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1. Introduction

Risk-sensitive stochastic control problem (RSCP) is an important kind of control prob-
lem, which is closely related to differential game of exponential linear quadratic Gaussian
(LQG) problem [1–5], and can be widely used in asset management to describe investors’
risk attitude through a risk-sensitive parameter [6]. At first, dynamic programming princi-
ple (DPP) is mainly a tool to study RSCP. Ref. [7] established a maximum principle (MP)
of RSCP based on large deviation theory in 1990. Since then, many studies on RSCP have
focused on MP. In 2005, a new kind of risk-sensitive (RS) MP was derived in [8] by means
of relationship between DPP and MP and a logarithmic transformation. On this basis, a
general MP of partially observable and partial information RSCP was obtained in [9–11].
Ref. [12] studied an RSCP where the state system consisted of a jump diffusion. Refs. [13,14]
established an MP for a mean-field (MF) partially observed RSCP and an MP for an MF
type Markov regime-switching jump diffusion systems, respectively. Ref. [15] studied an
RSCP in which the cost functional is given by a controlled backward stochastic differential
equation (BSDE). The generalized risk-sensitive DPP of valued function was obtained.

Time delay is a familiar phenomenon and is used to describe historically relevant
behaviors and phenomena in medicine, networking, and congestion fields, see [16–20].
Therefore, many models in the fields of economics, finance, and engineering are described
by delayed stochastic systems, for example [21–23]. With wide application of stochastic
systems with time delay, its optimization has always been a hot topic and has received
more and more attention. In general, delayed systems are tricky to deal with due to its
infinite dimensional state space structure and lack of Itô’s formula. An MP for optimal
control problem with delay was obtained in [24]. Ref. [25] introduced a novel type BSDE
named anticipated BSDE(ABSDE). Ref. [26] derived an MP for a stochastic control delay
system using the duality between SDDE and ABSDE. Refs. [27–29] studied optimal control
problems of different forms of delay systems. Ref. [30] studied an optimal control problem
for RS MF SDDE with partial information and obtained a stochastic MP. Refs. [31–33] inves-
tigated the different types of stochastic differential game. In many papers and references
therein, including [8,13,30], cost functional is type of exponential-integral RS. This paper
considers a class of utility functional named hyperbolic absolute risk aversion (HARA).

Mathematics 2023, 11, 1058. https://doi.org/10.3390/math11041058 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11041058
https://doi.org/10.3390/math11041058
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11041058
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11041058?type=check_update&version=1


Mathematics 2023, 11, 1058 2 of 12

This cost functional has practical implications, where it can formulate a vital risk-sensitive
optimal portfolio model.

In this paper, we investigate a kind of RSCP with delay and HARA expected utility
functional with the exponent ϑ > 0. The key contributions of this work are as follows:

(1) Different from the systems investigated in [24,30], the state system considered in this
paper is stochastic and delayed. Moreover, the cost functional is an HARA expected
utility functional with exponent ϑ > 0, which can be used to describe some specific
financial phenomena. Thus, the results of this paper can be applied to solve more
financial problems.

(2) The existence of delay and the complexity of the cost functional cause some difficulties
to handle the problem. Thus, a duality method and an expanding variable dimension
method are adopted to obtain an MP. This is different from the methods in [3,4,8,9,24].

(3) The adjoint equation and maximum condition are greatly affected by parameter ϑ. Note
that if ϑ = 1, we can obtain results similar to [26]. Thus, our results are more general
than [26].

The rest of this paper is organized as follows. A formulation of RSCP with delay
is given in Section 2. An MP and verification theorem of optimal control are derived in
Section 3. Further, we consider an RSCP with a general running cost functional, and obtain
MP and verification theorem for an optimal control in Section 4. Applied derived results,
an RS management problem of pension fund deferred surplus is solved in Section 5. The
last, we conclude this research with a concluding statement.

2. Problem Formulation

Let (Ω,F , P) be a complete filtered probability space with a natural filtration {Fr}0≤r≤T
generated by a one-dimensional standard Brownian motion {B(r)}0≤r≤T. T > 0 is the fi-
nite fixed time node. ς > 0 is the time delay quantity. R represents a one-dimensional
Euclidean space. There are brief notations below for simplification: C[−ς, 0] = {m(·) :
[−ς, 0] → R|m(·) is a continuous function}, L2(−ς, 0; U) = {m(·) : [−ς, 0] → U|m(·) is a
deterministic continuous function satisfying

∫ 0
−δ |m(r)|2dr < +∞}, L2

F (0, T; R) = {m(·) :

Ω× [0, T]→ R|m(·) is an Ft-adapted process satisfying E
∫ T

0 |m(r)|2dr < +∞}.
Consider an SDDE system

dxν(r) = f (r, xν(r), xν(r− ς), ν(r), ν(r− ς))dr

+ g(r, xν(r), xν(r− ς), ν(r), ν(r− ς))dB(r),

r ∈ [0, T],

xν(r) = ζ(r), ν(r) = η(r), r ∈ [−ς, 0],

(1)

where f , g : [0, T]× R4 → R, η(·) ∈ L2(−ς, 0; U); ζ(·) ∈ C[−ς, 0] is F0-measurable and
satisfies E sup−ς≤r≤0 |ζ(r)|2 < +∞.

Define an admissible control set Uad = {ν(r)|ν(r) ∈ L2
F (0, T; R), ν(r) ∈ U, a.s., r ∈

[0, T], and ν(r) = η(r), r ∈ [−ς, 0]}, where U ⊆ R is a non-empty, convex set.
A cost functional is

J(ν(·)) = 1
ϑ
E[Θ(xν(T))]ϑ, (2)

where ϑ > 0 is a risk-sensitivity index.

Problem 1 (RSC). Find a µ(·) ∈ Uad achieving

J(µ(·)) = max
ν(·)∈Uad

J(ν(·))

associated with (1). Any µ(·) exists, then µ(·) is called an optimal control. The corresponding state
is denoted by xµ(·).
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3. MP and Verification Theorem

We need assumptions below.

Hypothesis 1 (H1). f , g are continuously differentiable in (xν, xν
δ , ν, νδ), and their derivatives

are bounded.

Hypothesis 2 (H2). Θ : R → [0,+∞) is continuously differential with regard to x and |Θ| ≤
K(1 + |x|) and derivative |Θx| ≤ M, where M is a positive constant.

Hypothesis 3 (H3). Let E[Θ(x(T))](2ϑ−2) < +∞, when 0 < ϑ < 1, and let E[x(T)](2ϑ−2) <
+∞, when ϑ > 1.

3.1. MP

Let (µ(·), xµ(·)) be an optimal solution of Problem (RSC), and ν1(·) ∈ L2
F (0, T; R) be

such that µ(·) + ν1(·) ∈ Uad. Since U is convex, µε(·) = µ(·) + εν1(·), 0 ≤ ε ≤ 1 is also in
Uad. Its corresponding trajectory is denoted by xε(·).

Introduce these signs for ease of notation.

bε(r) = b(r, xε(r), xε(r− ς), µε(r), µε(r− ς)),

bµ(r) = b(r, xµ(r), xµ(r− ς), µ(r), µ(r− ς)),

bµ
φ(r) = bφ(r, xµ(r), xµ(r− ς), µ(r), µ(r− ς)),

where b = f , g and φ = xν, xν
ς , ν, νς.

The equation of variation is
dxµ

1 (r) = [ f µ
x xµ

1 (r) + f µ
xς(r)xµ

1 (r− ς) + f µ
ν (r)ν1(r) + f µ

νς(r)ν1(r− ς)]dr

+ [gµ
x (r)xµ

1 (r) + gµ
xς(r)xµ

1 (r− ς) + gµ
ν (r)ν1(r) + gµ

νς(r)ν1(r− ς)]dB(r),

r ∈ [0, T],

xµ
1 (r) = 0, ν1(r) = 0, r ∈ [−ς, 0].

(3)

By similar means in [26], we can obtain following result.

Lemma 1. Suppose that (H1) is tenable, there is

lim
ε→0

sup
0≤r≤T

E|x̃(r)|2 = 0, (4)

where x̃(r) = xε(r)−xµ(r)
ε − xµ

1 (r).
Similar to [34], we can obtain Lemma 2 by using Lemma 1 and Taylor’s expansion.

Lemma 2. Suppose that (H1)–(H3) is tenable, there is

E{[Θ(xµ(T))]ϑ−1Θµ
x (x(T))xµ

1 (T)} ≤ 0, (5)

where xµ
1 (T) satisfies (3).

A Hamiltonian function is defined as follows

H(r, xν, xν
ς , ν, νς, m, n) = m f (r, xν, xν

ς , ν, νς) + ng(r, xν, xν
ς , ν, νς),

and use the notation Hµ
φ = Hφ(r, xµ(r), xµ(r− ς), µ(r), µ(r− ς), m(r), n(r)), φ = ν, νδ.
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Introduce an adjoint equation
−dm(r) = [ f µ

x (r)m(r) + gµ
x (r)n(r) +EFr [ f µ

xς(r + ς)m(r + ς)

+ gµ
xς(r + ς)n(r + ς)]dr− n(r)dB(r), r ∈ [0, T],

m(T) = [Θ(xµ(T))]ϑ−1Θx(xµ(T)), m(r) = 0, n(r) = 0, r ∈ [T, T + ς].

(6)

Obviously, (6) admits a unique solution (see [25]).
The following is obtained by making used of Itô’s formula

E〈m(T), xµ
1 (T)〉

= E
∫ T

0
{−EFt [ f µ

xς(r + ς)m(r + ς)]xµ
1 (r)−EFr [gµ

xς(r + ς)n(r + ς)]xµ
1 (r)

+ m(r) f µ
xς(r)xµ

1 (r− ς) + m(r) f µ
ν (r)ν1(r) + m(r) f µ

vς(r)ν1(r− ς) + n(r)gµ
xς(r)xµ

1 (r− ς)

+ n(r)gµ
ν (r)ν1(r) + n(r)gµ

νς(r)ν1(r− ς)}dr.

Combining special conditions, it yields

E
∫ T

0
{m(r) f µ

xς(r)xµ
1 (r− ς)−EFr [( f µ

xς |r+ς)m(r + ς)]xµ
1 (r)}dr

= E
∫ T

0
m(r) f µ

xς(r)xµ
1 (r− ς)dr−E

∫ T+ς

ς
f µ
xς(r)m(r)xµ

1 (r− ς)dr

= E
∫ ς

0
m(r) f µ

xς(r)xµ
1 (r− ς)dr−E

∫ T+ς

T
f µ
xς(r)m(r)xµ

1 (r− ς)dr

= 0.

Similarly, we derive

E
∫ T

0
{n(r)gµ

xς(r)xµ
1 (r− ς)−EFr [(gµ

xς |r+ς)n(r + ς)]xµ
1 (r)}dr = 0.

Using (5), it can be deduced

E
∫ T

0
{〈Hµ

ν , ν1(r)〉+ 〈H
µ
νς , ν1(r− ς)〉}dr ≤ 0,

and thus,
〈Hµ

ν +EFr [Hµ
νς |r+ς], ν− µ(r)〉 ≤ 0, ∀ν ∈ U, a.e., a.s.. (7)

Then, we draw the desired conclusion.

Theorem 1 (MP: I). Suppose that (H1)–(H3) is tenable. Let (µ(·), xµ(·)) be an optimal solution
of Problem (RSC), then, we assert (7).

3.2. Verification Theorem

Next up, we will construct a verification theorem for optimality.
Introduce an additional hypothesis.

Hypothesis 4 (H4). 0 < ϑ < 1, H(r, ·, ·, ·, ·, m(r), n(r)) is concave in (xν, xν
ς , ν, νς) and Θ(·) is

concave in x.

Theorem 2 (Verification Theorem: I). Suppose µ(·) ∈ Uad and let xµ(·) be the corresponding
trajectory. Suppose that (m(·), n(·)) is a solution to (6). If hypotheses (H1)–(H4) and maximum
condition (7) hold for µ(·), then µ(·) is an optimal control for Problem (RSC).
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Proof. For any ν(·) ∈ Uad, denote by xν(·) its matching state process. Calculate

J(ν(·))− J(µ(·))

=
1
ϑ
E{[Θ(xν(T))]ϑ − [Θ(xµ(T))]ϑ}

≤ 1
ϑ
E{ϑ[Θ(xµ(T))]ϑ−1Θx(xµ(T))(xν(T)− xµ(T))}

= E{(Θ(xµ(T)))ϑ−1Θx(xµ(T))(xν(T)− xµ(T))}.

It can be obtained with the help of Itô’s formula as follows

E{(Θ(xµ(T)))ϑ−1Θx(xµ(T))(xν(T)− xµ(T))}

= E
∫ T

0
{〈m(r), f ν(r)− f µ(r)〉+ 〈− f µ

x (r)m(r), xν(r)− xµ(r)〉+ 〈−gµ
x (r)n(r), xν(r)− xµ(r)〉

− 〈EFr ( f µ
x |r+ς)m(r + ς), xν(r)− xµ(r)〉 − 〈EFr (gµ

x |r+ς)n(r + ς), xν(r)− xµ(r)〉
+ 〈n(r), gν(r)− gµ(r)〉}dr

= E
∫ T

0
{H(r, xν(r), xν(r− ς), ν(r), ν(r− ς), m(r), n(r))− H(r, xµ(r), xµ(r− ς), µ(r),

µ(r− ς), m(r), n(r))− 〈 f µ
x (r)m(r), xν(r)− xµ(r)〉 − 〈gµ

x (r)n(r), xν(r)− xµ(r)〉

− 〈EFr [( f µ
xς
|r+ς)m(r + ς)], xν(r)− xµ(r)〉 − 〈EFr [(gµ

xς
|r+ς)n(r + ς)], xν(r)− xµ(r)〉}dr

≤ E
∫ T

0
{〈Hx(r, xµ(r), xµ(r− ς), µ(r), µ(r− ς), m(r), n(r)), xν(r)− xµ(r)〉

+ 〈Hxς (r, xµ(r), xµ(r− ς), µ(r), µ(r− ς), m(r), n(r)), xν(r− ς)− xµ(r− ς)〉
+ 〈Hµ

ν , ν(r)− µ(r)〉+ 〈Hµ
νς

, ν(r− ς)− µ(r− ς)〉 − 〈 f µ
x (r)m(r), xν(r)− xµ(r)〉

− 〈gµ
x (r)n(r), xν(r)− xµ(r)〉 − 〈EFr [( f µ

xς
|r+ς)m(r + ς)], xν(r)− xµ(r)〉

− 〈EFr [(gµ
xς
|r+ς)n(r + ς)], xν(r)− xµ(r)〉}dr

≤ E
∫ T

0
{〈Hx(r, xµ(r), xµ(r− ς), µ(r), µ(r− ς), m(r), n(r)), xν(r)− xµ(r)〉

+ 〈Hxς (r, xµ(r), xµ(r− ς), µ(r), µ(r− ς), m(r), n(r)), xν(r− ς)− xµ(r− ς)〉
− 〈 f µ

x (r)m(r), xν(r)− xµ(r)〉 − 〈gµ
x (r)n(r), xν(r)− xµ(r)

− 〈EFr [( f µ
xς
|r+ς)m(r + ς)], xν(r)− xµ(r)〉 − 〈EFr [(gµ

xς
|r+ς)n(r + ς)], xν(r)− xµ(r)〉}dr

= 0.

Then we complete the proof.

4. A General RSCP

A general RS cost functional is considered

J(ν(·)) = 1
ϑ
E[
∫ T

0
l(r, ν(r), ν(r− ς))dr + Θ(xν(T))]ϑ, ϑ > 0. (8)

Problem 2 (G-RSC). The objective is to seek a µ(·) ∈ Uad achieving

J(µ(·)) = max
ν(·)∈Uad

J(ν(·)), (9)

associated with (1).

We introduce the following assumptions.

Hypothesis 5 (H5). l : [0, T]×U2 → R+ is continuously differentiable in ν, νς, and the deriva-
tives are bounded.
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Hypothesis 6 (H6). If 0 < ϑ < 1, we assume

E[
∫ T

0
l(r, ν(r), ν(r− ς))dr + Θ(xν(T))]2ϑ−2 < +∞;

if ϑ > 1, then

E[
∫ T

0
l(r, ν(r), ν(r− ς))dr]2ϑ−2 < +∞.

4.1. MP

Let (µ(·), xµ(·)) be an optimal solution to Problem (G-RSC). In order to obtain the
desired results, we define an SDDE{

dyν(r) = l(r, ν(r), ν(r− ς))dr, r ∈ [0, T],

yν(r) = 0, ν(r) = η(r), r ∈ [−ς, 0].
(10)

Let yε(·) and yµ(·), respectively, correspond to µε(·) and µ(·) through (10).
A variational equation is{

dyµ
1 (r) = [lµ

ν (r)ν1(r) + lµ
νς(r)ν1(r− ς)]dr, r ∈ [0, T],

yµ
1 (r) = 0, ν1(r) = 0, r ∈ [−ς, 0],

where lµ
φ(r) = lφ(r, xµ(r), xµ(r− ς), µ(r), µ(r− ς)), φ = ν, νς. We can derive that

lim
ε→0

sup
0≤r≤T

E|ỹ(r)|2 = 0,

where ỹ(r) = yε(r)−yµ(r)
ε − yµ

1 (r).
Thus, Problem (G-RSC) is simplified as maximizing

J(ν(·)) = 1
ϑ
E[yν(T) + Θ(xν(T))]ϑ, ϑ > 0 (11)

associated with (1) and (10).
We can derive that from J(µε(·))− J(µ(·)) ≤ 0

1
ϑ
E[yε(T) + Θ(xε(T))]ϑ − 1

ϑ
E[yµ(T) + Θ(xµ(T))]ϑ

=
1
ϑ
E[ϑ(yµ(T) + Θ(xµ(T)))ϑ−1Θx(xµ(T))(xε(T)− xµ(T)) + ϑ(yµ(T)Θ(xµ(T)))ϑ−1

(yε(T)− yµ(T)) + o(ε)]

= εE[(yµ(T) + Θ(xµ(T)))ϑ−1Θx(xµ(T))(xµ
1 (T)] + εE[(yµ(T) + Θ(xµ(T)))ϑ−1yµ

1 (T)] + o(ε)

≤ 0.

Divide both sides of the above inequality by ε, then take the limit ε→ 0, such that

E{[yµ(T) + Θ(xµ(T))]ϑ−1Θx(xµ(T))xµ
1 (T)}+E{[yµ(T) + Θ(xµ(T))]ϑ−1yµ

1 (T)} ≤ 0. (12)

Introduce the ABSDEs{
dα(r) = β(r)dB(r), r ∈ [0, T],

α(T) = [yµ(T) + Θ(xµ(T))]ϑ−1, α(r) = 0, β(r) = 0, r ∈ [T, T + ς],
(13)

and
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−dψ(r) = [ f µ

x (r)ψ(r) + gµ
x (r)ϕ(r) +EFr [( f µ

xς |r+ς)ψ(r + ς)

+ (gµ
xς |r+ς)ϕ(r + ς)]dr− ϕ(r)dB(r), r ∈ [0, T],

ψ(T) = [yµ(T) + Θ(xµ(T))]ϑ−1Θx(xµ(T)), ψ(r) = 0, ϕ(r) = 0, r ∈ [T, T + ς].

(14)

Obviously, we can obtain in virtue of Itô’s formula

E{[yµ(T) + Θ(xµ(T))]ϑ−1yµ
1 (T)}

= E
∫ T

0
{α(r)lµ

νς(r)ν1(r− ς) + α(r)lµ
ν (r)ν1(r)}dr,

(15)

and

E{[yµ(T) + Θ(xµ(T))]ϑ−1Θx(xµ(T))xµ
1 (T)}

= E
∫ T

0
{ψ(r) f µ

ν (r)ν1(r) + ψ(r) f µ
νς(r)ν1(r− ς) + ϕ(r)gµ

ν (r)ν1(r) + ϕ(r)gµ
νς(r)ν1(r− ς)}dr.

(16)

Combining (12), (15), and (16), we obtain

E
∫ T

0
{α(r)lµ

νς(r)ν1(r− ς) + α(r)lµ
ν (r)ν1(r) + ψ(r) f µ

ν (r)ν1(r) + ψ(r) f µ
νς(r)ν1(r− ς)

+ ϕ(r)gµ
ν (r)ν1(r) + ϕ(r)gµ

νς(r)ν1(r− ς)}dr ≤ 0.
(17)

A Hamiltonian function is introduced as follows

H(r, xν, xν
ς , ν, νς, ψ, ϕ, α) = H(r, xν, xν

ς , ν, νς, ψ, ϕ) + 〈α, l(r, ν, νς)〉. (18)

For convenience, here are the following abbreviation

H(r) = H(r, xµ(r), xµ(r− ς), µ(r), µ(r− ς), ψ(r), ϕ(r), α(r)),

H(r, ν, µ(r− ς)) = H(r, xµ(r), xµ(r− ς), ν, µ(r− ς), ψ(r), ϕ(r), α(r)),

H(r, µ(r), ν) = H(r, xµ(r), xµ(r− ς), µ(r), ν, ψ(r), ϕ(r), α(r)).

It follows from (17), (18), and Theorem 1 that

〈Hµ
ν +EFr [Hµ

νς |r+ς], ν− µ(r)〉 ≤ 0, ∀ν ∈ U, a.e., a.s.. (19)

Through above analysis, the following natural result is obtained.

Theorem 3 (MP: II). Under hypotheses (H1), (H2), (H5), and (H6), if (µ(·), xµ(·)) is an optimal
solution to Problem (G-RSC), then, (19) holds.

4.2. Verification Theorem

We need the assumption below.

Hypothesis 7 (H7). l is differentiable in (ν, νς), and l(·, ν(·), ν(· − ς)) ∈ L1
F (0, T; R).

Hypothesis 8 (H8). Hv(t, x(t), x(t − δ), v, u(t − δ), ψ(t), ϕ(t), α(t)) and Hvδ
(t, x(t), x(t −

δ), u(t), v, ψ(t), ϕ(t), α(t)) are continuous at v = u(t) for any t ∈ [0, T], and for all (t, x, xδ, v, vδ)
∈ [0, T]× R× R×U ×U,

(x, xδ, v, vδ)→ H(t, x, xδ, v, vδ, ψ(t), ϕ(t), α(t))

is concave, x → Θ(x) is concave, and 0 < ϑ < 1.

Theorem 4 (Verification Theorem: II). Let u(·) ∈ Uad be given such that lu
v (·), lu

vδ
(·)

∈ L2
F (0, T; R), lv(t, v, u(t− δ)) ∈ L1(Ω,F , P) and lv(t, u(t), v) ∈ L1(Ω,F , P) hold. Let (α(·),
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β(·)) and (ψ(·), ϕ(·)) be the solutions of adjoint equations (13) and (14). If (H1), (H2), (H6), (H7), and
(H8) hold, and

H(t) +EFt [H(t)|t+δ] = max
v∈U
{H(t, v, u(t− δ)) +EFt [H(t, u(t), v)|t+δ]}

hold for all t ∈ [0, T]. Then, u(·) is an optimal control for Problem (G-RSC).

Proof. For any v(·) ∈ Uad, we consider

J(v(·))− J(u(·))

=
1
ϑ
E{[yv(T) + Θ(xv(T))]ϑ − [y(T) + Θ(x(T))]ϑ}

≤ 1
ϑ
E{ϑ[y(T) + Θ(x(T))]ϑ−1Θx(x(T))(xv(T)− x(T))

+ ϑ[y(T) + Θ(x(T))]ϑ−1(yv(T)− y(T))}
= E{[y(T) + Θ(x(T))]ϑ−1Θx(x(T))(xv(T)− x(T))

+ [y(T) + Θ(x(T))]ϑ−1(yv(T)− y(T))}
= E{ψ(T)(xv(T)− x(T)) + α(T)(yv(T)− y(T))}.

(20)

Using Itô’s formula, it yields

E{ψ(T)(xν(T)− xµ(T))}

=−E
∫ T

0
〈 f µ

x (r)ψ(r), xν(r)− xµ(r)〉dr−E
∫ T

0
〈gµ

x (r)ϕ(r), xν(r)− xµ(r)〉dr

−E
∫ T

0
〈EFr [( f µ

xς
|r+ς)ψ(r + ς), xν(r)− xµ(r)〉dr

−E
∫ T

0
〈EFr [(gµ

xς
|r+ς)ϕ(r + ς)], xν(r)− xµ(r)〉dr

+E
∫ T

0
〈ψ(r), f (r, xν(r), xν(r− ς), ν(r), ν(r− ς))− f (r, xµ(r), xµ(r− ς), µ(r), µ(r− ς))〉dr

+E
∫ T

0
〈ϕ(r), g(r, xν(r), xν(r− ς), ν(r), ν(r− ς))− g(r, xµ(r), xµ(r− ς), µ(r), µ(r− ς))〉dr

(21)

and
E{α(T)(yν(T)− yµ(T))}

= E
∫ T

0
〈α(r), l(r, ν(r), ν(r− ς))− l(r, µ(r), µ(r− ς))〉dr.

(22)

Combining (20)–(22), we obtain

J(ν(·))− J(µ(·))

≤ E
∫ T

0
[H(r, xν(r), xν(r− ς), ν(r), ν(r− ς), ψ(r), ϕ(r), α(r))

−H(r, xµ(r), xµ(r− ς), µ(r), µ(r− ς), ψ(r), ϕ(r), α(r))]dr

−E
∫ T

0
〈 f µ

x (r)ψ(r), xν(r)− xµ(r)〉dr−E
∫ T

0
〈gµ

x (r)ϕ(r), xν(r)− xµ(r)〉dr

−E
∫ T

0
〈EFr [( f µ

xς |r+ς)ψ(r + ς), xν(r)− xµ(r)〉dr

−E
∫ T

0
〈EFr [(gµ

xς |r+ς)ϕ(r + ς)], xν(r)− xµ(r)〉dr.
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Noticing that (xν, xν
ς , ν, νς)→ H(r, xν, xν

ς , ν, νς, ψ(r), ϕ(r), α(r)) is concave, so there is

J(ν(·))− J(µ(·))

≤ E
∫ T

0
〈Hν(r, xµ(r), xµ(r− ς), µ(r), µ(r− ς), ψ(r), ϕ(r), α(r)), ν(r)− µ(r)〉dr

+E
∫ T

0
〈Hνς(r, xµ(r), xµ(r− ς), µ(r), µ(r− ς), ψ(r), ϕ(r), α(r)), ν(r− ς)− µ(r− ς)〉dr

= E
∫ T

0
〈Hν(r, xµ(r), xµ(r− ς), µ(r), µ(r− ς), ψ(r), ϕ(r), α(r)), ν(r)− µ(r)〉dr

+E
∫ T

0
〈EFr [Hνς(r, xµ(r), xµ(r− ς), µ(r), µ(r− ς), ψ(r), ϕ(r), α(r))|r+ς], ν(r)− µ(r)〉dr

= E
∫ T

0
〈Hν(r, xµ(r), xµ(r− ς), µ(r), µ(r− ς), ψ(r), ϕ(r), α(r))

+EFr [Hνς(r, xµ(r), xµ(r− ς), µ(r), µ(r− ς), ψ(r), ϕ(r), α(r))|r+ς], ν(r)− µ(r)〉dr.

Recalling that, for each r ∈ [0, T], ν → H(r, ν, µ(r − ς)) + EFr [H(r, µ(r), ν)|r+ς] is
maximal at ν = µ(r), and Hν(r, ν, µ(r− ς)) and EFr [H(r, ν, µ(r− ς))|r+ς] are continuous
in v for all ω ∈ Ω uniformly, then we obtain

{Hν(r, xµ(r), xµ(r− ς), µ(r), µ(r− ς), ψ(r), ϕ(r), α(r))

+EFr [Hνς(r, xµ(r), xµ(r− ς), µ(r), µ(r− ς), ψ(r), ϕ(r), α(r))|r+ς]} × (ν(r)− µ(r))

={ ∂

∂ν
[H(r, xµ(r), xµ(r− ς), µ(r), µ(r− ς), ψ(r), ϕ(r), α(r))

+EFr [H(r, xµ(r), xµ(r− ς), µ(r), µ(r− ς), ψ(r), ϕ(r), α(r))|r+ς]} × (ν(r)− µ(r)) ≤ 0.

Then it hints that
J(µ(·)) = max

ν(·)∈Uad

J(ν(·)).

So the conclusion is confirmed.

Obviously, the hypotheses in Theorems 3 and 4 are strict. When ϑ = 1, Problem
(G-RSC) degenerates to a usual risk-neutral optimal control problem, where we denote this
problem by Problem (G-RNC). In this case, the hypotheses on Θ and l can be simplified by

Hypothesis 9 (H9). l : [0, T] × U2 → R and Θ : R → R are, respectively, continuously
differentiable in (ν, νς, xν), and the derivatives are bounded.

Define a Hamiltonian function

H(r, xν(r), xν(r− ς), ν(r), ν(r− ς), ξ(r), η(r))

= H(r, xν(r), xν(r− ς), ν(r), ν(r− ς), ξ(r), η(r)) + l(r, ν(r), ν(r− ς)),

where (ξ(·), η(·)) satisfies
−dξ(r) = [ f µ

x (r)ξ(r) + gµ
x (r)η(r) +EFr [( f µ

xς |r+ς)ξ(r + ς)

+ (gµ
xς |r+ς)η(r + ς)]dr− η(r)dB(r), r ∈ [0, T],

ξ(T) = Θx(xµ(T)), ξ(r) = 0, η(r) = 0, r ∈ [T, T + ς].

(23)

Assume (H1), (H8) hold and ϑ = 1. We can obtain Theorem 5 by virtue of techniques
in Theorem 1.

Theorem 5 (Risk-Neutral MP). Presume that µ(·) is an optimal control to Problem (G-RNC),
and xµ(·) be the corresponding trajectory. Then, the maximum principle
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〈Hµ
ν +EFr [Hµ

νς
|r+ς], ν− µ(r)〉 ≤ 0, ∀ν ∈ U, a.e., a.s. (24)

is supported.

Similarly, maximum condition (24) added to some concavity hypothesis is also a
sufficient condition.

Introduce an additional hypothesis.

Hypothesis 10 (H10). H(r, ·, ·, ·, ·, ξ(r), η(r)) is concave in (xν, xν
ς , ν, νς) and Θ(·) is concave

in xν.

Theorem 6 (Risk-Neutral Verification Theorem). Suppose µ(·) ∈ Uad and let xµ(·) be the
corresponding trajectory, (ξ(·), η(·)) satisfy (23). If µ(·) satisfies (H1), (H9), (H10), and maximum
condition (24), hence µ(·) is an optimal solution to Problem (G-RNC).

5. Applications

Let us give an application example in this section.

Example 1. There are two types of investment products to choose for a pension fund manager,
named bond and stock. Additionally, their prices meet, respectively, dM0(s) = r(s)M0(s)ds
and dM1(s) = M1(s)[µ(s)ds + σ(s)dB(s)], where r(·) is return rate, µ(·) is appreciation rate
of return and σ(·) is volatility coefficient. Further, presume that r(·) and σ(·) are deterministic
bounded functions, and µ(·) is an Fr-adapted bounded process. In addition, σ(s)−1 properly exists
and is bounded.

We use θ(s) to represent the manager’s investment amount in stocks, x(s) to represent his
wealth, whose initial value is m > 0. Further k(x(s)− x(s− ς)) represents fund members’ surplus
premium, which depends on fund growth’s performance over the past period for some k > 0. Hence,
x(·) satisfies SDDE{

dx(s) = [(r(s)− k)x(s) + kx(s− ς) + (µ(s)− r(s))θ(s)]dr + θ(s)σ(s)dB(s), s ∈ [0, T],

x(0) = m, s ∈ [−ς, 0].
(25)

Represent Uad = {θ(·) ∈ L2
F (0, T; R)|θ(s) ≥ c0, s ∈ [0, T]} by admissible control set.

Define the associated utility functional

J(θ(·)) = E[
∫ T

0
Le−βs log θ(s)ds + Kx(T)],

where L, K > 0, and β are discount factors.

Problem 3 (B). The manager wants to achieve

J(θ∗(·)) = max
θ(·)∈Uad

J(θ(·)).

Now, applying Theorem 5 and Theorem 6, we obtain the Hamiltonian function

H(s, x, xς, ξ, η) = ξ[(r(s)− k)x + kxς + (µ(s)− r(s))θ(s)] + ηθ(s)σ(s) + Le−βs log θ(s),

and adjoint equation
−dξ(s) = {[(r(s)− k)ξ(s) +EFs [kξ(s + ς)]}ds− η(s)dB(s), s ∈ [0, T],

ξ(T) = K, ξ(s) = 0, s ∈ (T, T + ς],

η(s) = 0, s ∈ [T, T + ς].

(26)



Mathematics 2023, 11, 1058 11 of 12

We can solve (3) by continuously Itô integrating on steps of length δ, i.e.,

ξ(s) = Ke
∫ T

0 (r(s)−k)ds, η(s) = 0, s ∈ [T − ς, T];

ξ(s) = Ke
∫ T

T−ς(r(s)−k)dse
∫ s

T−2δ(r(t)−k)dt +
∫ s

T−2ς
Kke

∫ T
t+ς(r(u)−k)due

∫ s
t (r(u)−k)dudt,

η(s) = 0, s ∈ [T − 2ς, T − ς];

. . .

(27)

Then, an optimal investment amount θ∗(s) of Problem (B) is

θ∗(s) =
{

ω(s), if ω(s) ≥ c0,
c0, if ω(s) < c0,

(28)

where
ω(s) = Le−βsξ(s)−1. (29)

We can give the following result by Theorem 6.

Proposition 1. The optimal investment amount θ∗(s) of Problem (B) is given by (28), where ω(s)
is defined by (29) and ξ(s) is of the form (27).

6. Conclusions

In this article, an MP of a kind of RSCP with delay and HARA utility is derived by
using a dual method and a expanding variable dimension method. Moreover, a sufficient
condition is also obtained under some concavity conditions. A pension fund management
problem is used as an application illustration. The results develop those of [26,34].

We will consider possible extensions to the problem with partial information, mean-
field, etc., in our future works. On the other hand, issues such as financial equations
in quantum finance transformed into Hamiltonian form by variables (e.g., [35]) and its
application for analyzing the phenomena of spontaneous symmetry breaking in Quantum
Finance (e.g., [36]) are also interesting and worthy of study. Research on these problems is
currently under way.
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