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Abstract: As deepfake becomes more sophisticated, the demand for fake facial image detection is
increasing. Although great progress has been made in deepfake detection, the performance of most
existing deepfake detection methods degrade significantly when these methods are applied to detect
low-quality images for the disappearance of key clues during the compression process. In this work,
we mine frequency domain and RGB domain information to specifically improve the detection of
low-quality compressed deepfake images. Our method consists of two modules: (1) a preprocessing
module and (2) a classification module. In the preprocessing module, we utilize the Haar wavelet
transform and residual calculation to obtain the mid-high frequency joint information and fuse the
frequency map with the RGB input. In the classification module, the image obtained by concatenation
is fed to the convolutional neural network for classification. Because of the combination of RGB
and frequency domain, the robustness of the model has been greatly improved. Our extensive
experimental results demonstrate that our approach can not only achieve excellent performance
when detecting low-quality compressed deepfake images, but also maintain great performance with
high-quality images.

Keywords: deepfake detection; neural networks; wavelet transform; frequency domain features;
feature fusion

MSC: 68T09

1. Introduction

With the development of deep learning, great strides have been made in image pro-
cessing techniques. One of these techniques is called deepfake, which is used to create
incredibly realistic fake images by replacing the face of a source image with a target face. In
particular, the birth of Generative Adversarial Network (GAN) [1] makes fake images more
difficult to distinguish. At present, deepfake has positive applications in many fields, such
as education, medical care and entertainment. However, there are also a lot of malicious
applications of deepfake. Deepfake porn is one of such malicious applications. Rana
Ayyub, a female journalist in India, was haunted by a sex video faked with her face. During
the Russian–Ukrainian conflict, a video of Ukrainian President Volodymyr Zelensky was
widely circulated, in which Zelensky called on Ukrainian soldiers to lay down their arms,
and the video was later confirmed as a rumor. This was the first time deepfake was used
in war. Facial information plays a huge role in our lives, so once deepfake is abused and
maliciously spread, it will pose a great threat to the personal information security and
social stability. Therefore, it is urgent to design efficient and accurate methods to detect
these deepfake contents.

Current deepfake detection methods, whether based on handcrafted features or deep
features extracted by deep neural networks, are essentially mining the differences between
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real face images and fake face images, and then using the differences for classification.
It is worth mentioning that most of the methods [2–9] utilize the texture information in
the RGB domain of the image. These detection methods can achieve average detection
accuracy of more than 90% on uncompressed datasets, but the detection accuracy will
decrease significantly on compressed datasets, especially on highly compressed datasets.
The detection accuracy of some methods testing on compressed datasets even drops to
around 50%. That is to say, the detection method is completely invalid and cannot distin-
guish between real and fake face images. Since the purpose of a deepfake generation model
is to produce RGB images that are difficult for the human eye to distinguish, more attention
is paid to the adjustment of the RGB domain during the fine-tuning stage to erase the
forgery traces. This postprocessing operation is one of the most important reasons for the
drastic drop of performance degradation. In addition, another reason is that the detection
model mainly focuses on the RGB domain, and when the image is highly compressed, the
image quality is greatly degraded, leading to the weakening or even the disappearance of
critical RGB textures used for detection.

In our work, we propose a deepfake detection method based on frequency-domain
filtered residuals. The low frequency information of the human face is obtained by using
Haar wavelet transform. Then, the residual calculation is made between the low frequency
information map and the gray scale of the original image. After that, we obtain the mid-
high frequency residual map of the original image. Finally, the original image concatenated
with the residual image is fed into the convolutional neural network for classification.

The rest of this paper is arranged as follows: in Section 2, related works are briefly
summarized and the proposed method is described in detail. Experimental results and
conclusion are presented in Sections 3 and 4, respectively.

The contributions of our work can be outlined as follows:

• We develop an easily adaptable module that extracts a mid-high frequency map and
fuse them with RGB images, which fully mines the features of forged face images in
both the frequency and RGB domain.

• Instead of utilizing medium frequency or high frequency information directly, we
obtain medium and high frequency joint information by residual operation, which is
more comprehensive.

• The combination of the frequency and RGB domain allows the model to maintain its
great performance on high-quality images and improve its generalization ability on
low-quality images.

• We empirically demonstrate that our method outperforms baseline approaches on
deepfake benchmark datasets with 88.09% average accuracy on low-quality deepfakes.

2. Materials and Methods
2.1. Related Work
2.1.1. Deepfake Generation

In general, deepfake generation algorithms can be divided into four main categories,
which are deepfake [10], Face2Face [11], FaceSwap [12] and NeuralTexture [13].

(1) DeepFake. The generation process of DeepFake has two stages, the training stage
and the generation stage. In the training phase, the weight sharing encoders are used
to extract the latent features of the face, and the decoders are used to reconstruct
the image. In the generation phase, the decoders are swapped to obtain the face
swap image. There are many open-source methods of DeepFake, such as DFaker [14],
DeepFaceLab [15], DeepFake-tf [16] and so on.

(2) Face2Face. Face2Face is a forgery technique of expression tampering, which enables
the person in the source video to control the facial expressions and postures of the
person in the target video or image.

(3) FaceSwap. FaceSwap is a tampering technique based on graphics. Firstly, we extract
the face region using facial landmarks. Then a fitted 3D template model is back
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projected to the target image. Finally, mixing and color correction are performed to
the target image.

(4) Neural Texture. Neural texture is a new graphics primitive proposed by Justus
Thies et al. [13]. It obtains a tampered image by learning the texture features of
the target face and combining it with the background and identity information of the
source face.

2.1.2. Deepfake Detection

Deepfake detection is essentially a classification task, and the purpose is to distinguish
whether a given face image or video is real or fake. The generation process of deepfake
can be roughly divided into two processing stages, namely the forgery stage and the
postprocessing stage. In the forgery stage, although different forgery methods use different
generation methods, these methods all leave unique operation traces in the face images.
In the postprocessing stage, the generated face needs to be further refined and corrected
and then fused with the background image. This stage usually leads to some boundary
effect between the central facial area and the background area of the fake image. In
order to eliminate the boundary effect, the color correction or smoothing of the facial area
will further destroy the original underlying data distribution of the image. Therefore,
these inherent flaws in deepfake will bring special forgery traces and underlying noise
distribution to deepfake face images and videos.

Whether for the image or for the video, the general processing pipelines of deepfake
detection are similar: (1) preprocessing the input (e.g., extract the frame of the video, crop
out the face region); (2) extracting features from the preprocessed, the core part of the
approach, in which commonly used features include handcrafted features extracted by clas-
sifiers such as Support Vector Machines(SVM) and deep features extracted by deep neural
networks; and (3) the extracted features are used for classification and finally output as
“real” or “fake”.

Handcrafted features are widely used in the field of image classification [17–20]. With
the development of deep learning techniques, deep features are used more and more widely
in deepfake detection. The features in [21–25] are based on physiological signals such as
eye blinking, phoneme-lip correspondence and so on. These methods are more realistic for
identity video detection due to the use of high-level semantic features. Most fake videos
(images) are different from real data in inter-frame coherence (texture consistency within
an image). These inconsistencies are often used as evidence of face forgery [5–9]. Recently,
transformer [26] has become a hit in computer vision, which leads to the widespread
application of the attention mechanism in the deepfake detection field. Dang et al. [27]
proposed a multi-task learning model with an attention mechanism used to locate the
forged regions by training the learned attention map. Luo et al. [28] treated deepfake
detection as a fine-grained classification problem. They utilize multiple spatial attention
heads to focus on local regions and attention maps to fuse low-level features and high-level
features. In [29], the authors propose a deepfake detection network fusing RGB features
and textural information extracted by neural networks and signal processing methods,
including an attention module. In [30], the authors proposed an attention-based deepfake
detection method and achieved excellent performance on public datasets.

Frequency-based deepfake detection [7,28,31–33] is also a popular research direction
recently because spatial-based features are not obvious enough to mine or not enough
to prove the authenticity of the image. Luo et al. [28] proposed a multi-scale high-
frequency feature extraction module, a residual-guided spatial attention module and a
cross-modality attention module to fuse high-frequency information and RGB information.
Qian et al. [32] proposed an effective method named F3-Net, using frequency-aware im-
age decomposition and local frequency statistics, but the number of parameters from its
backbone doubled. Binh M. et al. [34] proposed frequency attention and multi-view-based
knowledge distillation to detect low-quality compressed deepfake images. The frequency
domain information and multi-view information of the teacher model are transferred
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by knowledge distillation. However, they do not mention the generalization ability of
cross-dataset testing.

2.1.3. Wavelet Transform

A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases
or decreases and then returns to zero one or more times. Wavelets are termed a “brief
oscillation”. The basic idea of wavelet transform is to represent a function or signal by
scaling and translating a set of functions. The Haar wavelet transform [35] is one of the
oldest transform functions, proposed in 1910 by the Hungarian mathematician Alfred Haar.
It is found effective in applications such as signal and image compression in electrical and
computer engineering as it provides a simple and computationally efficient approach for
analyzing the local aspects of a signal.

At present, wavelet transform has been widely used in computer vision tasks. Jaejun
Yoo et al. [36] embedded the wavelet transform into the neural network based on the
Whitening and Coloring Transforms (WCT2), and proposed a style transfer method with
high temporal stability. J. M. Fortuna-Cervantes et al. [37] proposed a first approach for
object detection with a repetitive pattern and binary classification in the image plane based
on wavelet analysis. Huang et al. [38], utilizing wavelet transform, presented a generative
adversarial approach called WaveletSRGAN for multi-scale face hallucination.

In our work, we chose Haar wavelet transform instead of Discrete Cosine Transform
(DCT). The reason is that after the Haar wavelet transform, the wavelet domain of the image
is divided into four sub-bands, each sub-band includes not only the frequency domain com-
ponent of the image but also its spatial domain component, so containing richer information,
while the DCT transformed image only contains frequency domain information.

2.2. Method

In this section, we will first introduce the motivation for the proposed method and
then introduce the method in detail.

2.2.1. Motivation

In the process of deepfake, upsampling is a non-negligible step, and continuous
upsampling operations usually leave traces in the image frequency domain. Research
shows that in the highly compressed images and videos, although the forged face in the
RGB domain tampering are significantly weakened, the tampering traces of the frequency
domain are affected relatively less, which means that the frequency domain features can
show the tampering traces more obviously. Compared with real images, there are usually
some obviously abnormal frequency distribution forms in fake images [31]. Figure 1 shows
the comparison of real images and two types of fake images (neural textures and Face2Face)
under high compression in the RGB domain and the frequency domain, respectively. We
obtain the frequency domain information through three different filters. As can be seen
from Figure 1, it is difficult to detect the forged traces in the RGB domain, while in the
frequency domain, in the central area of the face, especially the area containing the nose
and mouth marked by the red frame in the figure, the forged images lack some texture
and boundary information of the real images. Therefore, these forgery traces weakened or
eliminated in the RGB domain can be preserved and captured in the frequency domain,
especially in the mid-high frequency domain, making it easier to detect forgery traces [28].
Due to the above findings, we propose a method based on frequency domain filter residuals.
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Figure 1. Frequency domain analysis of highly compressed face images: (a) real face images; (b) fake
face images by neural textures; (c) fake face images by Face2Face. The forged images (b,c) lack some
textures and boundary information of the real images (a), especially in the area containing the nose
and mouth.

2.2.2. Frequency Domain Filtered Residual Network

An overview of our approach is illustrated in Figure 2. The framework of our method
is simple, consisting of two modules: (1) a preprocessing module and (2) a classification
module. The function of the preprocessing module is to obtain mid-high frequency maps
and concatenate them with the RGB domain input. The Haar wavelet transform is first
performed on the input image. We take the low-frequency subgraph after the Haar wavelet
transform for bilinear interpolation so that the size of the low-frequency map is consistent
with the input image. Then, the grayscale image of the input and the low-frequency
information map after bilinear interpolation are used for residual calculation. By calculating
the residuals from the input and low-frequency maps, we obtain a mid-high frequency
map, which is then concatenated in the channel direction with the RGB domain input. In
the classification module, concatenated maps are fed into the convolutional neural network
for classification. We use Xception as the backbone network for the classification module. It
is worth mentioning that the first module of our method acts as a preprocessing and does
not affect the structure of the backbone network. So the computational complexity of our
method does not change much compared to Xception.

Figure 2. The framework of the algorithm.
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Haar wavelet transform. First, the original image IO is grayscaled to obtain IG. This
step can be expressed as a formula:

IG = g(IO) (1)

where g(·) is the grayscale function. Then, we crop IG into 2× 2 subimages represented as
IGi and perform the calculation shown in Equation (2) for all subimages.

ÎGi = HT IGi H (2)

where H is the Haar transition matrix, as shown in Equation (3). The output of the Haar
wavelet transform is indicated by ÎGi and shown in Figure 3.

H =
1√
2

[
1 1
1 −1

]
(3)

Bilinear interpolation. The low-frequency information map IL1 obtained after the Haar
wavelet transformation is enlarged to the original image size by the bilinear interpolation,
and the enlarged image is represented by IL2. If not enlarged, the resolution of the four
subimages is half of the original, which means that we cannot obtain the residuals with the
original image. Let the size of IL1 be WL1 × HL1 and the size of IL2 be WL2 × HL2. Let the
coordinate of the target pixel of IL2 be (XL2, YL2) and the coordinate of the pixels mapped
back to IL1 be (XL1, YL1). The two coordinates satisfy the following formula:

XL1 = (XL2 + 0.5)× WL1

WL2
− 0.5 (4)

YL1 = (YL2 + 0.5)× HL1

HL2
− 0.5 (5)

Then, the grayscale images IG and IL2 are used to obtain the residual image IH of the
mid-high frequency:

IH = IG − IL2 (6)

The reason it is necessary to perform residual calculation on the grayscale image and
the low-frequency information map after bilinear interpolation is that the proposed method
aims to use the mid-high frequency information of the face image to mine forgery clues.
The mid-high frequency information map contains the detailed information of the texture
and edge of the image, while the low-frequency information map contains most of the
original semantic information of the image, which can also be obtained in the RGB domain.
In the detailed information of the mid-high frequency map, there is a greater probability to
find the subtle differences of the real and fake face images so as to ensure that the features
used for classification are more robust. However, the three high-frequency subimages
directly generated after the Haar wavelet transform only provide the grayscale change
information and edge texture information in the vertical, horizontal and diagonal directions
of the image, respectively. Our method requires relatively complete mid-high frequency
information, so the mid-high frequency information obtained after the residual is used
instead of using the frequency information map after the Haar wavelet transform directly.

Concatenation After obtaining the mid-high frequency information residual map IH ,
the original RGB image IO and IH are spliced together along the image channel direction.
The process of obtaining the concatenated image IC can be represented by Equation (7).

IC = IO ⊗ IH (7)

where ⊗ represents the concatenation. The concatenation not only retains the rich semantic
information of face images, which can ensure the accuracy when detecting uncompressed
images, but also combines a large amount of mid-high frequency textures, which can be
provided to the classification module when detecting compressed images. In this way,
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more forgery traces and feature selection are provided to the classification module, thereby
increasing the robustness of the model.

In summary, the process of the preprocessing module can be summarized as follows:

IC = IO ⊗ (g(IO)− fBI(hL(g(IO)))) (8)

where fBI(·) stands for the bilinear interpolation function, and hL(·) represents the low
frequency information subimage after the Haar wavelet transform.

Classification. The classification module takes the IC output from the preprocessing
module as input and obtains the classification result by training a convolutional neu-
ral network end-to-end. We choose Xception [39] as the backbone and cross entropy
(Equation (9)) loss as the loss function.

Loss = −
[
Y · log

(
Ŷ
)
+ (1−Y) · log

(
1− Ŷ

)]
(9)

where Y represents the real label, and Ŷ represents the predicted label.

3. Results

Dataset Setting. To demonstrate the strong generality of our method, we perform the
evaluation on multiple different datasets: FaceForensics++ (FF++) [40], Celeb-DeepFake
(Celeb-DF) [41] and UADFV [19]. The videos from FF++ are compressed into two versions:
medium compression (c23) and high compression (c40), using the H.264 codec with a
constant rate quantization parameter of 23, and 40, respectively. For each subset of the FF++
dataset, we randomly selected 720 videos as the training set, 140 videos as the validation
set, and 140 videos as the test set. Then we randomly extracted 50 frames from each video
in the training set and 100 frames from the verification set and the test set. In the Celeb-DF
dataset, we divided the training set, verification set and test set according to the ratio
of 6:1:1. Since the number of real videos was much smaller than the number of forged
videos, in order to ensure the balance between real data and forged data in the training
process, the number of frames extracted from each video in real videos was larger than
that of forged videos. For the UADFV dataset, 37 videos were randomly selected as the
training set, 6 videos as the verification set and 6 videos as the test set. Then, we randomly
extracted 50 frames from each video in the training set and 150 frames from the videos in
the verification set and the test set. In this paper, we detected and extracted faces in videos
of three datasets, and all image sizes were cut to 256 × 256.

Figure 3. The result of the Haar wavelet transform. The low frequency information map in the upper
left corner saves most of the information of the image, and the other three subimages reflect the edge
texture information in different directions.

Implementation Details. We implemented our model with Pytorch. We set the initial
value of the learning rate to 10−4. Batchsize was set to 32, and the Adam optimizer [42] was
used to train the network. We trained 20 epochs and multiplied the learning rate by 0.1 for
every 5 epochs. To evaluate our model more comprehensively, we chose Accuracy (ACC)
and Area Under Curve (AUC) as evaluation metrics. AUC is the measure of the ability
of a classifier to distinguish between classes and is used as a summary of the ROC curve.
The higher the AUC and ACC, the better the performance of the model at distinguishing
between the real and fake classes. The difference between the two is that AUC represents
the ability to classify or sort and has nothing to do with the classification threshold, while
the ACC rate is related to the threshold.
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3.1. Intra-Dataset Evaluation

Experimental Results under Uncompressed Scene (C0). Table 1 shows the ACC
experimental results of various methods in the uncompressed scenario. The average
accuracy of our method is more than 98% in the uncompressed scene. Although it is not
optimal on some datasets, considering that the main contribution of the method proposed
in this paper is in the compressed scene, the method proposed in this paper maintains its
competitiveness in the uncompressed scene.

Table 1. The ACC results under uncompressed scene (C0) (%).

Methods
FF++ (C0)

Celeb-DF UADFVDF F2 FS NT

D-CNN [43] 98.03 98.96 98.94 96.06 - -
Meso-4 [44] 96.37 97.95 98.17 93.30 87.10 82.67
MesoIn-4 [44] 88.34 97.65 97.81 92.52 88.10 96.33
Xception [39] 98.31 97.75 97.10 96.45 90.78 99.33
ours 98.85 99.08 98.19 98.87 92.25 99.94

Experimental Results under Lightly Compressed Scene (C23). Table 2 shows the ACC
experimental results of various methods in the light compression scene. Our method
achieves 90.35% detection accuracy on neural textures, which is the best result among
all comparison methods. However, it performed poorly on the Face2Face and FaceSwap
dataset, even worse than the Xception method in the benchmark method. The possible
reason is that both of these two methods are expression tampering methods, and the
tampered area is smaller than that of the forgery method of face replacement type, so
the forgery trace left is lower. As a result, the proposed method cannot fully mine the
forgery trace of the corresponding image, resulting in low detection accuracy. In this case,
the global information including the boundaries of the nose and eyes presented by the
mid-high frequency is not conducive to the experimental results.

Table 2. The ACC results under light compression scene (C23) (%).

Methods
FF++ (C23)

DF F2 FS NT

Local descriptors [45] 81.78 85.32 85.69 80.60
D-CNN [43] 82.16 93.48 92.51 75.18
Steg.Features [46] 77.12 74.68 79.51 76.94
NCL [47] 90.18 94.93 93.14 86.04
Meso-4 [44] 89.77 94.25 95.50 78.70
MesoIn-4 [44] 83.74 91.48 94.34 75.06
Xception [39] 95.15 97.07 95.96 87.99
ours 95.52 93.49 95.16 90.35

Experimental Results under Highly Compressed Scene (C40). Table 3 shows the ACC
experimental results of various methods in the high compression scene. The results show
that the accuracy of our method is lower than that of Xception and higher than that of
the benchmark method testing on Face2Face. Our method combines features of the RGB
domain and the frequency domain. In forgery detection, we can extract richer features.
However, Face2Face forgery focuses on the lip area, so there are very few forgery traces,
and even in the frequency domain, the number of forgery clues that can be recorded is
limited. So, the detection accuracy decreases.
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Table 3. The ACC results under high compression scene (C40) (%).

Methods
FF++ (C40)

DF F2 FS NT

Local descriptors [45] 68.26 59.38 62.08 62.42
D-CNN [43] 73.25 62.33 67.08 62.59
Steg.Features [46] 65.58 57.55 60.58 60.69
NCL [47] 80.95 77.30 76.83 72.38
Simple features [48] 71.69 65.66 65.43 59.34
OC-FakeDect [49] 88.40 71.20 86.10 97.50
Meso-4 [44] 77.68 83.65 79.92 77.74
MesoIn-4 [44] 74.20 78.75 79.72 67.94
Xception [39] 83.70 87.21 83.17 87.90
ours 89.28 84.85 86.90 91.32

3.2. Generalization Ability Evaluation

Although the method proposed in this paper is mainly to solve the problem of poor
detection performance of existing methods for deepfake, in order to have a more compre-
hensive evaluation, we also evaluate the generalization ability of the proposed method. The
training set of the proposed method and the baseline method is the Deepfakes sub-dataset
of the lightly compressed version of the FF++ dataset, and then the cross-database test is
performed on the Celeb-DF dataset. The experimental results are listed in their percentage
value of the AUC. As described in Table 4, it can be seen that the generalization ability of
the method based on the frequency domain residual map proposed in this paper exceeds
the baseline method and most comparison methods in the fields, and the cross-database
AUC test reaches 71.27%, illustrating the competitiveness of the proposed method in
generalization ability.

Table 4. The AUC results of cross-database testing (%).

Methods AUC

Simple features [48] 54.34
SMIL [50] 56.30
Capsule [51] 57.50
F3-Net [32] 65.17
Multi [52] 67.44
MTD [4] 70.12
Ensemble of cnns [53] 71.14
Dual Network [7] 72.30
TSDA [54] 73.40
SPSL [31] 76.88
Meso-4 [44] 54.80
MesoIn-4 [44] 53.60
ours 72.27

3.3. Ablation Study

We conducted experiments on different variants of our model to prove the effectiveness
of the proposed method.

Haar wavelet transform. The Wavelet transform is different from the Fourier transform,
and the result of the wavelet transform is different according to the choice of the wavelet
basis. The commonly used wavelet bases are Haar, Symlets, Coiflets, Daubechies, etc.
We conducted experiments with different wavelet bases under the high compression
scene (C40), and the results obtained are shown in Table 5. It can be seen that the model
performance is similar when tested with different wavelet bases. Considering the average
performance and the simplicity of the wavelet function, the Haar wavelet transform is the
most suitable.
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Table 5. The ACC results of different wavelet bases under the high compression scene (C40).

Wavelet Basis
FF++ (C0)

AverageDF F2 FS NT

Sym2 89.08 81.14 88.40 89.63 87.06
Coif2 89.02 81.79 88.14 80.06 84.75
Db2 91.71 82.60 88.09 88.79 87.80
Haar 89.28 84.85 86.90 91.96 88.25

Concatenation. In the proposed method, we concatenate the residual image with
the original image. To demonstrate the effectiveness of the concatenation, we conduct
experiments on FF++, Celeb-DF v2 and UADFV datasets with different compression scenes.
The experimental results are shown in Table 6. Experimental results show that the model
combining frequency domain with RGB domain shows better performance in most cases.
The reason for the performance degradation on the F2F dataset is that F2F only tampers
locally (especially the mouth), resulting in the information brought by the frequency domain
misleading the classifier.

Table 6. Performance of different domains.

Domain
FF++ (C0) FF++ (C23) FF++ (C40)

Celeb-DF v2 UADFVDF F2 FS NT DF F2 FS NT DF F2 FS NT

RGB 98.31 97.75 98.10 96.45 95.15 97.07 95.96 87.99 83.70 87.21 83.17 87.90 90.78 99.33
Frequency 98.65 98.04 95.86 98.04 91.49 92.11 92.74 83.72 89.51 80.67 79.29 77.29 88.87 91.39
RGB+Frequency 98.85 99.08 98.19 98.87 95.52 93.49 95.16 90.35 89.28 84.85 86.90 91.32 92.25 99.94

4. Conclusions

In this paper, we propose a novel spatial-frequency domain deepfake detection
methodology for improving the detection of low-quality compressed deepfake images.
By performing residual operations on a grayscale image of the original image and the
low-frequency information image after Haar wavelet transformation, unlike some methods
that utilize the output of wavelet transform directly, the residual image of the medium
and high frequency information of the image is obtained. Then, the original image and the
residual image of the medium and high frequency information are spliced together and
input into the convolution neural network for detection of fake images. The experimental
results show that the detection performance of the proposed method for most forgery
techniques is better than that of the benchmark methods in the three compression scenarios,
and the average detection performance drop of all forgery techniques in the compression
scenario is better than those of the benchmark methods.

Since most of the images and videos on social media are compressed, our research
is very relevant. In addition, our simple framework is easy to implement. However, our
approach still has some limitations: (1) when performing generalization tests, our method
performed poorly on the Face2Face and FaceSwap dataset, even worse than the baseline
method, and (2) performance degradation with low-quality compressed deepfake images
improved but was still there. In addition, due to the limited public dataset and the large
number of video and image processing operations on the Internet, our method needs to
be adjusted in practical application. Therefore, in the future, the efficient and accurate
detection of low-quality images is still the main direction of research. In addition, we will
explore other effective applications of wavelet transforms in deepfakes detection.
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