate to an interval of approximately
−0.10 to +0.30. The median confusion matrix for artificial neural networks predicting
IgG antibody decrease below cut-off is in Figure 10. Artificial neural networks predicted
COVID-19 IgM antibody blood level decrease or non-decrease below laboratory cut-off
with predictive accuracy 0.516 precision about 0.443, recall of 0.402, and F1 score about
0.518; see Table 4. The median confusion matrix for artificial neural networks predicting
IgM antibody decrease below cut-off is in Figure 11.

Median confusion matrices in Figures 10 and 11 may help to identify whether an
algorithm predicting COVID-19 antibody blood level decrease below laboratory cut-off
tends to over- or underestimate the antibody decrease. Thus, comparing predicted numbers
for antibody blood decrease and non-decrease in the median confusion matrices columns
could be useful.

4. Discussion

Prediction of the time period till an event of interest is the most challenging and
essential task in statistics, particularly when the event has a significant impact on an
individual’s life. Without a doubt, the blood level of antibodies against COVID-19 and
their development in time, especially their decrease below laboratory cut-off, also called
seronegativity, could determine how an individual would face COVID-19 infection when
exposed to it. This is one of the reasons we wanted to compare traditional statistical
techniques and machine-learning-based approaches on antibody blood level decrease just
for the diagnosis of COVID-19.

Survival analysis provides a toolbox of classical methods that model and predict
the time to event. Many methods are commonly used regardless of whether they meet
their formal assumptions when applied to real data. Since these methods, including the
Cox proportional hazard model for prediction of the time to event, handle the relatively
advanced concept of time-to-event modeling, they are limited by relatively strict statistical
assumptions. Fortunately, there are various alternatives for how to address the issue
of assumptions violation; in the case of the Cox proportional hazard model, we may
use rather stratified models that partition an input dataset into multiple parts and build
models for them independently, or we might prefer to perform other time-varying and
time-partitioning that split the hazard function into several consecutive parts and model
the parts individually.
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In addition, machine-learning approaches could predict in a time-to-event fashion.
A promising fact about the application of machine-learning algorithms not only in survival
analysis is that these algorithms usually have very relaxed or not at all prior statistical
assumptions. However, the majority of works and papers that employ machine-learning-
based techniques for purposes of survival analyses often use mixed methods that combine
features from survival analysis and machine-learning, namely scoring and counting mod-
els [44], linear-separating survival models such as survival random forests [45], or discrete-
time survival models [46]. Nevertheless, if the papers predicted the time to an event of
interest and use comparable metrics of performance [47], regardless of data focus, they
usually reach predictive accuracy of about 0.7–0.9. These are similar predictive accuracy
values we have obtained using the proposed time-to-event decomposition and ongoing
classification too. Besides the Cox proportional hazard model, there are parametric survival
models such as Weibull or log-normal ones. Those are flexible and might work well on
real-world data; however, they require an initial assumption on the parametric choice of the
baseline hazard function. If the assumption is wrong, predictions could fail. For example,
Valvo in [48] predicts COVID-19-related deaths (instead of antibody decrease) using a log-
normal survival model with an average error of about 20%, which is, although a different
topic, a similar value to our results.

Going deeper into machine learning applied for prediction in COVID-19 diagnosis,
many papers deal with predictions of COVID-19 symptoms’ offset, COVID-19 recurrence,
long-term COVID-19 disease, post-COVID-19 syndrome [49–51]. However, all the men-
tioned topics of prediction related to COVID-19 manifestation are usually based on datasets
that consist of individual observations of symptoms, biometric data, and laboratory or
medical imaging data. Thus, very often, the data size is very large, so machine learning
is a legit way for how to analyze these kinds of data; a time-to-event variable is generally
missing, so such data are not suitable for survival analysis, though. This may be why
papers applying machine-learning prediction on survival data related to COVID-19 are
not as frequent as we could initially expect, considering the importance of the topic, or
publicly available data are usually aggregated up to a higher level, which is generally
not an optimal starting point for survival analysis. Furthermore, some publications are
still estimating COVID-19 blood antibody level’s development in time [52–54], but using
traditional methods, so not applying time-to-event decomposition.

Of papers dealing with COVID-19-related predictions using machine-learning tech-
niques, Willette et al. [55] predicted the risk of COVID-19 severity and risk of hospitalization
due to COVID-19, respectively, using discriminant and classification algorithms applied
on 7539 observations (!) with variable similar to ours, and received an accuracy of about
0.969 and 0.803, respectively. While our dataset is more than ten times smaller, we obtained
similar results. Kurano et al. [56] employed XGBoost (extreme gradient boosting) to classify
COVID-19 severity using immunology-related variables. Applied on 134 patients, they
received a predictive accuracy between 0.380–0.900 for various lengths of symptoms’ onset.
Using standard explanatory variables, Singh et al. [57] performed support vector machines
to determine infectious COVID-19 status on 1063 recipients with final accuracy greater than
0.700. In addition, Rostami and Oussalah [58] combined feature selectors with explainable
trees and others to predict COVID-19 diagnosis. Applied to available 5644 patients’ blood
test data containing 111 features, they received an accuracy of about 0.877 for XGBoost,
about 0.848 for support vector machines, about 0.853 for neural networks, and 0.884 for
explainable decision trees, respectively. Cobre at al. [59] introduced a new method for
COVID-19 severity, combining various algorithms such as artificial neural networks, de-
cision trees, discriminant analysis, and k-nearest neighbor. Applied on biochemical tests
of 5643 patients, they obtained a predictive accuracy of about 0.840. Albeit no COVID-
19-related predictions, but classification into acute organ injury or non-acute organ injury,
Duan et al. [60] received precision and recall slightly above 0.800, using about 20 features
of 339 patients. Thus, the predictive performance we obtained using our proposed method
seems comparable with the literature.
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However, according to our expectations, when sample sizes, as well as the numbers of
features, are enormous and machine-learning algorithms could return outstanding results,
as Bhargava et al. [61] showed when they predicted COVID-19 disease using nine large
datasets combining laboratory and imaging data and designed the algorithms in deep-
learning fashion. As a result, they received an accuracy above 0.900, or, using ensembled
algorithms, even close to 0.990.

Our proposed method, based on time-to-event decomposition and machine-learning
classification of individuals to an event of interest’s occurrence or non-occurrence, using the
time to event as an explanatory covariate, might contribute to the application of machine-
learning for survival-like prediction in COVID-19 patients. Surely we do not want to
claim that the method we are introducing in the paper would work on each dataset of
similar size; however, thanks to a robust estimate of the predictive accuracy using 10-fold
cross-validation, we may believe that the results we have obtained are not only random
but supported by sufficient evidence of perfomance metrics and method’s properties.

Considering the IgG antibodies and their blood level decrease below laboratory cut-off
in our patients, all performed algorithms show satisfactory performance and output rela-
tively promising results regarding the predictive accuracy, as figured in Table 3. The Cox
proportional hazard model, taking into account as a golden standard, reported similar
predictive accuracies such as multivariate logistic regression, naïve Bayes classifier, and de-
cision trees. An assumption of the Cox model that survival curves for various combinations
of covariates’ values should be met—particularly, survival curves would not cross each
other or drop to zero, as plotted in Figures 1 and 2. The multivariate logistic regression is
a “baseline” model that performs well in prediction but might suffer from multicollinearity
between covariates [62]. Naïve Bayes classifier is a relatively simple algorithm and often
outputs surprisingly good results; however, it depends on only one assumption, but its
performance could be ruined if it is violated—explanatory covariates should be indepen-
dent, as applied in Formula (17). Decision trees are practically assumption-free [63] but
become more powerful when creating an entire random forest model. Support vector
machines and random forests seem to noticeably outperform the Cox model in predic-
tive accuracy, precision, recall, and F1 score—both algorithms reached all metrics higher
than Cox’s regression using our dataset. The support vector machines are sophisticated
algorithms. Using the kernel trick, these can find a separating hyperplane even for linear
non-separable points of different classes. The random forest is the only algorithm among
others that is natively ensembled, i.e., consists of a large number of other classification
algorithms—decision trees. This is why the random forest typically shows good predictive
performance. Among all algorithms applied to the data and predicting IgG antibody de-
crease, artificial neural networks reported the predictive performance slightly better than
the Cox’s model—neural networks are universal classifiers, and their performance could
be even improved when larger subsets are used for training, different activating function
applied or various architecture of hidden layers investigated. Performance metrics other
than predictive accuracy, as listed in Table 3, are more than satisfying too—and each of
them is greater than 0.800.

Prediction of IgM antibody decrease might be tricky since IgM antibodies are less
related to a cause it induced their growth, i.e., COVID-19 exposure [64]. This might be
why all algorithms performed mutually similar (and relatively poor) outputs of predictive
accuracy and other metrics, as reported in Table 4.

In the case of IgG decrease prediction, support vector machines, random forest,
and neural networks do not predict the decrease class; however, the number of indi-
viduals with antibody decrease is significantly lower than those with no antibody decrease,
see Figure 10, so the predictive accuracy is not affected. Still, the possible lack of data in
the “IgG decrease” class in training sets could cause the mentioned algorithms to fail to
classify a few individuals from the class correctly. Mainly, neural networks are sensitive
to this. If the median confusion matrix summation in Figures 10 and 11 is lower than
approximately one-tenth of the entire dataset size, then the antibody decrease is likely
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not predicted for some individuals. This could happen due to their missing covariates’
values, which occurred for the three previously mentioned algorithms. Inspecting median
confusion matrices in Figure 11, there seems to be no algorithm that would fail in the
prediction of one of the classes in IgM antibody decrease. However, in general, the accuracy
of IgM decrease is relatively low, likely caused by the advanced complexity of IgM (!)
decrease prediction (compared to IgG decrease prediction).

As for the limitation of the work, the fact that the proposed methodology works with
good performance, particularly for IgG antibody decrease prediction, does not guarantee
that it would work on another dataset with similar or even better performance. In addition,
classification into classes that stand for an event of interest’s occurrence and non-occurrence
consider both classes equal, which sidelines the censoring; however, it seems not to affect
prediction performance. In addition, when the classifiers are mutually compared within
the proposed method, one should take into account the fact that some of the algorithms
did not classify all observations, as we see in Figures 10 and 11 (i.e., when the summation
of a median confusion matrix is less than one-tenth of the dataset), and consider such
a comparison rather only as approximative. Machine-learning classification algorithms
within the proposed method may bias any inference potentially carried out using the
event of interest’s occurrence estimates [65]—in this article, we are primarily interested in
prediction paradigm and predictive performance. Finally, albeit not a limitation, but rather
a note, varying tuning parameters set for classifiers in the introduced method and differ-
ent sample sizes used for classifiers’ training, testing, and predicting may lead to other
predictive performances.

5. Conclusions

Whether an individual would likely experience an event of interest or not, and if so,
when exactly, is an essential predictive task in survival analysis. Unfortunately, statistical
assumptions often limit methods commonly used to perform this forecasting.

In this work, we address the issue of assumption violation and employ machine learn-
ing, usually assumption-free or assumption-relaxed, in the predictive task. We decompose
the time-to-event variable into two components—a time and an event one. While the
event component is classified using various machine-learning classification algorithms,
the time component becomes one of the covariates on the input of the classification models.
Classifying into an event of interest’s occurrence and non-occurrence enables us to compare
our proposed method with the traditional Cox proportional hazard model.

We apply the introduced methodology to COVID-19 antibody data where we predict
IgG and IgM antibody blood level decrease below laboratory cut-off, also considering other
explanatory covariates besides the time component.

The asymptotic time complexity of the proposed method equals the computational
time of a classifier employed in the method. Compared to the Cox model, the classification
does not take into account any censoring and considers both classes, i.e., an event of interest
occurrence and non-occurrence, as equal. However, predictive performance measured
using predictive accuracy and other metrics is for some models, particularly when IgG
antibody decrease is estimated, higher than for the Cox model. Namely, multivariate
logistic regression (with an accuracy of 0.811), support vector machines (with an accuracy
of 0.845), random forests (with an accuracy of 0.836), and artificial neural networks (with
an accuracy of 0.806) seem to outperform the Cox’s regression (with an accuracy of 0.796),
applied as classifiers in the proposed method on the COVID-19 data and predicting IgG
antibody decrease below the cut-off. The precision, recall, and F1 score of the four named
classifiers are constantly high, generally above 0.800. Regarding IgM antibody decrease
below cut-off, Cox’s regression and the proposed method employing various classifiers
perform relatively poorly, likely due to a weak association between COVID-19 exposure
and IgM antibody production. In comparison, Cox’s model reached an accuracy of about
0.627, and all classifiers within the introduced method predicted with an accuracy of
about 0.520–0.583.
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The proposed method seems to be a promising tool, currently applied to COVID-19
IgG antibody decrease prediction. Since IgG antibodies are closely related to protection
against COVID-19 disease, an effective and accurate forecast of their (non-)decrease below
laboratory cut-off could help—with no explicit need for time-consuming and expensive
blood testing—to early identify COVID-19 non-vaccinated individuals with sufficient
antibody level that could not undergo boosting vaccination when new COVID-19 outbreak
incomes, or the non-vaccinated with IgG antibody decrease could be detected early as in
risk of severe COVID-19, using only the algorithm and variables from their case history.

As for the future outlook, the proposed method could benefit from ensembled classi-
fiers, increasing their predictive accuracy. In addition, various tuning parameters’ settings
might improve predictive performance. Probably, the proposed method broadly applies to
similar problems based on two-states survival prediction tasks.
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