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Abstract: In this article we first revisit some earlier work on fractionally differenced white noise
and correct some issues with previously published formulae. We then look at vector processes and
derive formula for the Autocorrelation function, which is extended in this work to a larger range of
parameter values than considered elsewhere, and compare this with previously published work.
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1. Introduction

Long memory of a time series is a special characteristic that we observe when analyzing
time series data. A time series process is considered to have long memory if its serial
dependence or the autocorrelation function (ACF) decays more slowly than an exponential
decay (a time series with an exponentially decaying ACF is known as having short memory).
This indicates that in long memory time series, the ACF decays hyperbolically and a
significant dependence exists between two points even when they are far apart. This
hyperbolic behavior of the ACF forces an unbounded spectrum at the origin and, as a result,
the standard theory for short memory time series models, such as auto-regressive moving
average (ARMA) models cannot be applicable. One of the earliest researchers to identify
the need for long memory models was Hurst [1,2].

In order to model such long memory time series, Granger and Joyeux [3] and Hosking [4]
proposed a family of auto-regressive fractionally integrated moving average (ARFIMA)
and these proved to be very useful in many time series applications, especially in the areas
of geophysics (Haslett and Raftery [5], Lustig et al. [6]), economics (Gil-Alana et al. [7]),
and finance (Barkoulas et al. [8], Reschenhofer et al. [9]). To investigate some hidden
characteristics of time series, in his paper, Peiris [10] used a similar approach and defined a
family of generalized auto-regressive (GAR) models. The ARFIMA model of a process Xt
is defined by

φ(B)(1− B)dXt = θ(B)εt, (1)

where φ(z) = 1−∑
p
j=1 φjzj, θ(z) = 1−∑

q
j=1 θjzj, εt represents a zero-mean uncorrelated

process with variance σ2, d is a real number which, for the process to be stationary should
satisfy d < 1

2 , p and q are non-negative integers and B is the backshift operator, defined as
BXt = Xt−1.

The interested reader may compare (1) to a standard Box–Jenkins ARIMA model (Box
and Jenkins [11]) where d is a non-negative integer. Where d is allowed to be fractional,
(1) may be rearranged to show a factor (1− B)−d which can be written as a Taylor series
expansion ∑∞

j=0 ψjBj with

ψj =
Γ(j + d)

Γ(j + 1)Γ(d)
.
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When p = q = 0, (1) is often referred to as fractionally differenced white noise
or FDWN.

Section 2 is devoted to highlight the important properties of GAR(1) model and its
relationship to ARFIMA. Recent advancements related to GAR(1) model can be found in
Hunt et al. [12] and further extensive results on long memory time series are available in
Hassler [13].

In this paper, we will explore some issues with the formulae supplied in Granger and
Joyeux [3] for the spectral density function of ARFIMA processes, and then move on to
extend the current results for multivariate ARFIMA(0, d, 0) ACF functions.

Section 2 will briefly examine the GAR model of Peiris [10] which provides a general
formula for the ACF of these processes.

Section 3 will examine and discuss some issues with Granger and Joyeux [3] and
Section 4 will look at a Vector ARFIMA(0, d, 0) process, extending existing results to a
wider range of the fractional differencing exponent. Section 5 will conclude the paper.

2. Generalized Auto-Regressive Model of Order 1 (GAR(1))

In his paper, Peiris [10] considered a time series Xt generated by a GAR(1) model
given by

(1− αB)δXt = Zt, |α| < 1 and δ > 0, (2)

where B is the backshift operator and {Zt} ∼WN(0, σ2) is a white noise process.
The restriction δ > 0 in (2) can be removed as |α| < 1. The stationary solution to (2) is

Xt =
∞

∑
j=0

ψjα
jZt−j,

and the corresponding spectrum fX(ω) is

fX(ω) =
σ2

2π

(
1 − 2α cos ω + α2

)−δ
, −π < ω ≤ π, (3)

where ψj =
Γ(j + δ)

Γ(j + 1)Γ(δ)
.

It has been shown by Peiris [10] P163, Theorem 3.2 that the ACF at lag k, γk is given by

γk = σ2 Γ(k + δ)

Γ(δ)Γ(k + 1)
F(δ, k + δ; k + 1; α2), k ≥ 0, (4)

Using F(α, β; γ; 1) = Γ(γ)Γ(γ−α−β)
Γ(γ−α)Γ(γ−β)

for γ > α + β, the above reduces to

γk = σ2 Γ(k + δ)Γ(1− 2δ)

Γ(k + 1− δ)Γ(δ)Γ(1− δ)
. (5)

Furthermore, we can use Eulers reflection formula Γ(z)Γ(1− z) = π
sin πz to give

γk =
σ2

π
sin πδ

Γ(k + δ)

Γ(k + 1− δ)
Γ(1− 2δ), (6)

where

F(θ1, θ2; θ3; θ) =
Γ(θ3)

Γ(θ1)Γ(θ2)

∞

∑
j=0

Γ(θ1 + j)Γ(θ2 + j)
Γ(θ3 + j)Γ(j + 1)

θ j

is the hyper-geometric function.
These general results in (3) and (4) can be used in ARFIMA modeling. The interested

reader is advised to refer to Bondon and Palma [14] or Hassler [13] for further details.
Next, consider the model ARFIMA(0, δ, 0) also known as fractionally differenced

white noise.
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3. Fractionally Differenced White Noise—A Discussion

Formally, we define a FDWN process as (1) with p = q = 0, although this can also be
defined as (2) with α = 1. In this section, to emphasize the fractional nature of the exponent
we will use the notation δ rather than d for this.

In this case, Peiris [10] provides a formula for the auto-covariance as

γk = σ2 Γ(k + δ)

Γ(δ)Γ(k + 1)
F(δ, k + δ; k + 1; 1)

= σ2 Γ(k + δ)Γ(1− 2δ)

Γ(k + 1− δ)Γ(δ)Γ(1− δ)
.

(7)

We can use Eulers reflection formula to give

γk =
σ2

π
sin πδ

Γ(k + δ)

Γ(k + 1− δ)
Γ(1− 2δ). (8)

Other authors have also provided results.
In Hosking [4], Theorem 1 looks at FDWN with σ2 = 1 and δ ∈ (− 1

2 , 1
2 ) and provides

a formula

γk = (−1)k Γ(1− 2δ)

Γ(k− δ + 1)Γ(1− k− δ)
. (9)

(9) can be shown to be identical to (7) using

(−1)kΓ(1− k− δ) =
Γ(1− δ)

(k + δ− 1)...(1 + δ)δ
=

Γ(1− δ)Γ(δ)
Γ(k + δ)

. (10)

Palma [15] also provides a similar formula for a general σ2 > 0 (Equation 3.21) but
the implication from Section 3.2.1 (but not explicitly stated for the ACF) is that this holds
for δ ∈ (−1, 1

2 ). As above, a similar result was also reported by Bondon and Palma [14]. In
Hassler [13], Proposition 6.4 formally provides this result for δ ∈ (−1, 1

2 ).
However, the result due to Granger and Joyeux [3] p. 17 for µτ (used by Granger and

Joyeux [3] to identify the auto-covariance at lag τ) does not reduce to γk. We now proceed
to explore why this is the case.

In Granger and Joyeux [3] Section 2, the spectrum of the process being studied is
given as

f (ω) = α(1− cos ω)−d. (11)

The assumption behind this is that α may consist of a range of non-long-memory
parameters. For instance, for a fractional white noise process, one would expect α = α1 ≡ 1

2π .
However, this is at best misleading.

Suppose f (ω) = 1
2π

∣∣1− e−iω
∣∣−2d (Brockwell and Davis [16] 13.2.18).

This can be rewritten as

f (ω) =
1

2π
2−d(1− cos ω)−d. (12)

This can clearly be written as (11) by setting α = α2 ≡ α2(d) ≡ 1
π21+d , however this is

no longer independent of the long memory parameter d. We believe the intention was that
α should have been a constant independent of d.

We feel it would be best to write the spectral density as (12) rather than (11), and use
α = α1. In the more general form used by Granger and Joyeux [3], the spectral density is

f (ω) = α 2−d(1− cos ω)−d. (13)
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This changes the formula for the auto-covariance function. To avoid confusion we
denote the auto-covariance function of (13) as µ̃τ , to distinguish it from the version docu-
mented in Granger and Joyeux [3] labeled as µτ , and written as

µτ = α 21+d sin(πd)
Γ(τ + d)

Γ(τ + 1− d)
Γ(1− 2d). (14)

Lemma 1. µτ 6= γτ , µ̃τ = γτ .

Proof. We proceed by evaluating a formula for µ̃τ similar to that which Granger and Joyeux [3]
obtained for µτ .

We can write

µ̃τ =
∫ 2π

0 cos(τω) f (ω)dω

=
∫ 2π

0 cos(τω)α2−d(1− cos ω)−ddω

= α2−2d ∫ 2π
0 cos(τω)|sin(ω/2)|−2ddω,

(15)

where we have used the identity (1− cos ω) = 2(sin(ω/2))2.
Note that, at this point in Granger and Joyeux [3], there appears to be a typographic

error where the limits of integration are mistakenly set to be between 0 and π, rather than 0
and 2π.

Using Gradshteyn and Ryzhik [17] Equation (3), 631.8 with ν = 1− 2d > 0 when
d < 1

2 ; a = 2τ and x = ω/2 we have

µ̃τ = α2−2d ∫ 2π
0 |sin(ω/2)|−2d cos(2τω/2)dω

= α2−2d2
∫ π

0 |sin(x)|−2d cos(2τx)dx

= α21−2d π cos(τπ)

2−2d(1− 2d)B(1− d + τ, 1− d− τ)

= 2α
π cos(τπ)

(1− 2d)B(1− d + τ, 1− d− τ)

(16)

The beta function can be represented as B(x, y) = Γ(x)Γ(y)
Γ(x+y) , so that

µ̃τ = 2απ cos(τπ)
Γ(2− 2d)
(1− 2d)

1
Γ(1− d + τ)Γ(1− d− τ)

.

Now Γ(x + 1) = xΓ(x) so Γ(2− 2d) = (1− 2d)Γ(1− 2d) so

µ̃τ = 2απ cos(τπ)
1

Γ(τ + 1− d)Γ(1− d− τ)
Γ(1− 2d).

Eulers reflection formula is Γ(z)Γ(1− z) = π
sin πz so Γ(1− d− τ) = π

sin(π(τ+d))
1

Γ(τ+d)
so that

µ̃τ = 2α cos(τπ) sin(π(τ + d))
Γ(τ + d)

Γ(τ + 1− d)
Γ(1− 2d).

Now 2 sin x cos y = sin(x− y) + sin(x + y), so

2 cos(τπ) sin(π(τ + d)) = sin(2πτ + πd) + sin(πd) = 2 sin(πd)
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So that

µ̃τ = 2α sin(πd)
Γ(τ + d)

Γ(τ + 1− d)
Γ(1− 2d). (17)

To complete the proof, compare (17) with (8) which are equal when α = α1.

Further, compare (17) with the original version given by Granger and Joyeux [3] in (14).
The difference is a factor of 2d. As a practical comparison, consider Table 1 below.

Table 1. Specific Values of the process variance for parameter values σε = 1 and d = 0.4.

Formula Var(x)

Original, Uncorrected 2.731511

Corrected (& Hosking [4]) 2.070098

Brockwell and Davis [16] 13.2.8 2.070098

Peiris [10] Thm 3.1 2.070098

4. Vector FDWN and Related Results

This section considers an extension of the above results for the vector case. We note that
some results have already been published for a particular case in Kechagias and Pipiras [18]
Proposition 5.1, but we consider a special case and show an alternative derivation.

Suppose that X t = (X1t, X2t, . . . , Xmt)′ is an m-dimensional vector of time series at
time t. Assume that the time series X t follows long memory

D(B)X t = ηt, (18)

where

• D(B) = diag((1− B)d1 , . . . , (1− B)dm) with backshift operator B, −1 < di <
1
2 (i =

1, 2, . . . , m),
• ηt = (η1t, η2t, . . . , ηmt)′ is an m-dimensional zero-mean covariance stationary vector

with variance-covariance matrix Ω = (ωi1i2). That is, ωi1i2 = E(ηi1tηi2t) for all i1, i2 =
1, 2, . . . , m.

Let (1 − B)−di = ∑∞
j=0 ψjiBj, where ψji = Γ(j+di)

Γ(j+1)Γ(di)
, j = 0, 1, . . . for each i =

1, 2, . . . , m.

Theorem 1.
(a) X t = [D(B)]−1ηt and Xit = ∑∞

j=0 ψjiηi,t−j, i = 1, 2, . . . , m, which converges for
−1 < di <

1
2 using arguments from Bondon and Palma [14] and Hassler [13] Definition 3.1 and

Proposition 6.2.

(b) Let V = E(X tX ′
t). Then we have:

V =


ω11 ∑∞

j=0 ψ2
j1 ω12 ∑∞

j=0 ψj1ψj2 . . . ω1m ∑∞
j=0 ψj1ψjm

ω21 ∑∞
j=0 ψj2ψj1 ω22 ∑∞

j=0 ψ2
j2 . . . ω2m ∑∞

j=0 ψj2ψjm
...

...
...

ωm1 ∑∞
j=0 ψjmψj1 ωm2 ∑∞

j=0 ψjmψj2 . . . ωmm ∑∞
j=0 ψ2

jm


m×m

,

where ∑∞
j=0 ψ2

ji =
Γ(1−di)
Γ2(1−di)

, ∑∞
j=0 ψji1 ψji2 =

Γ(1−di1
−di2 )

Γ(1−di1
)Γ(1−di2 )

for all i1, i2 = 1, 2, . . . , m.

(c) Let γ(k) = E(X tX ′
t+k) be the m × m auto-covariance matrix at lag k of X t. Then

we have:
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γ(k) =


γ11(k) γ12(k) . . . γ1m(k)
γ21(k) . . . . . . γ2m(k)

...
...

...
γm1(k) . . . . . . γmm(k)


m×m

,

where γi1i2(k) = ωi1i2 ∑∞
j=0 ψji1 ψj+k,i2 and ∑∞

j=0 ψji1 ψj+k,i2 =
Γ(k+di2 )Γ(1−di1

−di2 )

Γ(di2 )Γ(k+1−di1
)Γ(1−di2 )

for all

i1, i2 = 1, 2, . . . , m.

Proof. Let γi1i2(k) = E(Xi1tXi2t+k). Now

γi1i2(k) = E

[(
∞

∑
j=0

ψji1 ηi1,t−j

)(
∞

∑
j=0

ψji2 ηi2,t+k−j

)]

= ωi1i2

∞

∑
j=0

ψji1 ψj+k,i2

= ωi1i2

∞

∑
j=0

Γ(j + di1)

Γ(j + 1)Γ(di1)

Γ(j + k + di2)

Γ(j + k + 1)Γ(di2)

= ωi1i2
Γ(k + di2)

Γ(k + 1)Γ(di2)
F(di1 , k + di2 ; k + 1; 1)

= ωi1i2
Γ(k + di2)Γ(1− di1 − di2)

Γ(di2)Γ(k + 1− di1)Γ(1− di2)
.

(19)

When i1 = i2 = i, (19) reduces to ωii
Γ(k+di)Γ(1−2di)

Γ(di)Γ(k+1−di)Γ(1−di)
and when k = 0 these reduce

to (b) in the theorem.
(19) can be rewritten using Eulers reflection formula as

γi1i2(k) = ωi1i2
Γ(1− di1 − di2)

Γ(di2)Γ(1− di2)

Γ(k + di2)

Γ(k + 1− di1)

= ωi1i2
1

Γ(di2)Γ(1− di2)
Γ(1− di1 − di2)

Γ(k + di2)

Γ(k + 1− di1)

= ωi1i2
sin(πdi2)

π
Γ(1− di1 − di2)

Γ(k + di2)

Γ(k + 1− di1)
.

(20)

We can again apply Eulers reflection formula to give

γi1i2(k)= ωi1i2
sin(πdi2)

sin
(
π(di1 + di2)

) Γ(k + di2)

Γ(di1 + di2)Γ(k + 1− di1)
. (21)

When i1 = i2 = i, then ∑∞
j=0 ψjiψj+k,i =

Γ(k+di)Γ(1−2di)
Γ(di)Γ(k+1−di)Γ(1−di)

can be further reduced to

sin(πdi)

sin(2πdi)

Γ(k + di)

Γ(2di)Γ(k + 1− di)
=

sin(πdi)

2 sin(πdi) cos(πdi)

Γ(k + di)

Γ(2di)Γ(k + 1− di)

=
1

2 cos(πdi)

Γ(k + di)

Γ(2di)Γ(k + 1− di)

(22)
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and when k = 0

1
2 cos(πdi)

Γ(di)

Γ(2di)Γ(1− di)
=

1
2π

sin(πdi)

cos(πdi)

Γ2(di)

Γ(2di)
. (23)

Remark 1.

1. It is straightforward to show that these formula are a special case of those provided by Kechagias
and Pipiras [18] Proposition 5.1 when di > 0 and ωii = 1. Using their notation, we choose
Q+ = I and Q− = 0 (the matrix of zeros).
Then Kechagias and Pipiras [18] Equation (69) is (20). With these values for Q+ and Q−
Kechagias and Pipiras [18] Proposition 5.1 defines

γi1i2(k) =
1

2π

(
b1

i1i2 γ1,i1i2(k) + b2
i1i2 γ2,i1i2(k) + b3

i1i2 γ3,i1i2(k) + b4
i1i2 γ4,i1i2(k)

)
(24)

where

b1
i1i2

=
m

∑
t=1

q−i1,tq
−
i2,t = 0

b2
i1i2

=
m

∑
t=1

q−i1,tq
+
i2,t = 0

b3
i1i2

=
m

∑
t=1

q+i1,tq
+
i2,t = 1

b4
i1i2

=
m

∑
t=1

q+i1,tq
−
i2,t = 0

and

γ3,i1i2(k) = 2Γ(1− di1 − di2) sin(πdi2)
Γ(k + di2)

Γ(k + 1− di1)

and so (24) is the same as (20).
2. When m = 1 this readily reverts to the univariate case since as noted above (writing dii = d)

γ(k)= ωii
Γ(k + d)Γ(1− 2d)

Γ(d)Γ(k + 1− d)Γ(1− d)

which is the same as (7).

5. Conclusions

Long memory processes exhibit behavior of relatively high correlations between
observations even though they might occur far apart in time. These processes can be
modeled using ARFIMA processes.

Vector processes can also exhibit long memory and this can happen to different degrees
for different components.

In this paper we have explored some issues with a previous formula for the ACF and
spectral density of a univariate model, and also looked at extending the applicability of the
result for the ACF of a vector ARFIMA(0,d,0) process. Later work may consider extending
this to a more general ARFIMA(p,d,q) model.
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