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Abstract: True random key generator (TRNG) architectures play a notable role in strengthening
information security infrastructure. The development of new entropy sources based on reconfigurable
hardware is always in demand, especially for the integrity of devices in IoT applications. TRNGs
can be adopted for generating unique device IDs that form the data network in the IoT. A ring
oscillator (RO) is an efficient entropy source which can be implemented on FPGAs or realised as
ASIC hardware. This work proposes a non-identical RO array as an entropy source. The TRNG
architecture, based on an increasing odd number of inverters per ring, was extensively studied. The
various statistical and hardware analyses provided encouraging results for this reliable entropy unit.
The suggested device-independent non-identical RO structure was implemented on five different
types of FPGA hardware belonging to the Xilinx and Intel families, consuming 13 registers and
nearly 15 combinational functions. This TRNG achieved a throughput of 3.5 Mbps. While the
emergence of the Gaussian response evaluated true randomness, the NIST 800-90B and NIST 800-22
tests yielded good results in terms of the justification of randomness evolving from the proposed
TRNG architecture.

Keywords: TRNG; jitters; FPGA; RO; cryptography
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1. Introduction

There is an increasing trend towards the IoT in many applications that are automation-
centric. The IoT introduced the interconnectivity of threats because of its heterogeneity.
Hence, it is essential to safeguard the data acquired or processed by one node from the
other nodes. Cryptographic primitives play a large role in data confidentiality, requiring a
key generation module to function. The key generation module must be an independent
module which generates random numbers for the cryptographic operations [1,2]. This
architecture can be utilised along with a data-logging unit and other data processing units
for multiple operations, namely one-time pad generation, dynamic IP address generation,
session key generation, nonce generation and initialization vector generation for secure
communication between devices [3,4]. True random number generators (TRNGs) are
crucial components for key generation because of their vast unpredictability [5]. Hence,
this work focused on developing a TRNG architecture based on a ring oscillator structure
on a reconfigurable hardware platform for continuously producing n-bit non-reversible
random numbers. The initial studies have produced good statistical results with limited
resource utilisation, ensuring the lightweight property required by resource-constrained
IoT devices. Noticeably, any FPGA architecture can include this architecture, making it
device-independent.
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In general, RNGs can be classified into two types, namely, pseudo-random number
generators (PRNGs) and true random number generators (TRNGs) [6–8]. However, because
of the merits of TRNGs in terms of unpredictability, they have been preferred over PRNG
in many more cases including, but not restricted to, cryptographic key generation, nonce
generation, one-time pads, random simulations, gaming, test pattern generators and device
authentication [9,10].

The National Institute of Standards and Technology (NIST) has released a standard
called NIST SP 800-90B, which comprises the design principles for every TRNG source. Ac-
cording to this compilation, any TRNG must have a noise source, a harvesting mechanism
and post-processing units to generate true random bits. In addition, the conditioning circuit
can optionally be used for processing the results of the TRNG. It may reduce or enhance
the randomness of the obtained bits based on the conditioning operation used [11].

TRNGs incorporate live noise sources, the response of which changes continuously
over time. FPGAs are the most widely preferred choice among all the hardware options for
the development of TRNGs because of their algorithms’ upgradability, agility, reconfigura-
bility, easy prototyping and faster time to market [12]. FPGA-based TRNG implementations
have attracted researchers to develop novel TRNGs. Clock jitters are the supreme source of
randomness extraction for TRNGs in FPGAs, where the tiny aberration in the oscillation
frequency has attracted considerable attention. Jitters are a live phenomenon in which the
edges of the clock deviate from their ideal position. Hence, they can be used as a source of
randomness in TRNGs [13].

This work aimed to generate true random bits by adopting a novel entropy source,
namely a non-identical inverter-based ring oscillator (RO) structure. The focus, highlights
and verification methodologies are listed below:

1. A non-identical entropy source was designed with ROs;
2. Lightweight post-processing of the XOR corrector was used for the extraction of

the randomness;
3. The design consumed only 80 inverters to accomplish random number generation;
4. The device’s independence from the proposed TRNG design was verified by imple-

menting it on two different vendors of FPGAs, namely Intel and Xilinx-AMD.

Different analyses were carried out, such as Gaussian jitters estimation, Hamming
distance, equidistribution, hardware utility and timing analysis. From the observations,
the following results have been found:

1. Evidence of Gaussian jitter has been found through Keysight Logic Analyzer, and the
standard deviation of the jitter is calculated as 24.010 ns;

2. An equidistribution of 0.99999 is achieved without any post-processing;
3. The TRNG design consumed only 15 LUTs and 13 registers to accommodate the

TRNG on Intel FPGAs, which is <1% of its total hardware footprint;
4. 296 ms was taken for the TRNG to generate 10,48,576 bits with the 25 MHz of the

sampling clock;
5. Validation of the true randomness was carried out through batteries of NIST SP

800-90B and -22 tests;
6. The proposed TRNG design does not require any post-processing mechanism to

enhance the randomness.

The proposed work was verified by passing standard test suites such as NIST SP
800-90B and NIST SP 800-22. Also, a minimum of 64-bit change was identified in Hamming
distance calculation, ensuring the minimum switching activity for an RNG. Furthermore,
the Restart experiment was conducted to verify the true randomness of the proposed TRNG.

2. Related Work

Many TRNG architectures have been realised on reconfigurable hardware platforms.
Fischer and Drutarovsky proposed one such work, wherein the TRNG uses an on-chip
analogue phase-locked loop (PLL) on Altera APEX EP20K200-2X FPLDs. This method
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utilises intrinsic randomness from the jitters generated by the on-chip PLLs. An XOR
decimator was used in this work to extract the randomness. This design consumed 121 logic
cells and four embedded system blocks to generate 8 × 1024 true random bits. NIST tests
have been performed to test the statistical properties of TRNGs [14]. Dejun and Zhen
suggested another work based on a PLL, which extracted the true randomness from the
embedded analogue PLL. The proposed TRNG design was implemented on an APEX
EP20K200-2X device occupying 150 logic elements [15].

Johnson et al. recommended an approach for a TRNG only for Xilinx FPGAs using
beat frequency detection from digital clock managers (DCM) as a source of randomness.
Tenability was achieved on the fly through dynamic partial reconfiguration of the TRNG
on a Xilinx Virtex-V FPGA. This design used 19 LUTs and 34 global buffers, and consumed
1.470 W of power to accommodate the TRNG [16]. Unfortunately, though TRNGs, as
mentioned earlier, have excellent statistical properties, they are device-dependent because
of their on-chip utilisation of the unique components on FPGAs, making them unsuitable
for other families of FPGA.

To make the TRNG design a generic one, ROs can be adopted. An RO can be con-
structed from a series of inverters connected via feedback to form an oscillator, which
generates the required frequency with jitters. Kohlbrenner and Gaj introduced an RO-based
TRNG with identical lengths of inverter chains in which the frequencies were relatively
the same. Therefore, the deviations caused by the placement of ROs play an important
role in exploiting jitters. This TRNG scheme was implemented on a Xilinx XCV1000 FPGA,
which utilised one configurable logic block (CLB) with self-testing capability. It achieved a
throughput of 0.5 Mbps with excellent statistical characteristics that were verified through
Gaussian analysis and the NIST test suite [17].

To the best of our knowledge, the very first multi-event RO-based TRNG was proposed
by Sunar et al. [18]. They proposed a mathematical model of an RO-based TRNG wherein
the phase jitters produced by the ROs were taken as the origin of true randomness. This
TRNG architecture encompassed four parts: the oscillator rings, the XOR tree, the sampler,
and a resilient function as the post-processor. It deployed the XOR tree with a D flip-flop
and simple resilient functions. The “coupon collector” problem was discussed in this
work, in which the TRNG’s design was driven through an identical inverter ring. The true
random bits were produced at a speed of 2.5 Mbps, with a maximum achievable entropy of
0.97 [18]. Further, Schellekens et al. performed a continuation of Sunar et al.’s work on a
Xilinx Virtex XC2VP30 FPGA where the TRNG’s design required 1664 slices. The TRNG
proposed in [13] was modified with 210 rings which consumed 973 slices, and this design
yielded a speed of more than 2 Mbps with a 40 MHz sampling frequency [19].

Jessa and Matuszewkski prescribed an RO-based TRNG in which the combined in-
dependent jitters were the entropy source. A desynchronisation technique (an XOR tree)
was adopted to harvest the true randomness from the independent entropy sources. The
enhancement of the entropy was accomplished using an auxiliary source of randomness
(ASR) with ROs. A Xilinx Virtex–5 FPGA was the target platform for implementing this
TRNG, with which the random bits were acquired for different sampling frequencies, such
as 100, 150, 200 and 250 MHz. The maximum throughput achieved by this TRNG was
20 Mbps [20]. To enable this work to obtain better statistical properties, an additional
delay path was included with an RO-based combined TRNG. Carry4 logic (a carry chain
primitive) in the Virtex-5 FPGA was used to improve the design. The Carry4 primitive
belongs to the Virtex-5 FPGA, which shows the device-dependent nature of the proposed
work. However, it strengthened the TRNG’s design by offering resistance against fre-
quency injection attacks. NIST tests and restart experiments were conducted for this TRNG
designed with 50 rings, achieving a maximum throughput of 12.5 Mbps at an operating
sampling frequency of 100 MHz [21].

Furthermore, Łoza and Matuszewski presented an RO-governed TRNG architecture
with SHA–256 as a post-processing schema. This method was free from biasing issues
and correlation between adjacent bits. In this work, an eight-stage RO was developed
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and implemented on a Xilinx Virtex–5 FPGA device to experiment with and evaluate the
architecture. The design occupied 2540 slice registers and 2467 slice LUTs. This design’s
maximum frequency was 263 MHz, achieving a throughput of 36 Mbps [22].

Wold and Chik improved the RO TRNG proposed by Sunar et al. [15], using an
Altera Cyclone II FPGA and applying a 100 MHz frequency to achieve a throughput of
100 Mbps [23]. A D flip-flop was also added at each output stage of the ROs, through which
the high transition effects of the RO and the metastability induced in the D flip-flop were
controlled. In this work, two different modalities of TRNGs were constructed. The first
one had 25 rings of ROs that occupied 83 logic elements, and the second one had 50 rings
of ROs which occupied 167 logic elements. True randomness was confirmed through a
restart experiment.

Recently, a few studies of TRNGs on different implementation platforms other than
FPGAs have been reported [24–26]. One such work was caried out by Fazili et al., namely,
the quantum dot cellular automata (QCA). This work combined feedback and feed-forward
D flip-flops in a certain arrangement, which consumed 25 cells on the QCA platform.
NIST SP 800-22 batteries of tests were performed to validate the design. However, the
true core randomness was not evaluated with min entropy, which is a primary concern of
TRNGs. Moreover, this QCA was a simulation, which is likely to be different from real-time
implementations. Moreover, the speed of the TRNG was not discussed [24]. Morsali et al.
proposed a TRNG governed by spin transfer torque magnetic tunnel junction (STT-MTJ)
technology. A simulation was carried out and it showed that this proposed TRNG had
good stochastic properties that were verified by the NIST test suite. Moreover, this TRNG
had a low power consumption rate of 53% compared with the earlier works reported [24].

Saranya et al. carried out research on a programmable delay line (PDL) inverter-based
TRNG, focusing only on synthesis rather than true random acquisition in real time [26].
Dong et al. proposed an application-specific integrated circuit (ASIC) type of TRNG,
which used the Bernoulli map with a reduced operational amplifier stage. The standard of
180 nm was adopted for the experiment, in which the TRNG design achieved a speed of
500 kbps with 4.68 µW of power consumption. Furthermore, the randomness was validated
using NIST SP 800-22 tests. However, the raw true random bits were not evaluated with
min-entropy estimations [27]. Teh et al. presented a hyperchaos-based post-processor
for software-based TRNGs, improving the randomness. Hyperchaos can be used as a
driver circuit to obtain the chaotic parameters from the quantised bits of software-based
TRNGs. Hence, the TRNG’s bits were driven to boost their randomness [28]. Seranao et al.
proposed a multimodal RO-based TRNG which uses the collapsed natured on multimodal
to generate high-quality true random bits. This TRNG was implemented on Xilinx Artix-7
FPGA in which the design occupies <1% of the total hardware and yields 9.1 Mbps as
throughput. True randomness was evaluated through NIST batteries of tests [29].

Though the works mentioned earlier illustrated different TRNG structures, the RO-
based TRNGs have been preferred because of their ability for hardware realisation, porta-
bility and feasibility. Moreover, FPGAs are a fruitful and immediate platform for easy
prototyping that is very near to the ASIC implementations.

So far, ROs with identical structure have played an immense role in the entropy sources
of TRNGs. However, though the TRNGs [30–44] offer agreeable statistical properties, the
designs consume a large number of hardware resources with reduced throughput, which
may not make them suitable as part of time-critical cryptographic architectures. In this
work, we propose a non-identical structure of RO as a new entropy element which was
verified and validated through standard metrics, including the NIST SP 800-90B battery
of tests. Furthermore, this structure consumed only 80 inverters and fewer hardware
resources. Finally, its device-independent nature was verified by implementing the design
on different FPGA configurations. The cumulative limitations of the works are listed in
Table 1.
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Table 1. TRNGs and its limitations.

References TRNG Source Limitations

Refs. [14,15] Phase Locked Loop Device-dependent; synchronization of jitter clocks is difficult; low throughput

Ref. [17] Identical Ring Oscillator Frequencies were relatively the same; the placement of ROs plays an essential
role in exploiting jitters; low throughput

Ref. [19] Identical Ring Oscillator Suffers from coupon collector problem; frequencies were relatively the same;
low throughput

Ref. [21] Identical Ring Oscillator + Carry4 Chain Logic Device dependent; more rings of ring oscillators were used
Ref. [22] Identical Ring Oscillator + SHA 256 Consumes high volume hardware footprint

This article is structured as follows. Section 3 deals with the architecture of the
proposed TRNG. Next, the experimental results are presented in Section 4 and the proposed
TRNG is compared with the existing TRNGs. Finally, Section 5 summarises the work and
gives future research directions in line with the proposed work.

3. Proposed Architecture

The architecture presented here was inspired by the TRNG design proposed by
Sunar et al. [18]. Although this work adopted the same concept of utilising clock jitters, the
true randomness was extracted by ROs with a non-identical structure. A pictorial represen-
tation of the proposed architecture is shown in Figure 1. It comprises four major blocks: a
noise source, randomness extraction, post-processing and a health test. Additionally, the
conditioning circuit is preferred for enhancing the randomness.
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The jitters were generated by the ROs, after which they were fused with one another
by the XOR operation to harvest the true randomness. Next, post-processing was applied
to the extracted bits to remove the bias in the random sequence. Finally, sampling was
carried out to generate the raw true random numbers. Conditioning and a health test were
also applied to strengthen the process of true random number generation.

3.1. Source of Entropy

ROs were the source of entropy through which the jitters emanating from the toggling
of the clock were generated. This work utilised an RO-based entropy source with a non-
identical structure. A structure comprising 8 ROs with 80 inverters was constructed to form
an entropy source, as shown in Figure 2.
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As per the theoretical understanding, an RO can be described as a free-running
oscillator with an odd number of inverters. In an RO, each inverter propagates the rising
and falling edges of the generated clock signal in consecutive half-periods. The half-period
of clock q, generated by an RO with 3 inverters, can be expressed as

Hq =
r

∑
p=1

dpq, (1)

where r = {3, 5, 7, . . . , n} denotes the number of delay elements and dpq is the individual
delay of the p-th gate (the delay element). According to the theory of jitters in FPGAs, the
origin of the jitters can be defined as

dpq = Dp + ∆dpq
= Dp + ∆dLpq + ∆dGpq

(2)

In Equation (2), Dp represents the constant delay of the p-th gate, where ∆dLpq is
referred to as a variation in the delay caused by the local source, and ∆dGpq is the variation
in the delay caused by the common global source. Hence, the local variation is given by

∆dLpq = ∆dLGpq + ∆dLDpq, (3)

where ∆dLGpq is the Gaussian jitter from an independent local source, and ∆dLDpq is the
local deterministic jitter emerging from the crosstalk. Hence, the global variation of RO in
the FPGA can be expressed as

∆dGpq = Φp (∆D + ∆dGGq + ∆dGDq), (4)

where ∆D denotes the variations in the delay that arise from variations in the temperature
and/or supply voltage, ∆dGGq is the Gaussian noise of the power supply, ∆dGDq describes
the global deterministic jitter from high-speed variations in the supply voltage, and Φp
is the global jitter coefficient. Since the Gaussian jitter from each independent element
forms the source of true randomness, other jitter phenomena are ignored for assessments
of the TRNG’s entropy. In addition, ∆dGDq plays an important role in this case, since it
can be controlled or manipulated by the environment, which disrupts the performance of
the TRNG. The amount of the RO’s clock jitter can be calculated as follows:

∆dp = ∆dLGq + Φp∆dGD. (5)

Hence, the jitter from the FPGA is a combination of the local Gaussian jitter and the
global deterministic jitter of each RO. The generated jitters are accumulated to yield the
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cumulative entropy. Thus, jitter extraction is a vital part of the TRNG, and can be derived
using Equations (1) and (3), and the RO’s half-period can be expressed as

H =
r
∑

p=1
(D p+∆dLGp+Φp ∆dGD)

=
r
∑

p=1
(D p+∆HLGaccum+∆HGDaccum)

(6)

where ∆HLGaccum is the local Gaussian jitter with the probability distribution N (0, σ2accum)
accumulated in one half-period H in r gates of the RO.

3.2. Extraction of Randomness

In this work, the XOR structure was adopted for extracting the true randomness
from the entropy source. Let L1, L2, . . . , L8 be the jitter clocks from the non-identical
RO entropy source. A lightweight logical operation is sufficient to create a diffused bit of
individual jitter from the ROs. Hence, f(L1, L2, . . . L8) = L1 (*) L2 (*) . . . . . . (*) L8, where
(*) may be logical operations such as AND(&), OR(|), NAND(~&), NOR(~|), XOR(ˆ),
XNOR(~ˆ), etc. Because of its functionalities and utility in RNGs, the XOR function was
adopted for harvesting the true randomness owing to its complete dependence on the logic
levels of all the latches.

Let the local Gaussian jitter of Ring 1 (R1) be (∆dLG1p1 + ∆dLG1p2 + ∆dLG1p3),
where R1 has three inverters. Since the extraction of randomness happens for any of
the edges of the operational clock, three half-periods of the R1 were considered for jitter
accumulation. Similarly, for R2 with five inverters, the accumulation of the local Gaussian
jitters will be (∆dLG2p1 + ∆dLG2p2 + ∆dLG2p3 + ∆dLG2p4 + ∆dLG2p5). This jitter
accumulation will be continued for the remaining rings of the entropy source. By applying
the XOR (*) diffusion on the entropy source, the randomness extraction function can be
modelled as

JEntropy = R1(∆dLG1p) * R2(∆dLG2p) * R3(∆dLG3p) * R4(∆dLG4p) * R5(∆dLG5p) * R6(∆dLG6p) *
R7(∆dLG7p) * R8(∆dLG8p).

(7)

The output of the extraction process produces true random sequences. However,
TRNGs have more unpredictability and poor randomness because of their unbounded
physical variations. In this work, jitters were caused by variations in delays of the hardware
modules of the FPGAs. These asymmetric delays introduced bias in the random sequence,
resulting in the non-equidistribution of the bits’ levels. This phenomenon achieved poor
data randomness, which required proper post-processing mechanisms to be used.

3.3. Post-Processing

The Von Neumann corrector (VNC) is a simple and lightweight post-processor sug-
gested by NIST 800-90B [11]. It is a well-known compression function performing de-
biasing operations for generating true random sequences. This method operates on raw
true random sequences and converts them to unbiased or equally distributed random
sequences. The corrector processes the given stream of bits as a stream of non-overlapping
pairs of consecutive bits, and generates a single bit for every pair based on the follow-
ing conditions:

If the input is “00” or “11”, then the corrector discards it (no output bit will be produced);
If the input is “01” or “10”, then the corrector provides “0” or “1”, respectively.
Similarly to the VNC, many correctors, such as XOR, linear codes, etc., have been

suggested by NIST 800-90B. However, only the VNC produces bit sequences with zero bias
among all the other correctors. To prove this, let us consider j to be the bias of input bit X.

Hence, P (X = 0) = (1/2) + j and P (X = 1) = (1/2) − j.
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For a given output bit K,

P(“01”)
P(“01”or“10”) = (1/2 − j)(1/2+ j)

(1/2+ j)(1/2 − j) + (1/2 − j)(1/2+ j)(
1/2 − j)(1/2+ j

)
= 1

2

(8)

Thus, we can prove that the VNC produces an output with zero bias. However, it is
essential to monitor the activities of the TRNG in the case of environmental disturbances
and failures of functionality. To achieve this, a health test has to be deployed in the TRNG
architecture as an inbuilt function, through which the status of the TRNG can be checked
periodically. In this work, the NIST 800-90B and FIPS-approved repetition count test were
incorporated as health tests. This instantaneously detects the fatal failure caused by the
entropy source, which can make the generator become stuck on one single output for a
long period. It also generates an alert whenever the entropy source is disturbed.

As an experiment, a conditioning circuit was utilised in this work to compare the effects
of the statistical properties between the raw and conditioned true random sequences [32].
According to NIST 800-90B, a conditioning circuit is an optional unit which can be used
whenever the statistical properties of a TRNG need to be improved. Here, the AES–128-bit
ciphering algorithm was utilised for conditioning the raw true random bits. AES undergoes
10 operation rounds with sub-bytes, ShiftRows, MixColumns and AddRoundKeys, along
with a key expansion process [33]. This AES–128 encryption process implemented on
FPGAs required 300 nS to process 128 bits of a raw random sequence.

4. Characterisation and Results

The proposed TRNG architecture was designed using VHDL and implemented on
a Cyclone IV E FPGA using the Quartus 13.0 EDA tool. This entropy source has an
architecture that makes it generic enough to be implemented on any category of FPGA.
To test its generic characteristics, the proposed entropy source was implemented on two
different FPGA vendors of various families, namely the Cyclone II EP2C35F672C6, the
Cyclone IV E EP4CE115F29CN, the Stratix III EP3SL340H1152C3 from Intel Altera, and
Artix 7 7a100tcsg324-3 and ZYNQ 7z020clg484-1 from Xilinx. Similar results were obtained
by all the implementations, demonstrating the structure’s independent nature. Furthermore,
the true randomness of the proposed design was evaluated through a restart experiment
and the NIST 800-90B entropy estimation tool, and the hardware resources were considered
to estimate the performance of the TRNG.

4.1. Evaluation of True Randomness

The quality of the TRNG was evaluated in terms of its randomness and statistical
properties. Following the standard practices in the field, the initial test on randomness was
to analyse the presence of Gaussian jitters [32]. To show the presence of Gaussian jitters
in the output of the TRNG, the random sequences were analysed by Gaussian analysis
through the Keysight digital oscilloscope. For this analysis, approximately 32,000 samples
were captured from the TRNG’s output. The distribution of the random samples had a
standard deviation of 24.010 nS and exhibited a normal distribution in the jitter analysis
depicted in Figure 3. According to the results, it can be inferred that the presence of
Gaussian jitter is visible.
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(i) Restart experiment

Restart experiments are a primary analysis to differentiate between true randomness
and pseudo-randomness. The randomness exhibited by the pseudo-random sequences will
generally be the same for every iteration until the initial condition and/or seed is changed.
On the contrary, in the case of a truly random sequence, the amount of randomness will be
continuously varied for every iteration, indicating true randomness. This work conducted a
restart experiment, following the procedures adopted by Wold and Tan [23], and Dichtl and
Golić [34]. This experiment was carried out 100 times by analysing the first 100 random bits
of the TRNG. As a result, the bits’ distribution pattern was different when we compared
one sequence with another. Figure 4 shows the results of the restart experiment for five
iterations, through which the true randomness of the proposed work was confirmed.
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(ii) Calculation of the Hamming Distance (HD)

The Hamming distance is another metric used to confirm the true randomness, which
examines the zero-to-one transitions between two consecutive real random numbers. It
was carried out for the 128-bit TRNG, as per the procedures given in [35]. The results are
presented in Figure 5.

In Figure 5, it can be seen that the Hamming distance of the true random numbers
had random variations. In addition, the HD of the post-processed bits was comparatively
higher than that of the raw bits, thus illustrating the increase in randomness.
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4.2. Evaluation of the Statistical Properties

Every random sequence should possess three basic properties:

(i) It must have an equal distribution of 0 s and 1 s;
(ii) It must be unpredictable;
(iii) It should not produce any pattern.

Equidistribution and NIST 800-90B entropy estimation analyses were performed to
analyse these properties.

(i) Equidistribution analysis

Equidistribution is a metric of randomness. It describes the probability of the equidis-
tribution of 0 s and 1 s within random sequences. It is a test that confirms the equal
probability of distribution, which can then lead to further exploration of the TRNG’s statis-
tics. For example, for a strong random number generator, the probabilities of the occurrence
of 0 s and 1 s must ideally be equal to 0.5. This analysis was conducted to analyse the
equidistribution property, and the results are presented in Table 2.

Table 2. Equidistribution analysis.

TRNG
Datasets

Probability of Raw True Random Bits Probability of Conditioned True Random Bits

Ones Zeros Total Ones Zeros Total

Set 1 0.500702 0.4999298 0.999999 0.499504 0.500496 0.999999

Set 2 0.499245 0.500755 0.999998 0.498688 0.501312 0.999995

Set 3 0.501144 0.498856 0.999996 0.500626 0.499374 0.999999

Set 4 0.498268 0.501732 0.999991 0.496803 0.503197 0.999971

Set 5 0.500793 0.499207 0.999998 0.497917 0.502083 0.999987

Set 6 0.500122 0.499878 1 0.499634 0.500366 1

Set 7 0.504341 0.495659 0.999946 0.499069 0.500931 0.999998

Set 8 0.499725 0.500275 1 0.500534 0.499466 0.999999

Set 9 0.501877 0.498123 0.999999 0.499321 0.500679 0.999999

Set 10 0.501282 0.498718 0.999995 0.499603 0.500397 1
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Here, 100 iterations of 107 bits were generated for performing this test, and 10 sets
of results are presented in Table 1. According to this table, the proposed TRNG yielded
average values of 0.9999922 for the raw true random bits and 0.9999947 for the conditioned
true random bits, which are close to the ideal value.

(ii) NIST 800-90B: min-entropy estimation

NIST has released a test suite for estimating the entropy of true random number
generators. NIST 800-90B estimates the entropy in two ways: independent and identi-
cally distributed (IID) and non-IID [11]. Whenever the TRNG generates output from an
independent source, IID estimation is adopted, whereas non-IID estimation is preferred
when the TRNG is dependent. In this work, we performed non-IID estimation for the raw
and conditioned true random bits. The aim and focus of the test suite are presented in
Table 3. Tables 4–6 present the min-entropy estimation of 10 consecutive samples containing
107 bits.

According to Equation (5), the proposed RO entropy source has two components pf
jitter: local Gaussian jitter and global deterministic jitter, for every half-period of the clock.
Since the clock’s jitters are the source of the TRNG, true randomness is the combination of
the local Gaussian and global deterministic jitters. Moreover, the local Gaussian jitter is an
independent phenomenon involving the inverters, whereas the global deterministic jitter
depends on the power supply. Hence, the entropy source is the cumulative sum of both
types of jitter and falls into the category of non-IID.

Table 3. List of NIST SP 800-90B estimators and their explanations [11].

Estimation Methods Theme of Estimation Test Definition

Entropic
statistic

estimates

Most common value Number of
occurrences

Works based on the frequency of the most common values
in the dataset

Collision Repeatability checking Counts the number of successive samples until a
duplicate is found

Markov Dependency checking
Finds the probability of samples in which the next sample
depends on the latest observed sample’s value (first-order
Markov model)

Compression Redundancy checking Computes the redundancy rate of a dataset based on how
much the dataset can be compressed

Tuple
estimates

T-Tuple Pattern
recognition

An extension of the most common value test. Examines
the frequency of t–tuples (pairs, triples, etc.) in the
input dataset

LRS Longest run checking T-tuples with a large size. It should not be ≥35

Predictor
estimates

MultiMCW
Prediction

Prediction of the next
values from the observed

values. It has
sub-predictors

Includes a sliding window to record the t most recently
observed samples. It predicts the subsequent output
based on the most common value in the window. The
window size should be 63, 255, 1023 or 4095

Lag prediction Detect the correlation and prediction value.

MultiMMC
Prediction

Records the occurrences of transitions from a pattern with
a fixed length to the subsequent output and predicts the
most frequently observed transition from the
current outputs

LZ78Y Prediction
Keeps a dictionary to record the tuples that have appeared
in the previous outputs. It is based on the LZ78Y
algorithm, and the dictionary has a fixed size of 65,536



Mathematics 2023, 11, 1049 12 of 18

Table 4. Entropy rate of the raw true random bits.

Estimation Methods Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Entropic
statistic

estimates

Most common
value 0.776303 0.772829 0.774081 0.774165 0.773862

Collision 0.582513 0.576817 0.573787 0.575271 0.576649
Markov 0.680329 0.677495 0.677831 0.678172 0.680321

Compression 0.43252 0.428203 0.428726 0.429465 0.428224

Tuple
estimates

T-tuple 0.518165 0.503875 0.505944 0.507008 0.503875
LRS 0.60223 0.618924 0.610076 0.612304 0.609408

Predictor
estimates

MultiMCW
prediction 0.776393 0.773231 0.774735 0.774728 0.77422

Lag prediction 0.646158 0.74279 0.74279 0.580808 0.72061
MultiMMC
prediction 0.599104 0.611752 0.610858 0.614122 0.611521

LZ78Y prediction 0.776305 0.772844 0.774106 0.774192 0.773948

Estimation Methods Sample 6 Sample 7 Sample 8 Sample 9 Sample 10

Entropic
statistic

estimates

Most common
value 0.773692 0.774377 0.77433 0.773578 0.773112

Collision 0.576271 0.578065 0.577006 0.572076 0.577741
Markov 0.678259 0.678628 0.679594 0.676664 0.678986

Compression 0.431527 0.430099 0.429395 0.427392 0.429304

Tuple
estimates

T-tuple 0.506473 0.499956 0.502869 0.503875 0.502373
LRS 0.617982 0.618924 0.595495 0.623257 0.598258

Predictor
estimates

MultiMCW
prediction 0.774124 0.774787 0.774876 0.774023 0.773554

Lag prediction 0.74279 0.72061 0.699677 0.766341 0.766341
MultiMMC
prediction 0.612737 0.611371 0.614493 0.611618 0.611666

LZ78Y prediction 0.773766 0.774414 0.77434 0.773596 0.773135

Table 5. Entropy rate of the conditioned true random bits.

Estimation Methods Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Entropic
statistic

estimates

Most common
value 0.774076 0.774325 0.774639 0.772213 0.77258

Collision 0.578074 0.574828 0.576665 0.574045 0.575295
Markov 0.679357 0.678501 0.680025 0.677518 0.677673

Compression 0.430194 0.427339 0.42911 0.430075 0.429719

Tuple
estimates

T-tuple 0.505419 0.507008 0.5049 0.505419 0.505419
LRS 0.625161 0.588358 0.607403 0.623526 0.585284

Predictor
estimates

Multi MCW
prediction 0.774649 0.774807 0.775148 0.77265 0.773064

Lag prediction 0.766341 0.766341 0.580808 0.72061 0.72061
Multi MMC
prediction 0.613211 0.611999 0.612475 0.595327 0.612614

LZ78Y prediction 0.774091 0.774363 0.774651 0.77224 0.772602

Estimation Methods Sample 6 Sample 7 Sample 8 Sample 9 Sample 10

Entropic
statistic

estimates

Most common
value 0.774787 0.774039 0.773443 0.773995 0.77494

Collision 0.574717 0.575746 0.576025 0.576875 0.577158
Markov 0.679194 0.679647 0.678308 0.678776 0.680344

Compression 0.427999 0.428678 0.428281 0.428645 0.430835

Tuple
estimates

T-tuple 0.50337 0.501881 0.505419 0.504385 0.504385
LRS 0.622209 0.601729 0.589705 0.600017 0.622063

Predictor
estimates

Multi MCW
prediction 0.775268 0.774444 0.773912 0.774496 0.775303

Lag prediction 0.813036 0.626573 0.679894 0.595327 0.766341
Multi MMC
prediction 0.61363 0.612777 0.614747 0.613002 0.614718

LZ78Y prediction 0.774829 0.774054 0.773463 0.774002 0.77496
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Table 6. Min entropy of the raw and conditioned true random bits.

TRNG Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Raw bits 0.43252 0.428203 0.428726 0.429465 0.428224

Conditioned bits 0.430194 0.427339 0.42911 0.430075 0.429719

TRNG Sample 6 Sample 7 Sample 8 Sample 9 Sample 10

Raw bits 0.431527 0.430099 0.429395 0.427392 0.429304

Conditioned bits 0.427999 0.428678 0.428281 0.428645 0.430835

The results proved that the proposed TRNG had an adequate amount of true random-
ness from all the estimators; notably, it had min-entropy values of 0.429486 for the raw bits
and 0.429088 for the conditioned bits. Moreover, according to Table 4, not much difference
was observed between the raw and conditioned bits, which shows that the conditioning
circuit is optional for the proposed TRNG to achieve satisfactory results.

(iii) NIST 800-22 batteries of tests

NIST has a widely used test suite that includes several tests for assessing random
number generators [36–40]. The test suite examines the statistical characteristics of the gen-
erated random bits in terms of randomness, probability distribution and unpredictability.
The probability values (p-values) in the table, which were assigned for each of the 15 NIST
tests, range from 0 to 1. Low p-values demonstrate the absence of unpredictability in the
bit stream. If the p-value is more than 0.001, the NIST SP 800-22 standard indicates that the
bits are cryptographically strong and have passed the tests.

NIST SP 800-22 has 14 tests, namely Frequency (T1), Block Frequency (T2), Cumulative
Sums I (T3), Cumulative Sums II (T4), Runs (T5), Longest Run (T6), Rank (T7), FFT (T8),
Non-overlapping Template (T9), Overlapping Template (T10), Approximate Entropy (T11),
Serial I (T12), Serial II (T13) and Linear Complexity (T14). Figures 6 and 7 show the box
chart plots of the p-values for 107 raw and conditioned true random bits samples. The
proposed TRNG passed all the tests, proving that the TRNG has good statistical properties
and is cryptographically strong.
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Figure 6. Box chart plot of the p values of the raw true random bits.

Additionally, the Linear Complexity Test was estimated through the TestU01 test suite.
This test aims to identify whether the sequence is complex enough to be considered as ran-
dom or non-random. In this test, random sequences are characterized by the polynomials
of LFSR. It performs jump complexity and size tests on random numbers to determine their
linear complexity. For each z, 1 ≤ z ≤ n, the linear complexity of the sequence formed by
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the first z bits by computing the Berlekamp–Massey algorithm [41]. The following table
presents the results of the linear complexity test from the TestU01 test suite, which shows
that the random numbers generated from the proposed TRNG are random and complex
enough. Table 7 presents the results of TestU01—Linear Complexity analyses.
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Table 7. TestU01—Linear Complexity Analysis.

Test with Parameters p-Value Result

Linear Complexity
(N =1, n = 2, 56, 00, 000 bits, r = 0, s = 1)

Normal statistic 0.89
PassChi2 statistics 0.72

Linear Complexity
(N =1, n = 2, 56, 00, 000 bits, r = 29, s = 1)

Normal statistic 0.9905
PassChi2 statistics 0.18

4.3. Evaluation of the Hardware Resources

The hardware resources of any FPGA-based digital system can be analysed through
its consumption of logic elements and throughput. The results shown in this section
correspond to the implementation of the TRNG on a Cyclone IV E EP4CE115F29C7 FPGA.
Table 8 presents the hardware resources of the proposed TRNG in terms of look-up tables
(LUTs) and logic registers for implementing the TRNG on various FPGAs.

Table 8. Hardware resources of the proposed TRNG.

FPGA Vendor Target FPGA Consumption of Logic Elements

Intel (Altera)
Cyclone IV E (EP4CE115F29CN) 15 LUTs and 13 registers

Cyclone II (EP2C35F672C6) 15 LUTs and 13 registers
Stratix III (EP3SL340H1152C3) 14 LUTs and 13 registers

Xilinx
Artix-7 (7a100tcsg324-3) 10 LUTs and 13 registers

ZYNQ 7000 (7z020clg484-1) 10 LUTs and 13 registers

The power dissipation analysis (Shown in Table 9) was carried out by the Power Play
Power analyzer tool in the Quartus II Electronic Design Automation (EDA) tool. The power
computation is accomplished by monitoring the switching activity of each net (signal). The
switching activity comprises two parameters: (a) Static probability (b) Transition rate.
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Table 9. Power dissipation analysis of the proposed TRNG.

Static Power (mW) 98.49

Dynamic Power (mW) 1.28
IO Power (mW) 41.09

Total Power (mW) 140.86

(a) Static probability: the expected state of the signal.
(b) Transition rate: the number of transitions per unit of time. The transition rate is also

referred to as the toggle rate.

For periodic signals such as clocks having the signal’s frequency specified, the tran-
sition rate is twice the signal’s frequency (since there are two transitions—rising and
falling—within each cycle). The power analysis utilizes the design’s switching activity
(static probability and transition rate) for each signal. The power dissipation is calculated
through Equation (9),

P =
1
2

C × Vdd2 × Togglerate, (9)

where P is the power, C is the capacitance, Vdd is the supply voltage, and Toggle rate is the
switching activity of the signal. For example, consider C = 20fF (capacitor connected to the
supply pin of the Cyclone FPGA) and Vdd = 1.2 V [42–44].

Table 9 shows that the total power dissipation is 140.86 mW, including the three
components: static, dynamic and I/O power. The IoT node will generally be driven
through an embedded device such as a Microcontroller/CPLD/FPGA, which requires a
minimum of 1.2 core operating voltage to drive the task. In this regard, the dissipation of
140.86 mW is much less dissipation to perform the PUF. However, it is an open option that
the power dissipation can be reduced to µW level upon adopting a manual placement of
LUTs, which is one of the future concerns of this work.

According to Table 8, the proposed TRNG utilised only 15 LUTs in the Intel FPGAs
and 10 LUTs in the Xilinx FPGAs. As a result, the proposed TRNG consumed a smaller
hardware footprint (<1%), consuming 41.26 mW of power to achieve high randomness. A
sampling clock of 25 MHz was utilised to generate true random sequences. The TRNG
required 296 milliseconds to generate 8192 × 128 bits at a throughput of 3.5 Mbps. Timing
analysis was carried out with the ZeroPlus logic analyser, and Figure 8 shows the total time
taken for the TRNG to generate 10,48,576 bits.
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4.4. Performance Comparison

Most TRNG designs described in the literature include ROs as a key component to
regulate the proposed TRNG. With eight rings and three inverters in each, the entropy unit
of the proposed work was updated variably, going from 8 to 17 in each ring. The Quartus
EDA tool was used to carry out the placement and routing for accommodating the entropy
source without any temporal or physical restrictions.

The suggested TRNG’s computed throughput at a sampling frequency of 25 MHz was
3.5 Mbps, more than the earlier works listed in Table 10. Additionally, this suggested TRNG
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used just 80 inverters, and Figure 9 shows the comparison, demonstrating the proposed
TRNG design’s compactness in terms of the inverter count. Moreover, the proposed TRNG
had a keyspace of 2128, since 128 bits were considered for testing. Hence, the proposed
TRNG-based key generator is resistant to brute-force attacks. Furthermore, the number of
bits of true random numbers can be expanded to any size, since the true random sequence
can be packed into any n-bit number.

Table 10. Performance comparison: Hardware resources.

Reference TRNG Design
Technique

FPGA for
Implementation Hardware Resources Frequency Throughput

Fischer et al. [14] PLL/DLL Altera APEX
EP20K200EFC484-2X

121 LCs, 4 ESB
and 1 PLL 33.3 MHz 69 Kbps

Kohlbrenner and Gaj [17] Free-running
oscillator Xilinx XC2VP30 12LUTs and

24 registers 150 MHz 300 Kbps

Valchanov et al. [30]

RO–RO

Xilinx XC3S500E

15 LUTs, 4 registers 2 Mbps

RO–PLL 12 LUTs, 4 registers
and 1 PLL 65 MHz

2 Mbps

RO–DFS 11 LUTs, 6 registers
and 2 DFS 2 Mbps

Schellekens et al. [19] Free-running
oscillator Xilinx XC2VP30 973 Slices 40 MHz 2.5 Mbps

Proposed Non-identical ROs Cyclone IV E
EP4CE115F29CN

15 LUTs and
13 registers 25 MHz 3.5 MbpsMathematics 2023, 11, 1049 17 of 20 
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5. Conclusions

TRNGs have a significant role in secure modern communication devices. There is a
growing need to develop architectures that are part of the IoT’s hardware units or mobile
devices for unique device identification. Apart from nonce generation, generic TRNGs
such as the one proposed in this work will play an important role in creating unique n-bit
IDs for IoT applications. The proposed TRNG was based on a group of rings comprising
an odd number of inverters in each ring with increasing order. The design utilised 15 LUTs
and 13 registers when realised on a Cyclone IVE FPGA. The power consumption of the
architecture was 41.26 mW, with a throughput of 3.5 Mbps. The NIST 800-90B test suite
was applied to the true random bits, producing satisfactory results for the various tests.
The Gaussian pulse was observed through a digital oscilloscope. The Hamming distance
and restart analyses proved the existence of true randomness. This proposed TRNG has a
variety of application scopes, as listed below:

1. Used as a session key generator in online transactions;
2. Adopted as initialization vectors for rounds-based crypto-systems;
3. Used as NONCE (Number Only Used Once) for mission-critical applications;
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4. Used as an integral part of the embedded devices for symmetric key generation;
5. Used as a padding vector generator in encoding schemes;
6. Used as a Physically Unclonable Function (PUF) with a slight hardware modification

to verify the trustworthiness of the device in a network environment.
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