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Abstract: The field of edge computing has grown considerably over the past few years, with applica-
tions in artificial intelligence and big data processing, particularly due to its powerful accelerators
offering a large amount of hardware parallelism. As the computing power of the latest edge sys-
tems increases, applications of edge computing are being expanded to areas that have traditionally
required substantially high-performant computing resources such as scientific computing. In this
paper, we review the latest literature and present the current status of research for implementing
high-performance computing (HPC) on edge devices equipped with parallel accelerators, focusing
on software environments including programming models and benchmark methods. We also exam-
ine the applicability of existing approaches and discuss possible improvements necessary towards
realizing HPC on modern edge systems.

Keywords: edge computing; parallel systems; high-performance computing; GPU (Graphics Process-
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1. Introduction

Recently, the high-performance computing (HPC) community has overcome the limit
of exa-scale (1018 floating point double precision operations per second) [1] computing and
is now aiming to reach the next level of zeta-scale (1021 operations per second) computing.
To accomplish this goal, innovative technology developments across the entire stack of
HPC hardware and software environments are imperative in order to squeeze out as much
performance as possible at every level of the stack. In particular, one of the main focuses
is on cloud computing—an infrastructure that can flexibly scale up large-scale processing
units and storage systems [2,3]. Accordingly, research on edge computing that can address
the data bottleneck issue in the cloud environment is also active [4–7].

At the same time, recent edge devices are rapidly becoming powerful, to the extent
that some of their performance manages to reach tens of TOPS (tera operations per sec-
ond), mainly due to the development of parallel hardware architecture that offers a large
amount of parallelism such as the GPU (graphics processing unit) accelerator [8]. Research
on the use of this high-performance edge hardware is now gradually expanding from
artificial intelligence (AI) and big data applications [9,10] to scientific calculations and
simulations [11–14].

However, most of the research on edge systems is limited to applications of AI tech-
nology such as smart agriculture [15,16] or autonomous vehicles [17]. While there are a few
instances of HPC applications of edge devices, they are mainly focused on the hardware
level such as sensors for collecting high-resolution data or networking infrastructure [18]
for transmitting data to the high-performance server. What is lacking is a solid software
environment to effectively realize HPC from the powerful edge systems.

The current time seems to be an early stage of applying modern edge system’s comput-
ing power to implementing scientific applications that require a large amount of computing
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resources. Hence, in the development of HPC on edge devices, it is essential to construct a
software environment optimized for the edge device architecture. In this paper, we review
the current status of edge computing in the context of HPC. Specifically, as illustrated in
Figure 1, we examine the software environment for implementing HPC on the edge device
with hardware accelerators, focusing on programming models and benchmark software
used to develop HPC applications on modern edge systems.

We make the following contributions in this paper.

• We examine the current status of HPC research on edge devices from the software
perspective. Specifically, we review the parallel programming models and benchmark
tools that constitute the HPC environment for accelerator-based edge systems.

• We present potential directions for the software environment that can strengthen the
development of HPC applications on edge. We discuss ideas to improve the models to
program accelerator-based edge devices for better performance. We also consider more
high-level programming models and accompanying benchmark software towards
implementing HPC on edge.

The remainder of this paper is structured as follows. Section 2 reviews different HPC
programming models used for accelerator-based edge systems and discusses performance
issues specific for edge devices. Section 3 describes existing benchmark programs used
in evaluating edge accelerators. Section 4 briefly discusses other research efforts related
to implementing HPC on edge accelerators. Finally, Section 5 summarizes our work and
makes conclusions.

Edge with
Accelerators

Benchmark Tools

Programming Models

Software Environment 
for HPC on Edge

Figure 1. An overview of software environments for HPC on edge.

2. Programming Models for HPC on Edge Accelerators

A programming model is typically a language (or programming interfaces) with its
runtime libraries for programming a computing system. A given computing system can be
just a single compute device, a composite node of different devices, or a group of multiple
compute nodes. Usually, traditional HPC programming models are applied to the edge
computing environment; that is, MPI (Message-Passing Interface) is used for a group of
networked edge nodes (distributed memory), and OpenCL [19] or NVidia CUDA [20] is
used for accelerator-based devices.

In this section, we focus on the HPC models for programming a composite node of
different devices because this type of model is mostly used for the accelerator-based edge
devices, in which the CPU of an edge device acts as the “host” and the accelerator acts as
the “device”. Table 1 is a brief summary of the different programming models considered
in this paper for HPC on edge.

There are other “programming models” in a broader sense. For instance, Li and
Dong [21] propose a programming model that implements runtime code offloading from
the edge server to the client (device) to improve latency and code development produc-
tivity. However, their model is rather an execution model related to code distribution and
execution between the edge server and the device at runtime and has a different orientation
from the accelerator programming model for high performance, which is the subject of
this study.
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Table 1. Comparison of programming models for HPC on edge.

CUDA OpenCL SYCL OpenMP

Level of Expression middle low high high

Supported Architecture NVidia GPUs CPU/GPU/FPGA CPU/GPU/FPGA CPU/GPU

Framework Implementation C/C++/Fortran extension C/C++ extension C++ extension compiler directives

Open or Proprietary proprietary open open open

Major Feature popularity for NVidia GPUs
heterogeneous
system support single-source model ease of programming

2.1. NVidia CUDA

First introduced in 2007, NVIDIA CUDA is a parallel computing platform and pro-
gramming model that allows software developers to use a GPU’s computational power to
accelerate applications. It includes a set of programming tools, libraries, and technologies
that enable developers to write programs that can execute on NVIDIA GPUs to perform
tasks such as scientific simulations, deep learning, and image and video processing. In
support of scientific computing where floating point operations are fundamental, CUDA
has traditionally supported FP32 (single precision) and FP64 (double precision). However,
with the increasing needs for lower precision operations by mostly AI neural network
applications, CUDA version 7.5 started supporting FP16 (half precision), a 16-bit floating
point format standardized in 2008 by the IEEE [22].

Traditionally, in GPU-based high-performance systems, the memory used by the host
CPU and the memory used by the device (GPU) are separated, so the programmer has
to explicitly manage the address spaces of both the host and device to use GPU acceler-
ators. This method of memory allocation and management can be called the traditional
“memcopy” method, and is still largely used through the cudaMalloc and cudaMemcpy APIs
(Application Programming Interfaces) of CUDA.

To address the inconvenience of managing distinct memories of the host and the
device, NVidia CUDA version 6 started supporting the Unified Virtual Memory (UVM),
which integrates two independent memories into one coherent address space. The UVM
has since greatly simplified programming NVidia GPU systems via the cudaMallocManaged
allocation API. However, in SoM (system-on-module) edge devices such as the Jetson series,
one physical memory is typically shared between the host and the device, so there can
be an unnecessary overhead of UVM, because UVM was originally intended for unifying
physically separate memories. This overhead can become significant for those devices
such as Jetson Nano that do not come with NVidia Compute Capability 7.2 or later with
I/O coherency support that avoids CPU cache management operations when the physical
memory is shared with the GPU.

NVidia CUDA offers another memory management method called pinned (or zero-
copy) memory. Through the cudaHostAlloc and cudaHostGetDevicePointer APIs of
this method, the GPU device can directly access the host memory allocated via DMA.
Using this method can improve performance in SoM-based edge devices because the
allocated memory at the host side is located in one physically shared memory. However,
using this method under the UVM involves unnecessary steps of obtaining pointers via
cudaHostGetDevicePointer, which can also incur unnecessary overhead.

There are a few reports about performance comparisons between the different memory
allocation and management schemes of NVidia CUDA. Li et al. [23] presented one of the
initial reports about the UVM performance on physically unified memory of embedded de-
vices. They report a 10% performance loss on average for UVM compared to the traditional
memcopy method on Jetson TK1, due to redundant memory transfers and page faults
between CPU parts and GPU parts of the physically shared 2GB memory when UVM is
used. In [24], the authors provide a similar report that, for a set of benchmark applications
including 2D heat transfer simulation and adaptive numerical integration, the UVM mech-
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anism performs worse by up to 8% than the traditional memcopy method, while the UVM
scheme enables simpler programming. Since their evaluation was performed on NVIDIA
desktop GPUs such as GTX 970 (released in 2015) which has independent memory units
between the host and the device, the evaluation results would not directly translate to the
SoM-based edge devices.

In [25], Choi et al. provide a more recent evaluation of the performance of different
memory management schemes of CUDA (version 9) for the NVidia Jetson TX2 (Pascal
architecture) with a set of common HPC benchmarks such as vector calculation and CFD
(computational fluid dynamics) programs. In contrast to other evaluation efforts, they
examine not only the execution time of benchmark programs but also the amount of used
memory by each memory management scheme during the benchmark runtime. Based on
the experimental results, they conclude that the UVM scheme performs efficiently across
different application benchmarks by avoiding the memory copy overhead. In addition,
applications with good temporal locality can benefit most from the UVM scheme in terms
of memory usage, while the pinned memory can show better execution time depending on
the used applications. There report indicates that more recent versions of CUDA provide
improved performance by taking into account the SoM-based systems. In [26], the authors
provide an in-depth analysis of the UVM system on the high-end Titan V GPU using CUDA
11.2. Their performance analysis includes various components such as data movement,
page faults, and prefetching and emphasizes that data movement contributes relatively
little to the overall cost, in contrast to expectation. Instead, they report that appropriately
managing page faults in UVM is more fundamental to performance. Although their
evaluation is based on a discrete GPU with separate memory, it provides compelling
insights into the performance behavior of the CUDA UVM for edge devices.

Discussions

To fully exploit the architectural features of the NVidia SoM device with the GPU
accelerator, the UVM can be optimized to remove the overhead of UVM’s method of data
movement between the host and device. To actually implement the optimization, the
programmer can first examine the inner workings of the cudaMallocManaged function and
its execution flow along with the device PTX (Parallel Thread eXecution) code, so that the
optimization points can be identified across the execution path of the on-demand page
transfer in the CUDA driver. In addition, the source of NVidia’s previously published GPU
driver module [27,28] can be reviewed for analysis and relevant code can be identified. In a
similar manner, the cudaHostGetDevicePointer function call path for zero-copy operation
can be examined for the further optimization of unnecessary operations between the host
and the device in managing the shared memory.

Lastly, the traditional memcopy scheme can be improved as well. The memory
allocation and transfer model between host and device that has been used since the early
days of NVidia CUDA allocates space separately to each separated memory and transfers
data. Even after UVM was introduced, it continues to be used for CUDA programming,
and there are codes implemented as an early programming model. In SoM-based edge
devices, one memory is shared between hosts and devices, so memory allocation and data
movement in this way incur unnecessary overhead. Hence, there is room for improvements
for the old memory allocation and management scheme by examining the old APIs such as
cudaMalloc, cudaMemcpy, and cudaFree functions to avoid unnecessary overhead in SoM
architecture. For the legacy functions, the NVidia PTX machine code can be analyzed to
check the execution path at the CUDA driver level. Overall, Figure 2 shows the possible
improvements of CUDA with respect to the memory model towards realizing HPC on the
SoM-based edge devices.

2.2. OpenCL

OpenCLTM (Open Computing Language) is an open standard for programming ap-
plications on parallel systems that comprise different types of hardware architectures. It
was first proposed by Apple in 2008, with the goal of creating an open standard for parallel
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programming on heterogeneous devices. The initial proposal was later merged with a simi-
lar proposal from other companies, including AMD, IBM, and Intel, to form the Khronos
Group’s OpenCL working group. The first version of OpenCL was released in 2009, and it
has since been updated several times, with the latest version being OpenCL 3.0. Over the
years, OpenCL has been widely adopted in various fields, such as scientific computing,
computer vision, and machine learning.

Figure 2. UVM (Unified Virtual Memory) optimization of the CUDA model for HPC on edge.

One of the most salient features of OpenCL is its ability to provide functional portabil-
ity, enabling a single codebase to be utilized on a wide range of hardware and architectural
configurations. OpenCL is defined as an extension of the C and C++ programming lan-
guages, and APIs are also provided to orchestrate the execution of programs on the device.

The OpenCL architecture comprises a host system that communicates with one or
more compute devices. Each compute device encompasses one or more compute units, which
are further subdivided into one or more processing elements (PEs) for parallel processing.
As an exemplar, when utilizing an NVidia GPU card in the OpenCL framework, the card
is classified as a compute device, the streaming multiprocessors (SMs) are considered
as compute units, and the CUDA cores are identified as PEs. The fundamental unit of
work within the device is referred to as a work-item, which is mapped to a specific PE.
These work-items are then grouped together to form a workgroup, the size and dimensional-
ity of which are determined by the programmer. The code that specifies the execution of a
work-item on a PE is referred to as a kernel. Hence, when a kernel is launched on a compute
device, it is executed in a concurrent manner across all the PEs within the workgroup,
allowing for seamless parallel processing.

Figure 3 shows a logical view of the memory hierarchy as seen by the conventional
OpenCL program. A compute device possesses a shared memory space, referred to as
global memory, that can be accessed and utilized by all the workgroups operating within
the device. To perform any calculation on a compute device, the (initial) data need to be
moved from the host to the device first. Later, when the computation is done, the final data
on the device need to be moved back from the device to the host. Global memory is the
slowest type of memory in the device.

Each workgroup is equipped with its own private memory space, referred to as local
memory, that is shared among all the PEs within the group and provides faster access
than global memory. Additionally, each thread has its own dedicated storage area, known
as private memory, which is the fastest among all the memory types. Similar to other
programming models for heterogeneous systems, optimizing memory access and effectively
utilizing the memory hierarchy of the memory model in OpenCL is crucial to achieving
optimal performance in an application.

Although OpenCL provides a unified interface for various heterogeneous architectures
such as CPU, GPU, and FPGA, the OpenCL memory model separates host memory and
device memory, making it unsuitable for SoM-based edge devices where a single physical
memory is shared between the host and the compute device. If the OpenCL memory model
is mapped and operated as it is to the SoM-based edge device, the memory model does not
fit well to the device, which can result in unfavorable overhead due to unnecessary data
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movements within the device. For instance, when programming NVidia’s edge devices
such as Jetson using OpenCL, the compiler uses the CUDA runtime as the backend, which
in turn may use a separate address space between the host and the device without taking
advantage of the shared physical memory.

Figure 3. OpenCL memory model [29].

Since version 2.0, the OpenCL specification provides Shared Virtual Memory (SVM) [29]
that allows the device to directly access host-allocated buffers, enabling the host and the
device to share pointer-based data structures in OpenCL kernels. Similar to NVidia CUDA’s
UVM, OpenCL’s SVM mechanism greatly simplifies programming accelerator-based sys-
tems by removing the inconvenience of explicitly specifying memory allocation and data
movement across the host and the device as well as its accompanying overhead. However,
this approach can introduce memory coherency problems between the host and the de-
vice when accessing the same shared memory buffer, thus leading to adverse performance
degradation [30].

As concerns the floating point storage format, OpenCL includes FP16 as an optional
extension in addition to FP32 and FP64 from version 1.0. In terms of the programming
language, OpenCL 2.2 introduced C++ support in 2017 besides C for writing kernel code
for enhanced parallel programming productivity with high-level abstractions when pro-
gramming HPC applications.

Discussions

The OpenCL model may update its specification in the future to consider physically
shared memory between the host and the device, which is common among the SoM-
based edge systems. In the meantime, there can be improvements at the backend for
OpenCL programs running on the SoM-based systems. For instance, memory allocation
and data movement APIs of OpenCL such as clCreateBuffer, clEnqueueWriteBuffer,
and clEnqueueReadBuffer can be translated to avoid redundant data movements within
the shared memory at execution. For NVidia edge devices, the CUDA compiler or the
backed driver can be modified for these OpenCL function calls for optimized operations
in a consistent way. Open source implementations such as PoCL (Portable Computing
Language) [31] can be updated to support the memory hierarchy of the SoM-based edge
systems, such that unnecessary memory allocation and data movements are removed for
these systems.
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2.3. SYCL

NVidia CUDA preemptively implemented accelerator-based high-performance com-
puting based on massively parallel GPU hardware and is currently the most widely used
GPU computing model in the HPC field. However, since CUDA is proprietary NVidia
technology, many heterogeneous architectures cannot use CUDA directly. OpenCL over-
comes these drawbacks and provides a consistent programming model for heterogeneous
architectures, but its low-level API places the burden on programmers to explicitly de-
scribe all system behavior. SYCL, established by the Khronos standards group, provides a
single-source programming model by abstracting OpenCL [32] using the C++17 semantics.
Therefore, SYCL has the potential to become a more programmer-friendly option with its
high-level expressive power.

Burns et al. [33] studied OpenCL and SYCL models for RISC-V architecture, which was
introduced in 2010 but is under active research in edge computing due to its architectural
characteristics for low-power and parallel performance using vectorized instructions [34].
Their work is a joint project with Kyoto University towards an integrated programming
model for RISC-V vector instructions. Kuncham et al. [35] report comparative evaluation
results of the SYCL and CUDA models, showing similar performance behavior on the
NVidia’s high-performance GPU cards such as V100. SYCL has the advantage of widely
supporting heterogeneous architectures, but its performance in edge systems needs to be
confirmed.

Discussions

We expect that the SYCL layer may be implemented on top of an OpenCL backend
that is optimized for the SoM-based edge device. Since an LLVM-based SYCL compiler
source is available [36], we also expect that high-performance applications written in SYCL
can be translated to generate highly optimized code based on an OpenCL backend for edge
devices regarding host side and device side memory allocation along with data movement
operations between them.

2.4. OpenMP

OpenMP [37] is a widely-adopted model for programming shared memory parallel
systems. It supports the C, C++, and Fortran languages with a set of compiler directives
that enable users to specify parallelism in an easy manner for different types of tasks
such as work-sharing, synchronization, and data environment. OpenMP’s directive-based
constructs are simple to use and especially effective for expressing data-parallel algorithms
compared to other programming models. It also provides runtime library routines that can
be used for a variety of purposes in controlling the execution of parallel programs, which
includes setting and querying the number of threads, nested parallelism, and dynamic
thread features.

Traditionally, OpenMP has been used to program multi-CPU or multi-core systems,
where multiple threads are generated and concurrently executed to cooperatively solve
a large computational problem. However, heterogeneous parallel programming with
different types of accelerator processors has become possible with the introduction of
accelerator offloading since OpenMP version 4.0. For example, the programmer can specify
the target GPU device to offload the region of computation by using the omp target and
other supporting directives. Furthermore, OpenMP 5.0 introduced support for unified
shared memory between the accelerator devices and the CPU host in a hybrid system,
which is equivalent to NVidia’s UVM in that the host and the device can access each
other’s memory in a unified address space without explicitly copying data between them.
In OpenMP 5.0, it is also possible to use device-specific function implementations and
override device offloading during runtime, thereby fully supporting accelerator devices.

However, there are only a handful of research works on HPC on edge systems using
the OpenMP model. Chapman et al. [38] adapt the existing OpenMP model to enable
the specification of high-performance applications on embedded systems such as MPSoC
(multi-processor system on a chip). The particular requirements needed for applying
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OpenMP to embedded systems are primarily the ability to express nested parallelism and
the constraints of real-time and resource management. They implement OpenMP with the
requirements and evaluate the implementation on the Texas Instruments TMS320C64x+
multi-core processor. Their work is one of the early efforts in applying the conventional
OpenMP model to high-performant embedded systems. Liang et al. [39] implemented a
mobile programming environment for developing OpenMP applications that can run on
the CPU and the GPU of mobile devices, so that scientific research can be performed with
the ease of mobility of devices such as cell phones. Their work allows one to translate an
OpenMP source code into a combination of a pthread module for the CPU and an OpenCL
kernel for the GPU of the mobile device.

Gayatri et al. [40] investigate the performance portability of OpenMP across differ-
ent architectures of CPUs and GPUs. They implement a material science application in
OpenMP and evaluate the application performance on different CPU architectures includ-
ing IBM Power, Intel Haswell, and Xeon Phi systems, and on different GPU architectures
including NVidia P100 and V100 systems. Their evaluation results show that the GPU
offloading scheme of OpenMP 4.5 shows comparable performance against OpenACC [41],
which is an alternative heterogeneous parallel programming model based on compiler
directives. However, they observe that the same OpenMP code optimized for GPU is
ill-suited for CPU execution, which necessitates a different optimization strategy for CPUs.

Liang et al. [42] use OpenMP to parallelize erasure coding, which is a method of data
protection in storage systems, on the quad-core ARM Cortex-A57 processor of Jetson Nano,
so that the throughput of encoding and decoding operations of erasure coding can fully
exploit the network bandwidth of 5G and Wi-Fi 6, while effectively reducing the latency
for small-sized data at the network edge. Their work can be regarded as one of the few
OpenMP applications where parallelization is performed for the CPU instead of the parallel
accelerators of the modern edge devices.

Discussions

OpenMP has been traditionally used only for programming shared memory systems
with its fork-join style of parallel thread execution, and support for accelerator offloading
introduced in OpenMP 4.0 is relatively new compared to other programming models
such as OpenCL. Therefore, as observed in [40], conventional programming patterns and
optimization techniques for CPU-based systems can be inadequate for maximizing the
accelerator performance. As a result, more in-depth examinations on the performance
behavior of accelerator offloading such as [43] are required for wider adoption of OpenMP
for programming heterogeneous systems. This argument applies to accelerator-based
edge devices as well, where there are many unclear aspects of using OpenMP such as
performance portability.

3. Benchmarks for HPC on Edge Accelerators

In the field of parallel computing, the NPB benchmark [44] suite derived from CFD
simulations has traditionally been used, and reference versions implemented with major
parallel programming models such as MPI and OpenMP have been available for quite a
while [45]. The NPB benchmark originally consisted of five major numerical kernels such
as conjugate gradient (CG) and Fourier Transform (FT), and NPB also offered three pseudo-
applications such as the Lower–Upper symmetric Gauss–Seidel (LU) solver performing
matrix-based operations, which are key tools in computational science. Later, from NPB
3.1, other benchmark components were gradually added such as Data Cube (DC) based on
a data mining application [46]. In addition, there are recent efforts to implement not only
the main NPB kernel but also other numerical solvers using the CUDA and the OpenCL
models for heterogeneous architectures. In this section, we briefly review research works
on benchmarks in the perspectives of HPC on edge.

Varghese et al. classify various benchmark methods for edge systems identifying differ-
ent target systems under test, analysis methods, and benchmark runtimes [47]. According
to the survey, most edge computing benchmarks are centered around AI technology and its
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applications, and traditional methods such as NPB are usual for evaluating edge systems
for HPC applications.

Seo et al. [48] implemented SNU-NPB, an NPB benchmark suite written in OpenCL,
and analyzed its performance. They observe that the performance characteristics of NPB in
OpenCL are quite different from the OpenMP version based on their experimental results,
concluding that optimizations for different OpenCL compute devices are required for better
performance. According to their report, like most other standardized programming models,
OpenCL’s advantage of source level portability across different architectures can harm
performance portability.

Do et al. [49] developed an improved version of SNU-NPB, called SNU-NPB 2019.
In SNU-NPB 2019, they not only rewrite their previous OpenCL version of the NPB but
also provide a CUDA implementation by applying a group of 15 parallelization and opti-
mization techniques for latest GPU architectures. Applied optimization techniques include
loop parallelization, global memory access coalescing, and communication/computation
overlapping. In addition, compared to the previous SNU-NPB, large problem sizes such
as classes D and E are covered, and GPU memory capacity limitations in the previous
implementation have been corrected. As a result, they report order-of-magnitude improve-
ments of SNU-NPB 2019 over the previous version in terms of performance for many NPB
benchmark kernels. Their work evaluates the performance of high-performance GPUs from
NVidia and AMD, and the presented optimization techniques can be useful for optimizing
the NPB benchmarks on edge systems equipped with latest accelerators.

In [50], the authors apply NVidia CUDA to implement the NPB benchmark kernels
and pseudo-applications and report up to 267% performance improvements compared
to SNU-NPB 2019 for a few NPB components on high-end GPU systems such as NVidia
Titan X and V100 Volta. Although the authors adopted a large amount of the optimization
techniques presented by SNU-NPB 2019 in implementing their CUDA C++ version of
the NPB benchmark, they rewrote the main computations to allow a higher degree of
parallelism and simplify the instruction flow for better performance. In addition, their
implementation provides parametrization support for configuring the number of threads
per CUDA block, which can be useful in terms of programming flexibility. Still, whether
similar performance improvements can be observed for GPU-based edge systems as well
as high-end GPU systems needs careful examination.

Kang and Lim [51] evaluate GPU accelerator-based edge systems from the perspective
of HPC applications. Although the performance of the edge device itself is slow, they
observe that the performance of a small cluster of networked edge devices can be better than
a multi-core CPU in terms of the price–performance ratio. Their evaluation report can be
a useful hint that the vertical optimization of memory hierarchy is necessary to improve
performance for SoM-based systems. Table 2 summarizes research works related to the
NPB benchmarks for HPC on the edge environments.

Discussions

Although there are standard benchmark tools such as NPB for parallel systems, the
programming models used to implement the benchmarks are targeted to traditional HPC
systems. These HPC systems have a different memory hierarchy than major edge systems
that are usually organized in the SoM form factor where a single physical memory is shared
between the CPU and the accelerator. Hence, it is unclear if these benchmark tools can
accurately measure the edge system’s performance. In addition, there is a growing demand
for standard benchmarks written in a high-level programming model for heterogeneous
systems including the edge devices. Hence, a benchmark suite written in the SYCL model
will be highly beneficial to the community due to its highly expressive power with a single
source that can cover a wide variety of different hardware architectures, including the
accelerator-based edge systems. Furthermore, an OpenCL or a CUDA backend optimized
for edge devices can be supported with the SYCL APIs. Altogether, the standard NPB
benchmark suite constructed with a high-performant backend will be greatly favorable for
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evaluating latest versions of edge accelerators from various perspectives, such as memory
random access, inter-thread communication, and massive parallelism.

Table 2. Summary of NPB Benchmark Research for HPC on Edge.

Research Model Year Benchmark Target Major Contributions

Seo [48] OpenCL 2011 High-end GPUs
• Implements NPB in CUDA C
• Observes OpenCL’s source-level portability harms perfor-

mance portability

Do [49] OpenCL & CUDA 2019 High-end GPUs
• Implements NPB in CUDA C & OpenCL
• Presents 15 parallelization and optimization techniques

for GPU

Kang [51] CUDA 2020 Edge GPUs
• Applies NPB to evaluate edge GPU
• Observes edge cluster can be effective for HPC in price-

performance perspective

Arajuo [50] CUDA 2021 High-end GPUs
• Implements NPB in CUDA C++
• Defines design principles for programming GPU applica-

tions in HPC

4. Other Research Works Related to HPC on Edge

In this section, we briefly review a few other research works for constructing the
software environment towards HPC on edge. In [14], floating point representation is
studied to implement scientific calculations requiring high precision in an edge system.
The posit type allows the system to offer more precision and a greater dynamic range with
a given number of bits compared to the popular IEEE-754 standard. However, it must be
supported by the hardware for widespread adoption, and it is yet unclear when major edge
system vendors will provide support for the posit number system. In [52], the authors
implement a dense matrix multiplication operation in VPU (Vision Processing Unit) on
Intel’s edge system. Although matrix calculations are common in HPC applications, their
work is focused on AI applications using neural network computations.

Cecilia et al. [13] evaluate the performance behavior of an edge system compared to an
HPC desktop system by executing computationally intensive applications such as clustering
algorithms. They evaluate an Nvidia’s AGX Xavier device and report a significant amount
of energy savings up to 150% compared to the HPC system, although it performs 11×
slower. Their work shows that edge systems can be useful for some computationally heavy
workloads depending on applications.

5. Summary and Conclusions

As the HPC community is striving for innovative technology that can achieve extreme
performance for the entire system stack to realize a zeta-scale HPC environment, edge
systems at the cloud environment have great potential in HPC applications due to the
accelerators offering a substantial amount of parallelism. In this study, we considered the
relevant literature dealing with implementing HPC on the edge platforms, focusing on
the programming models and benchmark applications that constitute the software devel-
opment environments. Major studies on edge computing from the perspective of HPC
applications can be summarized as follows. Low-power, high-performance architectures
such as GPUs and RISC-V processors are under active research and development, but
research on software environments such as programming models, benchmark tools for eval-
uation, and compiler techniques for performance optimization is still in its nascent stage.

We also discussed how existing HPC programming models can be improved further
for better performance. The programming model for accelerator-based edge systems is sig-
nificant for optimized performance. However, traditional HPC methods are being applied
to the edge systems without fully considering the different architectural characteristics of
the major edge systems. Most of all, careful consideration of the memory model is essential
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for programming models to achieve highly optimized performance from the state-of-the-art
edge systems.

Recently, support from cloud companies is strengthening to provide high-performance,
low-latency edge services such as AWS for the Edge [53] and Azure Edge Zone [54] at
the enterprise level. These changes suggest that novel computing environments are being
established in which applications of edge systems, which have been somewhat limited to
the AI and big data processing areas, are being expanded. We expect that HPC applications
based on edge platforms will be provided as cloud services in the foreseeable future, for
which support for adequate programming environments for edge devices is crucial for
high performance.
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