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Abstract: From recent studies, the concept of “monotone expectation” (ME) of Interactive Multi-
Attribute Decision Making (MADM) is well known, which was developed for the case of different
fuzzy sets. This article develops the concept of “monotone expectation” for such statistical param-
eters as variance, k-order moment and covariance. We investigate the problem of the definition
of some statistical parameters, when the uncertainty is represented by a monotone measure—a
fuzzy measure—instead of an additive measure. The study presents the concept of the defini-
tion of monotone statistical parameters based on the Choquet finite integral for the definition of
monotone expectation, monotone variance, monotone k-order moment and monotone covariance.
Associated statistical parameters are also presented—expectation, variance, k-order moment and
covariance—which are defined in relation to associated probabilities of a fuzzy measure. It is shown
that the monotone statistical parameters defined in the study are defined by one particular relevant
associated statistical parameter out of the total number n! of such parameters. It is also shown that
the aggregations with monotone statistical parameters used in interactive MADM models take into
account interactions of the focal elements of only one consonant structure from the n! consonant
structures of attributes. In order to take into account the interactions of the focal elements of all
n! consonant structures of attributes, the monotone statistical parameters were expanded into the
F-associated statistical parameters. Expansion correctness implies that if dual second-order Choquet
capacities are taken as the fuzzy measures of aggregation of the F-associated statistical parameters,
then the F-associated statistical parameters coincide with the corresponding monotone statistical pa-
rameters. A scheme for embedding new aggregation operators, monotone statistical parameters and
F-associated statistical parameters into the interactive MADM model has been developed. Specific
numerical examples are presented to illustrate the obtained results.

Keywords: fuzzy measure; Choquet integral; monotone statistical parameters; F-associated statistical
parameters; aggregation operators; MADM

MSC: 68T37; 68T20; 68T30

1. Introduction

It is known that modern decision-making technologies play an important role in
improving almost all aspects of human activity. Along with classical approaches in the
construction of decision-making models of complex processes and phenomena, the most
important issue is the assumption of fuzziness. This assumption is related to the high
complexity of the objects to be studied, which is caused by the lack or absence of objective
data. In such cases, expert knowledge and assessments are the only sources of information
with which to make reliable decisions. However, the complexity of expert information
reduces our ability to make reliable decisions. This is due to the contradictory nature of
imprecision and uncertainty of expert assessments. One of the main tasks of researchers is
to minimize this complexity.
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When dealing with complex decision-making problems where expert judgments are
crucial, exact and stochastic models often have less reliability. It becomes quite inconvenient
to use them. At this time, the use of fuzzy modeling becomes especially important because
a systemic approach for development of information structure of a decision-making system
with uncertainty enables us to construct convenient intelligent decision support instruments.
Our research deals with the study of fuzzy and stochastic samplings of a dual nature for the
decision-making characteristic population. We also deal with how to build such statistics-
aggregation tools on these samplings, with which we will be able to reduce the risks of
decision making.

For such problems, without limiting the generality, suppose that the decision maker
(DM) has a set D = {d1, d2, . . . , dm} of m possible alternatives of an uncertain type, from
which the DM must create a ranked list by some preference relation or select the optimal
alternative according to some preference relation. The result associated with this problem
is a combination of characteristics, activities, attributes, criteria, symptoms and others,
affecting the decision procedure. This variable is usually called the state of nature, which
affects the payoff, utilities, evaluations, compatibility values, membership levels, etc., of the
DM’s preferences or subjective activities. This variable is assumed to take its values from
some set of attributes S = {s1, s2, . . . , sn}. As a result, the DM knows that if he/she selects
di and the state of nature assumes the value sj, then his/her payoff (valuation, utility and
so on) is cij (values of some stochastic or fuzzy variable). The objective of the decision is to
select the “best” alternative and get the biggest payoff. However, the selection procedure is
more difficult. In this case, each alternative can be seen as corresponding to a row vector of
possible payoffs. To make a choice, the DM must compare these vectors, a problem which
generally does not lead to a compelling solution.

Assume di and dk are two alternatives such that for all j, j = 1, . . . , n; cij ≥ ckj.
In this case, there is a reason to select di. In this situation, we shall say di dominates
dk (di � dk). Furthermore, if there exists an alternative (optimal decision) that dominates all
the alternatives, then it will be the Pareto-optimal solution. Faced with the general difficulty
of comparing payoffs vector, we must provide some means of comparing these vectors.
Many studies are focused on the construction of aggregation operator (function) under a
fuzzy-probabilistic environment that can take a collection of n values and transform them
into a single value.

Aggregations based on fuzzy measure (same capacity, monotone measure) [1,2] in
MADM models [3–6] are known for their important roles in representing the uncertainties
of interacting attributes [7–9]. Based on the Choquet integral [2] whose special determinant
is the fuzzy measure, very interesting aggregation operators [10–26] are constructed for
the problems solving of practical value for decision making for different fuzzy environ-
ments. The probabilistic interpretation of the Choquet integral is related to the population
expectation [27]. It should be noted that the unified theory of aggregation of mathematical
statistics parameters based on additive probability measure is effective in MADM aggrega-
tion operators and heuristic approaches. However, this cannot be said in the case of a fuzzy
measure. For the fuzzy measure as a descriptive tool of uncertainty, there is no unified
systematic theory in the aggregation constructions of statistical parameters. This is due to
the difficulty associated with the definition of statistical parameters (variance, covariance,
correlation, k-order moment, etc.) as aggregation operators, when the additive measure
describes the uncertainty in the definition—the probability is replaced by a non-additive
but monotone fuzzy measure. The analogy takes place only in the case of expectation when
it is replaced by monotone expectation (the Choquet integral) [2,27].

The Choquet integral, or monotone expectation, has been found to have many interest-
ing statistical properties in MADM aggregation schemes. One of the important properties,
according to the interests of our research, is the consideration of the influences of interacting
attributes on a decision in the MADM aggregation process [7–9,23–25]. It is well known
that these interactions to some degree in Choquet aggregations have been demonstrated
in a number of studies for different fuzzy environments [23–25]. Let us note here that
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some similar mathematical foundations of the mathematical statistics tool in the case of
fuzzy uncertainty were developed a long time ago. Basically, there are two directions:
(1) imprecise probabilities [28,29], by which are constructed the upper and lower expec-
tations and which have a deep semantic interpretation; (2) the Dempster–Shafer belief
structure [30,31]. However, the latter can be interpreted as a special case of the imprecise
probability approach.

In the statistical modeling of complex phenomena, special progress can be observed
in the fuzzy probability and fuzzy statistics approaches [32–34], which mainly develop
in two directions. The first direction refers to the methods that develop classical (non-
fuzzy) data analysis based on fuzzy set theory. These are: fuzzy clustering [35], fuzzy
linear regression [36], fuzzy hypotheses for non-fuzzy-populations [37], fuzzy-logic-based
time series forecasting [38], fuzzy-utility-based statistical decision-making theory [39] and
others. The second direction includes the following methods: the maximum confidence
approach for fuzzy data [40], classification and identification problems in the environment
of a Dempster–Shafer belief structure [41], the approach of statistical hypotheses for fuzzy
data [42], discriminant analysis [24,25,43] and cluster analysis for fuzzy data [44].

In this paper, our interest is in constructing aggregation operators for interactive
MADM, based on statistical parameters, when the degree of uncertainty in aggregations is
represented by fuzzy measure. We rely on the concept of “monotone expectation”, which
has been developed in several studies [18–25,45–49]. Our study is limited by consider-
ation of a discrete universe, which is mainly due to the finite number of attributes in
MADM. More specifically: the authors [18–25] developed aggregation operators based on
the Choquet integral, in which the fuzzy measure is replaced by its associated probability
class [26,27]. The latter represents the direction of imprecise probabilities. In these studies,
the concept of “monotone expectation” is considered for different fuzzy environments.
In [18], the mentioned concept is developed for immediate associated probabilities and
triangular fuzzy arguments environment. In [19], the authors developed the same concept
for an intuitionistic fuzzy environment. The extension of fuzzy-weighted aggregation
operators with the same concept is presented in [20]. In [21], the concept of associated
immediate probability is developed for an intuitionistic fuzzy environment. In [22,25],
the concept of monotone expectation is developed for the extension of ordered weighted
averaging (OWA) (geometric, OWG)) operators in intuitionistic fuzzy environment. In [23],
the same concept for probabilistic averages is developed for the q-Rung orthopair fuzzy dis-
crimination environment. In [24], OWA and OWG operators with the concept of “monotone
expectation” are extended for the discrimination q-Rung picture linguistic environment. In
this article, we present the concept expansion of “monotone expectation”—not for some
fuzzy environment and not for the expansion of any known aggregation operator, but
a face-changed model of the concept itself for some statistical parameters: the Choquet-
integral-based monotone statistical parameters—monotone variance, monotone k-order
moment, and monotone covariance. Additionally, most importantly, as developed in the
studies [18–25], the extensions of the mentioned monotonic statistical parameters are pre-
sented, the so-called F-associated statistical parameters. From the point of view of MADM,
the latter, in contrast to monotone statistical parameters, have the advantage that they
take into account all possibilities of attribute interaction, taking into account all variants of
attribute consonant structures. This means that their use in interactive MADM models will
give us more reliable alternative rankings than using monotonic statistical parameters.

The second section presents definitions of some monotone statistical parameters with
respect to fuzzy measures. The definitions of the Choquet second-order extreme capacities
and their relations to the associated expectation are given. The third section presents the
extensions of monotone statistical parameters in the F-associated statistical parameters.
The conditions for correctness of the extensions are presented. The families of specific
F-associated statistical parameters are discussed. The advantages of using F-associated
statistical parameters in interactive MADM models compared to monotone associated
parameters are analyzed. In the fourth section, simple numerical examples are constructed
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to illustrate the obtained results. A comparative analysis is given. The concluding part and
future research perspectives are presented in the fifth section.

2. Preliminaries and Notations

We introduce the definition of a fuzzy measure (or monotone measure) (see Refs. [1–6])
adapted to the case of a finite referential:

Definition 1. Let S = {s1, s2, . . . , sn} be a finite set and µ be a set function. µ : 2S → [0, 1] .
We say µ is a fuzzy measure on S if it satisfies

(i) µ(∅) = 0; µ(S) = 1;
(ii) ∀ A, B ⊆ S, i f A ⊆ B, then µ(A) ≤ µ(B) .

(1)

A fuzzy measure is a normalized and monotone set function. It can be considered as an exten-
sion of the probability concept, where additivity is replaced by the weaker condition of monotonicity.

In general, the possible orderings of the elements of S are given by the permutations of a set
with n elements, which form the group Sn. Now we consider a definition of associated probabilities
induced by a fuzzy measure on the group Sn.

Definition 2 ([46]). The probability function λσ defined by

λσ(sσ(1)) = µ(
{

sσ(1)

}
), . . . ,

λσ(sσ(i)) = µ(
{

sσ(1), . . . , sσ(i)

}
)− µ(

{
sσ(1), . . . , sσ(i−1)

}
), . . . ,

λσ

(
sσ(n)

)
= 1− µ(

{
sσ(1), . . . , sσ(n−1)

}
),

λσ(sσ(0)) ≡ 0

(2)

for each σ = (σ(1), σ(2), . . . , σ(n)) ∈ Sn is called the associated probability and the associated
probability class (APC)〈

λσ =
{

λσ(sσ(1)), λσ(sσ(2)), . . . , λσ(sσ(n))
}〉

σ∈Sn

of a fuzzy measure eµ.
For any associated probability λσ, σ ∈ Sn and any subset of attributes A ⊂ S, we have

λσ(A) = ∑
s∈A

λσ(s) (3)

Definition 3 ([2]). Let S = {s1, s2, . . . , sn} be a set of all possible attributes and µ : 2S → [0, 1]
be a fuzzy measure with APC {λσ}σ∈S, λσ(i) ≡ λσ(sσ(i)). Let h : S⇒ R+

0 be any function on
S, hi ≡ h(si). Let τ ∈ Sn be such permutation for which hτ(1) ≥ hτ(2) ≥ . . . ≥ hτ(n). Then, the
Choquet integral of h with respect to µ is

(Ch)
∫
S

h� µ ≡
∞∫

0

µ(s ∈ S/h(s) ≥ α)dα =
n

∑
i=1

λτ(i)hτ(i) (4)

It is clear that (Ch)
∫
S

h� µ = Eλτ
(h), where Eλτ

(h) is an expectation of hwith respect to

probability measure λτ on S.
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2.1. Monotone Expectation

Definition 4 ([46]). Let µ be a fuzzy measure on a finite set S = {s1, s2, . . . , sn} and
h : S→ [0,+∞) be some function. The monotone expectation of h with respect to the fuzzy
measure µ is defined as the Choquet integral:

ME(h) = (Ch)
∫
S

h� µ. (5)

From the definitions of a fuzzy measure, its APC and the Choquet integral, it is clear that the
monotone expectation coincides with the mathematical expectation with respect to certain associated
probability. Thus,

ME(h) = Eλτ
(h) =

n

∑
i=1

h(sτ(i))·λτ(sτ(i)) (6)

where h(sτ(1)) ≥ . . . ≥ h(sτ(n)).

Definition 5. For any σ ∈ Sn, Eλσ
(h) is called an associated expectation, and the set of all

associated expectations{Eλσ
(h)}σ∈Sn

is called the class of associated expectations.

Eλσ
(h) is associated with the expectation calculated for certain associated probability

of the fuzzy measure µ. In general, the relation between monotone expectation ME(h) and
associated expectations {Eλσ

(h)}σ∈Sn
exists as follows.

Proposition 1 ([46]). Let S = {s1, s2, . . . , sn} be some finite set and µ be any fuzzy measure on
S. Let h : S→ [0,+∞) be some function with associated expectations class {Eλσ

(h)}σ∈Sn
. Then,

min
σ∈Sn

Eλσ
(h) ≤ ME(h) ≤ max

σ∈Sn
Eλσ

(h) (7)

There is evidence that the equality in inequalities (7) is achieved for a wide class of fuzzy
measures, for the Choquet second-order capacities.

Definition 6. Two fuzzy measures µ∗ and µ∗ on S are called dual if ∀A ⊆ S

µ∗(A) = 1− µ∗(A) (8)

Proposition 2 ([46]). APCs of dual fuzzy measures coincide.

Definition 7 ([46]). Two dual fuzzy measures µ∗ and µ∗ on S are called lower and upper Choquet
second-order capacities, respectively, if for any two subsets A, B ⊂ S:

µ∗(A ∪ B) + µ∗(A ∩ B) ≥ µ∗(A) + µ∗(B) ,
µ∗(A ∪ B) + µ∗(A ∩ B) ≤ µ∗(A) + µ∗(B) .

(9)

Proposition 3 ([46]). Let µ∗ and µ∗ be the Choquet lower and upper second- order capacities onS,
h be any function h : S→ [0,+∞) with associated expectations class {Eλσ

(h)}σ∈Sn
. Then,

MEµ∗(h) = min
σ∈Sn

Eλσ
(h) ,

MEµ∗(h) = max
σ∈Sn

Eλσ
(h) ,

(10)
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For any subset A ⊆ S
µ∗(A) = min

σ∈Sn
λσ(A) ,

µ∗(A) = max
σ∈Sn

λσ(A) .
(11)

The concept of monotone variance of statistical parameters introduced by Campos and Bolanos [46]
continued developing in the works [18–25,45,47–49]. Reference [47] presents the concept of mono-
tone variance definition, similar to the concept of monotone expectation presented in [46]. This
concept is closely related to the fuzzy measure’s associated expectations. In the studies [18–25,45,47–49],
the concept is developed for the statistical parameters of the monotone expectation composition.

The notion of monotone variance is introduced as a monotone expectation of quantity
[h−ME(h)]2with some similarity to the definition of the classical variance:

MVar(h) , ME(h−ME)2 (12)

However, we have some difficulty in the representation (12); h and (h−ME(h))2 are not
comonotonic quantities; and their associated probabilities may be different in the representation of
the associated expectation of MVar. Therefore, in [47], the authors searched for a natural definition
of MVar by direct classical associated variance.

Definition 8. If h : S→ [0,+∞) is some function with associated expectations class {Eλσ
(h)}σ∈Sn

,
then the associated variance with respect to the given associated probability is called the
classical variance:

Varλσ
(h) = Eλσ

(h− Eλσ
(h))2 , ∀σ ∈ Sn (13)

Definition 9 ([47]). Let h : S→ [0,+∞) be some function with associated variances class
{Varλσ

(h)}σ∈Sn
. Then, a monotone variance of function h is called a value:

MVar(h) = Varλτ
(h) (14)

where τ ∈ Sn is such permutation that h(sτ(1)) ≥ h(sτ(2)) ≥ . . . ≥ h(sτ(n)).

It is clear that MVar is a non-negative value and if the fuzzy measure is a probability,
then MVar coincides with the classical variance, because the associated probabilities of
the probability measure coincide and represent this measure itself, i.e., {λσ = λ , σ ∈ Sn},
where λ is a probability measure on S.

As it turns out, the monotone variance MVar preserves important properties of the
classical variance. For example:

Proposition 4 ([47]). Let h : S→ [0,+∞) be any function and µ be fuzzy measure on a set
S = {s1, . . . , sn}. Then,

MVar(h) = ME(h2)− [ME(h)]2 (15)

if a 6= 0 and a, b ∈ R are constants, thenMVar(ah + b) = a2MVar(h) (16)

if h = const then MVar(h) = 0

2.2. Monotone Moments

If we use the same concept that was presented in the previous paragraph, we can
extend this concept for the definition of central and non-central moments, when the additive
probability measure is replaced by a monotone fuzzy measure.
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Definition 10. Let µ be a fuzzy measure on S = {s1, s2, . . . , sn} and h : S→ [0,+∞) be some
function with associated expectations class {Eλσ

(h)}σ∈Sn
. A (non-central) monotone moment of

the function h with respect to the fuzzy measure µ is called the value

Mαk(h) = Eλτ
(hk) , k ∈ N (17)

where
{

Eλσ
(hk) ≡ α

(λα)
k

}
σ∈Sn

represents the class of associated k-order (non-central) moments,

and τ ∈ Sn is such permutation for which h(sτ(1)) ≥ h(sτ(2)) ≥ . . . ≥ h(sτ(n)).

Definition 11. Let µ be a fuzzy measure on S = {s1, s2, . . . , sn} and h : S→ [0,+∞) be some
function with associated expectations class {Eλσ

(h)}σ∈Sn
. A k-th order central monotone moment

is called the value
Mγk(h) = Eλτ

(h−ME(h))k (18)

where τ ∈ Sn is such a permutation that h(sτ(1)) ≥ h(sτ(2)) ≥ . . . ≥ h(sτ(n)).

One may easily prove the following proposition:

Proposition 5. Let h : S = {s1, . . . , sn} → [0,+∞) be some function and µ be a fuzzy measure
on S, Then,

Mγk(h) =
k

∑
i=o

(−1)i
(

k
i

)
[Mαi(h)]

i Mαk−i(h) (19)

It is easy to prove the propositions for the monotone variance MVar(h), k-order
monotone non-central moments Mαk(h), k = 2, . . ., analogous to the Proposition 1 and
Proposition 3.

Proposition 6. Let h : S = {s1, . . . , sn} → [0,+∞) be some function, and µ∗ and µ∗ be the
second-order dual Choquet capacities on S with associated variances class {Varλσ

(h)}σ∈Sn
and

associated k-order moments class
{

α
(λσ)
k (h)

}
σ∈Sn

. Then,

MVarµ∗(h) = min
σ∈Sn
{Varλσ

(h)} ,

MVarµ∗(h) = max
σ∈Sn
{Varλσ

(h)} (20)

Mα
(µ∗)
k (h) = min

σ∈Sn

{
α
(λσ )
k (h)

}
, k = 1, 2, . . . ,

Mα
(µ∗)
k (h) = max

σ∈Sn

{
α
(λσ )
k (h)

}
, k = 1, 2, . . .

(21)

Finally, the concept of monotone expectation ME(h) presented here can be extended to the
monotone expectation of any composition h ◦G if h : S→ [0,+∞) and G : [0,+∞)→ [0,+∞) is
a non-decreasing function.

Definition 12. If h : S→ [0,+∞) is some function and G : [0,+∞)→ [0,+∞) is some non-
decreasing function, and µ is a fuzzy measure on S,, then a monotone expectation of composition
h ◦ G is called the value

ME(h ◦ G) , (Ch)
∫
S

(h ◦ G)� µ (22)

It is easy to show the following propositions.



Mathematics 2023, 11, 1061 8 of 17

Proposition 7. If h : S = {s1, . . . , sn} → [0,+∞) is some function and G is non-decreasing
function G : [0,+∞)→ [0,+∞) with associated expectations class {Eλσ

(h ◦ G)}σ∈Sn
,, then

ME(h ◦ G) = Eλτ
(h ◦ G) =

n

∑
i=1

λτ(sτ(i))·G(h(sτ(i))) (23)

where τ ∈ Sn is such permutation that h(sτ(1)) ≥ h(sτ(2)) ≥ . . . ≥ h(sτ(n)).

Here we note that for composition h ◦ G, we can formulate and prove proposition
analogous to Proposition 5.

2.3. Monotone Covariance

Let us use the same concept and extend this concept to the covariance of two functions,
when the additive measure in the covariance definition, the probability, is replaced by a
non-additive but monotone measure, a fuzzy measure.

Definition 13. Let h and g be any functions h, g : S = {s1, . . . , sn} → [0,+∞) with values
hi = h(si) and gi = g(si). Let h and g be comonotonic functions, i.e., there exists such a
permutation τ ∈ Sn that h(sτ(1)) ≥ h(sτ(2)) ≥ . . . ≥ h(sτ(n)) and g(sτ(1)) ≥ g(sτ(2)) ≥ . . . ≥
g(sτ(n)). Let µ be a fuzzy measure on S. A monotone covariance between comonotonic functions h
and g is called the value

Mcov(h, g) = Eλτ
(h·g)− Eλτ

(h)·Eλτ
(g) =

n

∑
i=1

λτ(sτ(i))(hτ(i)−Eλτ
(h))(gτ(i) − Eλτ

(g)) (24)

where Covλτ
(h, g) = Eλτ

(h·g)− Eλτ
(h)·Eλτ

(g) is called associated covariance.

It is clear that functions h, g and h·g are comonotonic. Then the following proposition
is valid (the proof is omitted):

Proposition 8. Let functions h, g : S = {s1, . . . , sn} → [0,+∞) be comonotonic, µ be a fuzzy
measure on S and {eλσ

(h)}σ∈Sn
, {eλσ

(g)}σ∈Sn
be associated expectations classes for functions h

and g, respectively. Then, the monotone covariance between functions h and g is represented by the
classical covariance with respect to associated probability λσ

Mcov(h, g) = Eλτ
(h·g)− Eλτ

(h)·Eλτ
(g) =

n

∑
i=1

λτ(sτ(i))(hτ(i)−Eλτ
(h))(gτ(i) − Eλτ

(g)) (25)

where τ ∈ Sn is such a permutation that h(sτ(1)) ≥ h(sτ(2)) ≥ . . . ≥ h(sτ(n)) and g(sτ(1)) ≥
g(sτ(2)) ≥ . . . ≥ g(sτ(n)).

3. Associated Statistical Parameters Based Aggregation Operators in Interactive
MADM Models

As we mentioned in the introduction, the values aggregated with monotone statis-
tical parameters of MADM with the Choquet integral describe the interactions between
attributes to a certain degree [7–9]. Now, let us develop this idea in the following direction.
First, let us recall the formula for definition of monotone expectation:

ME(h) =
n

∑
i=1

h(sτ(i))[µ(
{

sτ(i), . . . , sτ(i)

}
)−µ({sτ(i), . . . , sτ(i−1)})] =

n

∑
i=1

h(sτ(i))·λτ(sτ(i)) = Eλτ
(h) (26)

where τ ∈ Sn is such a permutation that h(sτ(1)) ≥ h(sτ(2)) ≥ . . . ≥ h(sτ(n)). As was
mentioned in the introduction, in the works [18–25] for different fuzzy environments, based
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on the definition of monotone expectation, interactions were revealed between the focal
elements of the Dempster–Shafer belief consonant structure of attributes [30]:{

sτ(1)

}
, . . . ,

{
sτ(1), . . . , sτ(i−1)

}
,
{

sτ(1), . . . , sτ(i)

}
, . . . , sτ(1), . . . , sτ(n)

}
which is reflected by the inclusion of a new attribute sσ(i) in the previous focal element{

sτ(1), . . . , sτ(i−1)

}
, and the difference in (26)

µ(
{

sτ(1), . . . , sτ(i)

}
)− µ(

{
sτ(1), . . . , sτ(i−1)

}
)

represents the degree of influence of this inclusion [7,9].
Often, these interactions cannot provide reliable aggregation results, and it becomes neces-

sary to include focal elements of type (26) in aggregations for other permutations σ ∈ Sn. Below,
we introduce aggregation operators based on monotone statistical parameters that account for the inclu-
sion of all number of consonant structures

〈{
sσ(1)

}
,
{

sσ(1), sσ(2)

}
, . . . ,

{
sσ(1), . . . , sσ(n)

}〉
σ∈Sn

.

Such aggregation was first introduced by the authors of this article in [18] for monotone
expectation extension, which we present with another interpretation.

Definition 14. Let h : S = {s1, . . . , sn} → [0,+∞) be some function and µ be a fuzzy measure
on S with the class {Eλσ

(h)}σ∈Sn
of associated expectations to h. Suppose that F : (R+

0 )
n! → R+

0
is any averaging aggregation operator [16]. F-associated expectation of function h is called a value

F− AsE(h) = F(Eλσ
(h), . . . , Eλn!(h)). (27)

It follows from the boundedness property of the averaging operator F that

min
σ∈Sn

Eλσ
(h) ≤ F− AsE(h) ≤ max

σ∈Sn
Eλσ

(h). (28)

Now let us consider the most important question of our research. This is a question of
the correctness of the extension of aggregation operators, when the extended aggregations
agree with the basis operators for some essential values of their defining parameters. In
particular, for our case, in Section 3, we defined the monotone statistical parameters. At the
same time, the relevant associated statistical parameters were also defined. In Section 4, on
the basis of associated statistical parameters, we defined F-associated statistical parameters,
which, unlike monotone statistical parameters, take into account the consonant structures
of all possible combinations of attributes, that is, all their possible interactions, when
aggregating in interactive MADM models. What is the relationship between these two
classes of parameters? The answer is given in Propositions 9 and 10 below. The gist of these
proofs is briefly as follows: these parameters coincide if the second-order dual Choquet
capacities are taken as the fuzzy measure, and the operators MIN and MAX are taken as
the F-averaging operator.

We can show an analogous proof of Proposition 3 for the F-aggregation operator.

Proposition 9. Let µ∗ and µ∗ be the Choquet lower and upper capacities of order two on S, h
be any function h : S→ [0,+∞) and F : (R+

0 )
n! → R+

0 be any averaging aggregation operator
and {Eλσ

(h)}σ∈Sn
be associated expectations class of function h with respect to the fuzzy measure

µ. Then

(1) if the F = max operator, then the F− AsE(·) operator coincides with the ME operator for
the µ = µ∗ fuzzy measure:

Max− AsEµ∗(h) = max{Eλσ1
(h), . . . , Eλσn!

(h)} = Eτ(h) = (Ch)
∫
S

f � µ∗ = ME(h), (29)
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(2) if the F = min operator, thenthe F− AsE(·) operator coincides with the ME operator for
the µ = µ∗ fuzzy measure:

Min− AsEµ∗(h) = min
{

Eλσ1
(h), . . . , Eλσn!

(h)
}
= Eτ(h) = (Ch)

∫
S

f � µ∗ = ME(h)

where τ ∈ Sn is a such permutation for which hτ(1) ≥ hτ(2) ≥ . . . ≥ hτ(n).

From this proof, we can draw the following conclusion: operator F− AsE(·) represents
an extension of monotone expectation ME(·), and in the case of F −Max and F −Min,
this operator coincides with monotone expectation ME(·) for the Choquet second-order ex-
tremal capacities. Analogous proof can be stated with respect to other monotone statistical
parameters too.

Definition 15. Let functions h and g, h, g : S = {s1, . . . , sn} → [0,+∞) be comonotonic func-
tions for some τ ∈ Sn permutation h(sτ(1)) ≥ h(sτ(2)) ≥ . . . ≥ h(sτ(n)) and g(sτ(1)) ≥
g(sτ(2)) ≥ . . . ≥ g(sτ(n)), µ be a fuzzy measure on S, {Varλσ

(h)}σ∈Sn
be an associated variances

class,
{

α
(λσ)
k (h)

}
σ∈Sn

be an associated k-order associated moments class and {Covλσ
( f , g)}σ∈Sn

be an associated covariances class and F : (R+
0 )

n! → R+
0 be some averaging operator. Then

(1) F-associated variance of function h is called the operator

F− AsVar(h) = F(Varλσ1
(h), . . . , Varλσn!

(h)) (30)

(2) F-associated k-order moment of function h is called the operator

F− Asαk(h) = F(α
(λσ1 )

k (h), . . . , α
(λσn! )

k (h)), k = 1, 2, . . . (31)

(3) F-associated covariance of comonotonic functions h and g is called the operator

F− AsCov(h, g) = F(Covλσ1
(h, g), . . . , Covλσn!

(h, g)) (32)

For the new aggregation operators introduced in Definition 14, we can easily show
proofs similar to Proposition 8, which indicates the correctness of the distribution of
monotone statistical parameters.

Proposition 10. Let µ∗ and µ∗ be the Choquet dual lower and upper capacities of order two on
S = {s1, . . . , sn}, h and g be comonotonic functions for some permutation τ ∈ Sn,
h(sτ(1)) ≥ h(sτ(2)) ≥ . . . ≥ h(sτ(n)) and g(sτ(1)) ≥ g(sτ(2)) ≥ . . . ≥ g(sτ(n)),

F : (R+
0 )

n! → R+
0 be some averaging operator, {Varλσ

(h)}σ∈Sn
be associated variances class of

function h,
{

α
(λσ)
k (h)

}
σ∈Sn

be the associated non-central k -order moments class and

{Covλσ
( f , g)}σ∈Sn

be the associated covariances class of functions h and g. Then,

1. If F is a max operator and µ = µ∗ is an upper capacity of order two, then

(a) the F− As Var(·) operator coincides with the monotone variance parameter of h:

Max− AsVar(h) = max{Varλσ1
(h), . . . , Varλσn!

(h)} = Varλτ
(h) = MVar(h) = (Ch)

∫
S

(h−ME(h))2 � µ∗ (33)

(b) the F = Asαk(·) operator coincides with monotone k-order non-central moment
parameter of h:

Max− Asαk(h) = max{α(λσ1 )

k (h), . . . , α
(λσn! )

k (h)} = α
(λτ)
k (h) = Mαk(h) = (Ch)

∫
S

(hk)� µ∗ (34)
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(c) the F− AsCov(·) operator coincides with monotone covariance parameter of comono-
tonic functions, h and g:

Max− AcCov(h, g) = max
{

Covλσ1
(h, g), . . . , Covλσn!

(h, g)
}
= Covλτ

(h, g) =
= MCov(h, g) = (Ch)

∫
S
(h−ME(h))(g−ME(g))� µ∗ (35)

2. If Fis a min operator and µ = µ∗ has a lower capacity of order two, then

(a’) The F− AsVar(·) operator coincides with monotone variance parameter of h:

Min− AsVar(h) = min{Varλσ1
(h), . . . , Varλσn!

(h)} = Varλτ
(h) = MVar(h) = (Ch)

∫
S

(h−ME(h))2 � µ∗ (36)

(b’) the F− Asαk(·) operator coincides with the monotone k-order non-central moment
parameter of h:

Min− Asαk(h) = min{α(λσ1 )

k (h), . . . , α
(λσn! )

k (h)} = α
(λτ)
k (h) = Mαk(h) = (Ch)

∫
S

(hk)� µ∗

(c’) the F− AsCov(·) operator coincides with the monotone covariance parameter of hand
g functions:

Min− AcCov(h, g) = min
{

Covλσ1
(h, g), . . . , Covλσn!

(h, g)
}
= Covλτ

(h, g) =
= MCov(h, g) = (Ch)

∫
S
(h−ME(h))(g−ME(g))� µ∗

(37)

In conclusion, we note that the operations of aggregation of F-associated statistical
parameters defined here represent some kind correct extensions of monotone statistical
parameters. If the extreme second order Choquet capacities are taken as the fuzzy measure,
then the associated and monotone statistical parameters coincide.

In the new aggregations, all n! quantities of consonant structure attribute focal element
interactions are taken into account〈{

sσ(1)

}
,
{

sσ(1), sσ(2)

}
, . . . ,

{
sσ(1), . . . , sσ(n)

}〉
σ∈Sn

(38)

4. Using Operators F − As( ·) in the MADM Problem (Illustrating Examples)

Let us consider a numerical example in which the new aggregation operator’s calcula-
tion techniques and the possibility of its use are shown. Suppose the following decision-
making matrix is given with S = {s1, s2, s3}-three attributes and four possible alternatives,
D = {d1, d2, d3, d4} (see Table 1).

Table 1. Decision-making matrix.

S s1 s2 s3D

d1 0.5 0.4 0.7
d2 0.3 0.8 0.6
d3 0.6 0.5 0.3
d4 0.4 0.3 0.8

Note that the evaluations of alternative di in relation to attributes S in aggregations
should be considered as possible arguments of functions h and g.

In order to better understand the calculations presented below, we offer a classic
scheme of MADM in the case of our data:

Calculation scheme 1:

1. Create a MADM model by forming sets of attributes S and possible alternatives D.
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2. Form expert evaluations of alternatives in relation to attributes. Build a decision-
making matrix

{
hij
}

, i = 1, . . . , m; j = 1, . . . , n. For each alternative, create from this
matrix evaluation functions h and g.

3. Perform a formation-identification of fuzzy measure µ on the set of attributes S.
4. Construct the class of associated probabilities {λσ}σ∈S of the fuzzy measure µ.
5. Construct the class of associated expectations {Eλσ

(h)}σ∈Sn
.

6. For each alternative calculate the monotone expectation ME of h with respect to the
fuzzy measure µ.

7. Construct the associated variances class {Varλσ
(h)}σ∈Sn

.
8. For each alternative, calculate the monotone variance MVar of h with respect to the

fuzzy measure µ.
9. Construct the class of associated k-order (non-central) moments

{
α
(λα)
k

}
σ∈Sn

.

10. For each alternative calculate Mαk—the k-th order non-central monotone moment of
h with respect to the fuzzy measure µ.

11. For each alternative, calculate Mcov-the monotone covariance between comonotonic
functions h and g with respect to the fuzzy measure µ.

12. For each alternative, calculate F− AsE(h)—the associated expectation of function h
with respect to the fuzzy measure µ(F = min, F = Max).

13. For each alternative, calculate F− AsVar—the associated variance of function h with
respect to the fuzzy measure µ(F = min, F = Max).

14. For each alternative calculate F− Asαk—the associated k-order moment of function h
with respect to the fuzzy measure µ(F = min, F = Max).

15. For each alternative calculate F− AsCov —the associated covariance of comonotonic
functions h and g with respect to the fuzzy measure µ(F = min, F = Max).

16. Rank the alternatives with monotone and F-associated aggregation statistical parameters.

Suppose that it is given a fuzzy measure on S µ (the first column of Table 2) and all
possible associated probabilities obtained by corresponded associated probabilities (Def.
2, Formula (2)). Permutations are obtained by shifting the elements of the set of indices
{1, 2, 3}(see Table 2). The associated probabilities are calculated by formula:

λ(σ(1),σ(2),σ(3)) (sσ(i)) = µ(
{

sσ(1), . . . , sσ(i)

}
)− µ(

{
sσ(1), . . . , sσ(i−1)

}
), i = 1, 2, 3

Table 2. Fuzzy measure µ on S and its associated probabilities. {λσ}, σ = (σ(1), σ(2), σ(3)) ∈ S3.

2S µ λ(1,2,3) λ(1,3,2) λ(2,1,3) λ(2,3,1) λ(3,1,2) λ(3,2,1)

{s1} 0.2 0.2 0.2 0.4 0.6 0.3 0.6
{s2} 0.1 0.3 0.4 0.1 0.1 0.4 0.1
{s3} 0.3 0.5 0.4 0.5 0.3 0.3 0.3
{s1, s2} 0.5 0.5 0.6 0.5 0.7 0.7 0.7
{s1, s3} 0.6 0.7 0.6 0.9 0.9 0.6 0.9
{s2, s3} 0.4 0.8 0.8 0.6 0.4 0.7 0.4
{s1, s2, s3} 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Note that the values of the probabilities λ(σ(1),σ(2),σ(3)) (sσ(i)) are represented in the
corresponded column.

Using results of Tables 1 and 2, we calculated monotone expectations (Formula (5)),
monotone variances (Formula (14)), monotone covariances (Formula (24)) and statistical-
parameters-associated expectations (Formula (6)), associated variances (Formula (13)) for
possible alternatives di, i = 1, . . . , 4 and associated covariances (Definition 13) for the
following pairs of alternatives (d1, d2), (d1, d3) and (d2, d3) (Tables 3–5).
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Table 3. Associated expectations and monotone expectations for the alternatives di, i = 1, . . . , 4.

Eλσ
(·) Eλ(1,2,3)

Eλ(1,3,2)
Eλ(2,1,3)

Eλ(2,3,1) Eλ(3,1,2)
Eλ(3,2,1) ME(di)D

d1 0.57 0.54 0.63 0.59 0.52 0.59 0.52
d2 0.60 0.62 0.50 0.44 0.35 0.38 0.44
d3 0.42 0.44 0.44 0.50 0.47 0.50 0.42
d4 0.51 0.52 0.59 0.51 0.48 0.51 0.48

Table 4. Associated variances and monotone variances for the alternatives di, i = 1, . . . , 4.

Varλσ
(·) Varλ(1,2,3)

Varλ(1,3,2)
Varλ(2,1,3)

Varλ(2,3,1)
Varλ(3,1,2)

Varλ(3,2,1) MVar(di)D

d1 0.018 0.067 0.013 0.010 0.016 0.010 0.016
d2 0.030 0.034 0.030 0.032 0.028 0.032 0.032
d3 0.016 0.014 0.020 0.018 0.014 0.018 0.016
d4 0.054 0.053 0.045 0.037 0.046 0.037 0.046

Table 5. Associated covariances and monotone covariances for the pairs of alternatives.〈
di, dj

〉
, i, j = 1, . . . , 4, i < j.

Covλσ
(·) Covλ(1,2,3)

Covλ(1,3,2)
Covλ(2,1,3)

Covλ(2,3,1)
Covλ(3,1,2)

Covλ(3,2,1) MCov(di,dj)〈di,dj〉

〈d1, d2〉 −0.048 −0.009 0.007 0.006 0.017 0.006 non-
comonotonic

〈d1, d3〉 −0.014 0.046 −0.015 −0.012 −0.011 −0.012 non-
comonotonic

〈d1, d4〉 −0.129 −0.097 −0.130 −0.077 −0.070 −0.077 comonotonic
−0.070

〈d2, d3〉 −0.006 −0.005 −0.018 −0.018 0.023 −0.018 non-
comonotonic

〈d2, d4〉 −0.006 −0.010 0.017 −0.016 0.008 0.016 non-
comonotonic

〈d3, d4〉 −0.006 −0.025 −0.029 −0.024 0.022 −0.024 non-
comonotonic

Based on the results presented in the Tables 1–5, we calculate F-associated statistical
parameters’ aggregations for the alternatives di, i = 1, . . . , 4 (Table 6) for F = max or
F = min.

Table 6. Maxima and minima associated and monotone statistical parameters.

F−As(·)
Max−AsE(·) Min−AsE(·) ME(·) Max−AsVar(·) Min−AsVar(·) MVarD

d1 0.59 0.52 0.52 0.067 0.010 0.016
d2 0.62 0.35 0.44 0.034 0.028 0.032
d3 0.50 0.42 0.50 0.020 0.014 0.016
d4 0.59 0.48 0.42 0.054 0.037 0.046

F−As(·) Max−AsCov(·) Min−AsCov(·) MCov〈
di, dj

〉
〈d1, d2〉 0.017 −0.048 -
〈d1, d3〉 0.046 −0.014 -
〈d1, d4〉 −0.070 −0.129 −0.070
〈d2, d3〉 0.023 −0.018 -
〈d2, d4〉 0.016 −0.016 -
〈d3, d4〉 0.022 −0.025 -
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Based on the new aggregation operators’ calculation results for the possible alternative
set D, we introduce total ranking binary relations. We can say that

di�F−AsEdj ⇔ F− AsE(di) ≥ F− AsE(dj),
di�F−AsVardj ⇔ F− AsVar(di) ≤ F− AsVar(dj),
di�MEdj ⇔ ME(di) ≥ ME(dj),
di�MVardj ⇔ MVar(di) ≤ MVare(dj).

Using these ranking relations and results represented in the previous Tables, we rank
the alternatives by their aggregation values using F-associated and monotone statistical
parameters (see Table 7).

Table 7. Ranking of MADM alternatives by the F -associated and monotone expectations and variations.

Max− AsE(·) d2�d1�d4�d3
Min− AsE(·) d1�d4�d3�d2

Max− AsVar(·) d3�d2�d4�d1
Min− AsVar(·) d1�d3�d2�d4

ME(·) d1�d3�d2�d4
MVar(·) d1�d3�d2�d4

For comparison of a statistical independence of alternatives, we introduce a total
F− Cov -relation on D× D. Introduce a total relation �AsCov on the pairs of alternatives.
We say that pair 〈di, di〉 is more statistical dependent than pair 〈dk , dl〉 if〈

di, dj
〉
�AsCov〈dk, dl〉 ⇔

∣∣F− AsCov(di, dj)
∣∣ ≥ |F− AsCov(dk, dl)|

Using this ranking relations and results of the previous tables, we obtain (Table 8):

Table 8. Ranking of alternatives pairs by the statistical independency relation �AsCov, using the
functions F− AsCov(·) (F = Max or F = Min ).

Max− AsCov(·) 〈d1, d4〉�〈d1, d3〉�〈d2, d3〉�〈d3, d4〉�〈d1, d2〉�〈d2, d4〉
Min− AsCov(·) 〈d1, d4〉�〈d1, d2〉�〈d3, d4〉�〈d2, d3〉�〈d2, d4〉�〈d1, d3〉

Comparative analysis. From Table 7, we can see that monotone aggregations ME and
MVar make optimal choices of an alternative d1. pessimistic operator Min− AsE(·) and
Min− AsVar(·) from first four aggregations from F− As, and make an optimal choice also
of the same alternative d1,, but the further choice of the first of them is different alternative
d4. In these selections, the alternative d1 is thus dominant.

If we consider optimistic aggregations of F−As(·), Max−AsE(·) and Max− AsVar(·),,
their optimal choices are different from the choices of other pessimistic F− As(·) and mono-
tone aggregation operators. If the alternative d2 is optimal for F− AsE(·), the alternative d3
is optimal for F− AsVar(·). Probably, this difference arose from the circumstances that the
phenomenon of interaction of focal sets of consonant structures of attributes was reflected
to a higher degree in optimistic aggregations than was observed in other operators.

Now, about the results of covariate aggregations: According to the operators
Max− AsCov(·) and Min− AsCov(·), the most statistically dependent alternatives are d1
and d4, and the second statistical dependence is observed in such pairs where the alter-
native d1 is considered, although this alternative is with the alternative d3 in the case of
Max − AsCov(·), and with the alternative d2 in the case of Min− AsCov(·). From these
aggregations, it can be seen that the pair 〈d1, d4〉 has the least statistical dependence.

5. Conclusions

The construction of minimal risk decision-making aggregation operators in interactive
MADM models is a very important problem for many researchers today. It is clear that
the main problem here is the conflicting dual phenomenon arising in the model data in
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the form of uncertainty-imprecision. The art of mastering this phenomenon as much as
possible determines the construction of reliable and believable decision support systems.
Our research addresses these issues. How can one aggregate evaluations on interactive
attributes of alternatives with non-additive, Choquet integral-type aggregation operators,
so as to achieve reduction and minimization of decision-making risks? In this direction,
the F-associated statistical parameters (F-associated expectation, F-associated variance,
F-associated moment of order k and F-associated covariance) based on the Choquet inte-
gral are constructed in the work. In their aggregations, they take into account all possible
variants of consonant structures of attributes—that is, they combine all variants. The way
to define them is as follows. F-associated statistical parameters in interactive MADM
models are based on the respective monotone statistical parameters. The case of fuzzy
uncertainty is considered when the additive probability measure is replaced by a mono-
tone fuzzy measure. F-associated statistical parameters represent a kind of extensions
of monotone statistical parameters. These monotone parameters are monotone expecta-
tion, monotone variance, monotone moment of order k, monotone covariance. Extension
correctness implies that if the second-order extremal Choquet capacities are taken as the
fuzzy measure and the F-mean aggregation operator is a max or min operator, then the
F-associated statistical and monotone statistical parameters coincide. The difference is
that a monotone statistical parameter can be calculated with only one relevant associated
statistical parameter, but at least all n! associated statistical parameters participate in the
definition of the F-associated statistical parameter. Therefore, in the F-aggregations, the
interactions of all focal sets of attributes of all consonant structures of MADM attributes are
taken into account. This increases the credibility of decision making. Numerical examples
are given to illustrate the obtained results.

A limitation of the application of our new approach in interactive MADM problems
of practical value is that it will be necessary to solve a rather difficult fuzzy measure
identification problem.

In the future studies, it is envisaged to use the developed concept for the definition of
new monotone statistical parameters and to construct the extensions of these parameters
for the F-associated statistical parameters. A new constructed concept will be developed
for different fuzzy environments. The obtained results will be illustrated in high value
decision-making problems. A deep machine learning approach will be developed for fuzzy
measure identification problems.
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