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Abstract: This piece is a follow-up of the research started by the authors on the constrained optimal
control problem applied to pollution accumulation. We consider a dynamic system governed by a
diffusion process with multiple modes that depends on an unknown parameter. We will study the
components of the model and their restrictions and propose a scheme to solve the problem in which
it is possible to determine (adaptive) policies that maximize a suitable discounted reward criterion
using standard dynamic programming techniques in combination with discrete estimation methods
for the unknown parameter. Finally, we develop a numerical example to illustrate our results with a
particular case of the method of minimum least square error approximation.
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1. Introduction

Pollution control in large cities is a problem of great interest worldwide, and that is
why various organizations are continually seeking strategies to mitigate it. As for scientists,
they have begun to analyze models that describe the stock of pollution through ordinary
and stochastic differential equations. In particular, optimal control theory has been applied
for the optimal management of pollution in economic sciences. This theory considers an
economy that consumes some good and, as a by-product of that consumption, generates
pollution. The hypotheses in our model are as follows:

• The contamination stock is only gradually dissolved by the environment;
• The growth rate of the pollution is constant or random;
• The flow of pollution is constrained so that it satisfies some mandatory global stan-

dards in order to promote sustainable development (see, for instance, ref. [1]).

Social welfare is defined by the net utility from the consumption of some good vis
à vis the disutility caused by pollution. Our objective is to find an optimal consumption
policy for society. That is, we seek to maximize the difference between the utility function
of consumption vs. the disutility caused by the polluting stock (see [2,3]).

This paper represents the second part of a project related to the constrained optimal
control problem of pollution accumulation with an unknown parameter. To be in con-
text, we begin by briefly summarizing the results obtained in Robust statistic estimation in
constrained optimal control problems of pollution accumulation (Part I) (see [4]).

The first part considers the scenery where the dynamic system is given by a diffusion
process and depends on an unknown parameter, say θ. First, assuming the parameter θ as
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known, an approach with restrictions and one without them is proposed. The respective
optimal value functions are V∗θ and V∗θ,λ. Then, estimation techniques for the parameter θ
are applied and later combined with the characterizations and results previously analyzed.
Roughly speaking, one of the results considers a sequence of estimated parameters (θm:m =
1, . . . ) such that θm → θ, then the value functions converge (in some sense), that is

V∗θn
→ V∗θ and V∗θm ,λ → V∗θ,λ.

Another result states the existence of optimal policies such that πθm → πθ . Further-
more, the relationship between the value functions V∗θ and V∗θ,λ is shown.

In this piece, we obtain similar results considering the case where the dynamics of the
stock of pollution evolves as a diffusion process with Markovian switching whose drift
function, as well as the reward function, depends on the unknown parameter θ. In addition,
we impose some natural constraints on the performance index.

To avoid confusion, we try to preserve the notation of Part I in this work. First,
a constrained control problem is proposed. Subsequently, assuming θ is the real parameter,
we study a standard control problem under the discounted criterion, where it is possible to
apply standard techniques and dynamic programming tools to determine optimal policies.
Then a (discrete) procedure to estimate the unknown parameter θ is applied in combination
with the standard results formerly mentioned to obtain the so-called adaptive policies that
maximize a discounted reward criterion with constraints.

The idea is to estimate the parameter θ, and then solve the optimal control problem
when such an estimated value is replaced in the problem. In the literature, this approach
is known as the Principle of Estimation and Control. This problem has been studied in
several contexts. For instance, refs. [5–8] and the references therein are about stochastic
control systems evolving in discrete time. On the other hand, adaptive optimal control for
continuous time is studied in [9–11]. The estimation for diffusion processes using discrete
observations has been studied in the works [12–16].

Dynamic optimization has been used to study the problem of pollution accumulation
in the past; for example, the papers [17,18] use a linear quadratic model to explain this
phenomenon, the article [2] deals with the average payoff in a deterministic framework,
while [3,19] extend the former’s approach to a stochastic context, and [20] uses a robust
stochastic differential game to model the situation. The study [21] is a statistical analysis of
the impact of air pollution on public health. In order to develop adaptive policies that are
almost surely optimal for the restricted optimization problem under the discounted reward
on an infinite horizon with Markovian switchings, we use a statistical estimation approach
to determine the unknown parameter θ. These adaptive policies are created by replacing the
estimates into optimal stationary controls (that is, the use of the PEC); for more information,
see the works of Kurano and Mandl (cf. [7,8]). The statistic estimation method we use for
the unknown parameter θ is the so-called least square estimator for stochastic differential
equations based on many discrete observations. This resembles existing robust estimation
techniques, such as the H∞ method, in the fact that in the applications, the dynamic systems
are linear. However, the computational complexity of these techniques is greater. Indeed,
with our least square estimator, only the inverse of a matrix must be calculated to obtain the
estimator, while there are way more computations to be performed in the other algorithms
(see [22,23]). Most risk analysts will not be as familiar with our methods as they are
with, for example, the model predictive control, MATLAB’s robust control toolbox, or the
polynomial chaos expansion method, which have been used in the literature to address
similar issues. Since we review a constructive method for robust and adaptive control under
deep uncertainty, our findings are similar to those reported in the article [24]. Moreover, our
methods also resemble the adaptive moving mesh method for optimal control problems in
viscous incompressible fluid used in [25].

This piece can be also be considered an extension of [26–29], who also study adaptive
constrained optimal control methods. In fact, ref. [28] studies a constrained optimal control
problem, but unlike our case, there, all the parameters are known, while [26] does the same



Mathematics 2023, 11, 1045 3 of 22

but in the context of pollution accumulation. The references [27,29] study an unconstrained
adaptive optimal control problem. Finally, it is important to highlight the numerical
estimation technique that illustrates the results of this article.

The rest of the paper is organized as follows. We present the elements of our model
and assumptions in Section 2. Next, Section 3 introduces our optimality criterion and the
main results; an interesting numerical example illustrating our results is given in Section 4.
We give our conclusions in Section 5, and finally, we included the proof of the important
(but rather distracting) Theorem A1 on the convergence of the HJB equation under the
topology of relaxed controls in Appendix A.

Notation and Terminology

For vectors x = (x1, x2, . . . , xn) ∈ Rn and matrices A =
(

Ak,p

)
∈Mn(R), we denote

by | · | the Euclidean norm, that is,

|x|2 :=
n

∑
k=1

x2
k and |A|2 := Tr(AA>) =

n

∑
k,p=1

A2
k,p,

where A> and Tr(·) denote the transpose and the trace of matrix, respectively. As an
abbreviation, we write ∂i and ∂2

ij to refer to := ∂
∂xi

, and ∂2

∂xi∂xj
, respectively.

Given a Borel set B, we denote by B(B) its natural σ-algebra. As usual, C(O), stands
for the space of continuous functions whose domain is O and

C(O × E) := {ν : O × E→ Rn : ν(·, i) ∈ C(O × E) for each i ∈ E}.

Consequently we denote Cb(O×E) as the subspace of C(O×E) composed by bounded
functions. The set Cκ(O × E) := {ν : O × E → Rn : ν(·, i) ∈ Cκ(O × E) for each i ∈ E},
where Cκ(O × E) is the space of all real-valued continuous functions f on the bounded,
open and connected subset O ⊂ Rn with continuous derivatives up to order κ ∈ N.

Fix p ≥ 1 and a measure space (Ω,F , µ), we denote Lp(Ω× E) as the Lebesgue space
of functions g on Ω× E such that

∫
Ω |g(x, i)|pµ(dx) < ∞ for i ∈ E.

Let X and Y be Borel spaces. A stochastic kernel Q(·|·) on X given Y is a function
such that Q(·|y) is a probability measure on X for each y ∈ Y and Q(B|·) is a measurable
function on Y for each B ∈ B(X).

Finally, the set P(B) denotes the family of probability measures on B endowed with
the topology of weak convergence.

2. Model Formulation and Assumptions

Taking as reference the problem analyzed in Part I, we consider the scenery where
the dynamics of the pollution stock is modeled as an n-dimensional controlled stochastic
differential equation (SDE) with Markovian switching. Specifically, such a dynamic takes
the form

dx(t) = b(x(t), ψ(t), u(t), θ)dt + σ(x(t), ψ(t))dW(t), (x(0), ψ(0)) = (x0, ψ0), t ≥ 0, (1)

where E = {1, 2, . . . , N}, b : Rn × E ×U × Θ → Rn and σ : Rn × E → Rn×d are given
functions, W(·) is an Ft-adapted d-dimensional Wiener process such that W(t)−W(s) and
Fs are pairwise independent, W(·) is independent of ψ(·), and the evolution of the Markov
chain ψ has intensity Q = (qij)i,j∈E and transition rule given by

P(ψ(t + ∆t) = j|ψ(t) = i, (x(s), ψ(s)), s ≤ t) =

{
qij∆t + o(∆t), if i 6= j,
1 + qii∆t + o(∆t), if i = j,

(2)

for t ≥ 0 and ∑N
j=1 qij = 0. The compact set U ⊂ Rn1 is called the control set. In the context

of our problem, u(t) is a stochastic process on U such that, at time t, it represents the flow
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of consumption which, in turn, is considered bounded to reflect the policies and rules
imposed by governments or social entities.

It is important to remark that throughout this work, we assume that θ is an unknown
parameter taking values on a compact set Θ ⊂ Rm, which is called the parameter set. Note
that in the context of pollution problems, θ can be seen as the pollution decay rate.

Now we define the so-called randomized policies, also known as relaxed controls, or
just policies.

Definition 1. A policy is a family π := (πt(·|·, ·))t≥0 of stochastic kernels on B(U)×Rn × E
(see Section 1). We denote by Π the set of stationary policies. In particular, a randomized policy
is said to be stationary if there is a probability measure π(·|x, i) ∈ P(U) such that πt(·|x, i) =
π(·|x, i) for all t ≥ 0 and (x, i) ∈ Rn × E. Let F be the set of measurable functions f from Rn × E
to U. We denote the set of stationary Markov policies as F1 := { f : Rn × E → U : for each i ∈
E, f (·, i) ∈ F}.

For each randomized policy π ∈ Π and a function whose domain is contained to U,
say v : Rn × E×U ×Θ→ R, we use the abbreviated notation

v(x, i, π, θ) :=
∫

U
v(x, i, u, θ)π(du|x, i). (3)

A suitable adjustment should be made for functions with a different domain.
We endow Π with a topology (see [30]) determined by the convergence criterion

defined below (see [31,32], Lemma 3.2 in [30,33].

Definition 2. A sequence (πm)m∈N in Π converges to π ∈ Π if∫
Rn

g(x, i)h(x, i, πm)dx →
∫
Rn

g(x, i)h(x, i, π)dx.

for all g ∈ L1(Rn × E), and h ∈ Cb(Rn × E×U) (see (3)). Since this mode of convergence was

introduced by Warga (cf. [30]), we denote it as πm
W→ π.

For ν(·, ·, θ) ∈ C2(Rn × E), u ∈ U and θ ∈ Θ, the infinitesimal generator associated
with the process (x(·), ψ(·)) is

Lu,θν(x, i, θ) :=
n

∑
k=1

bk(x, i, u, θ)∂kν(x, θ, i) +
1
2

n

∑
k,`=1

ak,`(x, i)∂2
k,`ν(x, i, θ) +

N

∑
j=1

qijν(x, i, θ),

where bk is the k-th component of the drift function b, and ak,` is the (k, `) component of
the matrix a(·, ·) := σ(·, ·)σ(·, ·)>. As in (3), for each policy π ∈ Π, we write

Lπ,θν(x, i, θ) :=
∫

U
Lu,θν(x, i, θ)π(du|x, i).

The following set of assumptions and conditions ensures the existence and uniqueness
of a strong solution as well as stability of the dynamic system (1) and (2) (see [31,33–35]).

Assumption 1. (a) The random process (1) belongs to a complete probability space
(
Ω,F ,Pu,θ).

Here, {Ft}t≥0 is a filtration on (Ω,F ) such that each Ft is complete relative to F , and Pu,θ

is the law of the state process x(·) given the parameter θ ∈ Θ and the control u(·).
(b) The drift function b(·, ·, ·, ·) in (1) is continuous and satisfies that for each R > 0, there exist

non-negative constants Kθ(R) and D(R) such that, for all u ∈ U, all |θ1|, |θ2| ≤ R and
|x|, |y| ≤ R,

|b(x, i, u, θ)− b(y, i, u, θ)| ≤ Kθ(R)|x− y|,

|b(x, i, u, θ1)− b(x, i, u, θ2)| ≤ D(R)|θ1 − θ2|,
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Moreover, the function u 7→ b(x, i, u, θ) is continuous on U.
(c) The diffusion coefficient σ satisfies a local Lipschitz condition; that is, for each R > 0, there

exists a constant K1(R) > 0 such that, for all |x|, |y| less than R,

|σ(x, i)− σ(y, i)| ≤ K1(R)|x− y|.

(d) A global linear growth condition is satisfied

sup
(u,θ)∈U×Θ

|b(x, i, u, θ)|2 + |σ(x, i)|2 ≤ K̃(1 + |x|2) for all x ∈ Rn,

where K̃ > 0 is a constant.
(e) The matrix a(x, i) := σ(x, i)σ(x, i)> satisfies that, for some constant K2 > 0,

x>a(y, i)x ≥ K2|x|2 for all x, y ∈ Rn.

Remark 1. (i) Properties such as continuity or Lipschitz continuity given in Assumption 1 are
inherited to the drift function b(x, i, π, θ).

(ii) Under Assumption 1, once a policy π ∈ Π and a parameter θ ∈ Θ are fixed, the references [31]
and [33] guarantee the existence of a probability space

(
Ω,F ,Pπ,θ) in which there exists a

unique process xπ,θ(·) with the Markov–Feller property which, in turn, is an almost surely
strong solution.

The next hypothesis is known as the Lyapunov stability condition.

Assumption 2. There exists a function w ∈ C2(Rn × E), w(·, ·) ≥ 1 and constants d ≥ β > 0
such that

(a) lim|x|→∞ w(x, i) = ∞ uniformly in i ∈ E.
(b) Lπ,θw(x, i) ≤ −βw(x, i) + d for all π ∈ Π, θ ∈ Θ and (x, i) ∈ Rn × E.

Assumption 2 essentially asks for a twice-continuously differentiable function to solve
the problem at hand. This hypothesis is equivalent to requiring positive-definite matrices in
the context of linear matrix inequalities (see [36] and pages 113–135 in [37]). The existence
of a function w with the conditions in Assumption 2 implies that the rate functions involved
in our model can be unbounded (see Assumption 3). As in the first part, we define next an
adequate space for these functions.

Definition 3. Let v be a function from Rn × E to R, we define its w-norm as

‖v‖w := sup
(x,i)∈Rn×E

|v(x, i)|
w(x, i)

< ∞.

Even more, let Bw(Rn × E) be the Banach space of real-valued measurable functions with
finite w-norm.

Let r and c be measurable functions from Rn × E×U ×Θ to R identified as reward
(social welfare) rate and the cost rate, respectively, and let η from Rn × E × Θ to R be
another measurable function that models the constraint rate. In the context of pollution
accumulation, in some situations, such a restriction is due to each country’s legal framework,
and the cost of cleaning the environment must be bounded for some given quantity.

Assumption 3. For each i ∈ E fixed, the payoff rate r(·, i, ·, ·), the cost rate c(·, i, ·, ·) and the
constraint rate η(·, i, ·) are continuous on Rn ×U×Θ. Moreover, they are locally Lipschitz on Rn,
uniformly on E, U and Θ. That is, for each R > 0, there are positive constants K(R) and K2(R)
such that for all |x|, |y| ≤ R,
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sup
(i,u,θ)∈E×U×Θ

|r(x, i, u, θ)− r(y, i, u, θ)|+ sup
(i,u,θ)∈E×U×Θ

|c(x, i, u, θ)− c(y, i, u, θ)| ≤ K(R)|x− y|,

sup
(i,θ)∈E×Θ

|η(x, i, θ)− η(y, i, θ)| ≤ K2(R)|x− y|.

Even more, the rate functions belong to Bw(Rn × E) and there exists M > 0 such that for all
(x, i) ∈ Rn × E,

sup
(u,θ)∈U×Θ

|η(x, i, θ)|+ sup
(u,θ)∈U×Θ

|r(x, i, u, θ)|+ sup
(u,θ)∈U×Θ

|c(x, i, u, θ)| ≤ Mw(x, i).

3. Discounted Optimality Problems and Main Results

Through this section, we establish the contamination problem of our interest in terms
of the terminology of optimal control. To this end, we will introduce the functions that
evaluate the behavior of the system throughout the process associated with payments,
costs, and restrictions.

In order to avoid confusion, we will preserve the notation and the ordering in the
presentation of the results from the first part of the project.

3.1. Discounted Optimality Criterion

Definition 4. Given the initial state (x, i) ∈ Rn × E, a parameter value θ ∈ Θ and a discount rate
α > 0, we define the total expected α-discounted reward, cost and constraint when the controller
uses a policy π in Π as

V(x, i, π, r, θ) := Eπ,θ
x,i

[∫ ∞

0
e−αtr(x(t), ψ(t), π, θ)dt

]
,

V(x, i, π, c, θ) := Eπ,θ
x,i

[∫ ∞

0
e−αtc(x(t), ψ(t), π, θ)dt

]
and

η(x, i, π, θ) := αEπ,θ
x,i

[∫ ∞

0
e−αtη(x(t), ψ(t), θ)dt

]
.

respectively, and Eπ,θ
x,i [·] is the expectation of · taken with respect to the probability measure Pπ,θ

when (x(t), ψ(t)) starts at (x, i).

Proposition 1. If Assumptions 1–3 hold, the functions V(·, ·, π, r, θ) and V(·, ·, π, c, θ) belong to
Bw(Rn × E) for each π in Π; in fact, for each (x, i) ∈ Rn × E and θ ∈ Θ we have

sup
π∈Π
|V(x, i, π, r, θ)|+ sup

π∈Π
|V(x, i, π, c, θ)| ≤ 2M(α)w(x, i)

where M(α) := M α+d
αβ , the constants c and d are as in Assumption 2, and M is as in Assumption 3 (b).

Proposition 1 can be obtained directly using the following inequality, which is an
application of Dynkin’s formula to the function v(t, x, i) := eβtw(x, i), and Assumption 2
(b) yield that, for all π ∈ Π, θ ∈ Θ, (x, i) ∈ Rn × E and t ≥ 0,

Eπ,θ
x,i [w(x(t), ψ(t))] ≤ e−βtw(x, i) +

d
β

(
1− e−βt

)
. (4)

Remark 2. The function η(·, ·, π, θ) is in Bw(Rn × E) for each π ∈ Π. Moreover, for each
(x, i) ∈ Rn × E, we have

sup
π∈Π
|η(x, i, π, θ)| ≤ ‖η‖w

α + d
β

w(x, i).
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Let θ ∈ Θ be fixed, and again apply Dynkin’s formula to the function V (see Theo-
rem 1.45 in p. 48 in [34] or Theorem 1 (iii) in [38]) to yield the following result.

Proposition 2. Let Assumptions 1, 2 hold, and let v be a measurable function on Rn × E ×
U ×Θ satisfying Assumption 3. Then, for π ∈ Π, the associated expected α-discounted reward
V(·, ·, ·, π, θ) belongs toW2,p(Rn × E) ∩ Bw(Rn × E), and satisfies

αV(x, i, π, v, θ) = V(x, i, π, v, θ) +Lπ,θV(x, i, π, v, θ) for all (x, i) ∈ Rn × E and θ ∈ Θ. (5)

Conversely, if some function ϕ(·, ·, θ) inW2,p(Rn×E)∩Bw(Rn×E) satisfies Equation (5), then

ϕ(x, i, θ) = V(x, i, π, v, θ) for all (x, i) ∈ Rn × E and θ ∈ Θ. (6)

Even more, if relation (5) is an inequality, then (6) holds with the respective inequality.

Consider thatW `,p(Rn × E) is the Sobolev space of real-valued measurable functions
on Rn × E whose derivatives up to order ` ≥ 0 are in Lp(Rn × E) for p ≥ 1.

Given the initial conditions (x, i) ∈ Rn × E a parameter θ ∈ Θ, and a constraint
function η satisfying Assumption 3, we define the set of policies

F x,i
θ :=

{
π ∈ Π| V(x, i, π, c, θ) ≤ η(x, i, π, θ)

}
. (7)

We assume, for the moment, that the set defined in (7) is nonempty. Up to this point,
we are in a position to formulate the discounted problem with constraints (DPC), which is
defined below.

Definition 5. Given the initial condition (x, i) ∈ Rn × E and the parameter θ ∈ Θ we say that
policy π∗ ∈ Π is optimal for the DPC if π∗ ∈ F x,i

θ and

V(x, i, π∗, r, θ) = sup
π∈F x,i

θ

V(x, i, π, r, θ).

Furthermore, the function V∗(x, i, r, θ) := V(x, i, π∗, r, θ) is known as the α−discount
optimal reward for the DPC.

3.2. Unconstrained Discounted Optimality

The objective of this part is to transform the original DPC (presented above) into an
unconstrained problem, and thus, to be able to propose results and techniques known in
the literature. To this end, we will apply the Lagrange multipliers technique used in [26].
Take λ ≤ 0 and consider the function

rλ(x, i, u, θ) := r(x, i, u, θ) + λ(c(x, i, u, θ)− αη(x, i, θ)). (8)

For our purpose, rλ represents the new reward rate. Now recalling (3), we write (8) as

rλ(x, i, π, θ) := r(x, i, π, θ) + λ(c(x, i, π, θ)− αη(x, i, θ)), π ∈ Π, θ ∈ Θ.

Remark 3. For each α > 0 and λ < 0, by direct calculations, it is possible to show that
rλ(·, ·, π, θ) ∈ Bw(Rn × E) uniformly in π ∈ Π and θ ∈ Θ. Even more, by Assumption 3,
this new reward rate is a Lipschitz function.

In the same way as in Definition (4), for all (x, i) ∈ Rn × E and θ ∈ Θ, we define
the function

V(x, i, π, rλ, θ) := Eπ,θ
x,i

[∫ ∞

0
e−αtrλ(x(t), ψ(t), π, θ)dt

]
.

So, the discounted unconstrained problem is defined as follows.
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Definition 6 (The adaptive θ-control problem with Markovian switching). A policy π∗ ∈ Π
is said to be α-discount optimal for the λ-DUP given that θ is the true parameter value, if

V∗(x, i, rλ, θ) := V(x, i, π∗, rλ, θ) = sup
π∈Π

V(x, i, π, rλ, θ) (9)

for all (x, i) ∈ Rn × E. The function V∗ will be called the value function of the adaptive θ-control
problem with Markovian switching.

Let v : Rn × E×U×Θ→ R be a measurable function satisfying the conditions given in
Assumption 3. The following result (obtained from [33]) shows that the function V∗(·, ·, v, θ)
is the unique solution of (10), and also proves the existence of stationary optimal policies.

Proposition 3. Suppose that Assumptions 1–3 hold. Then we have the following:

(i) The α-optimal discount reward V∗(·, ·, v, θ) belongs toW2,p(Rn × E) ∩ Bw(Rn × E) and it
verifies the discounted reward HJB equation. That is, for all (x, i) ∈ Rn × E and θ ∈ Θ,

αV∗(x, i, v, θ) = sup
u∈U
{r(x, i, u, θ) +Lu,θV∗(x, i, v, θ)}. (10)

Conversely, if a function ϕθ ∈ W2,p(Rn × E) ∩ Bw(Rn × E) satisfies (10), then ϕθ(x, i) =
V∗(x, i, v, θ) for all (x, i) ∈ Rn × E.

(ii) There exists a stationary policy f ∗θ ∈ F that maximizes the right-hand side of (10). That is,

αV∗(x, i, v, θ) = r(x, i, f ∗θ , θ) +L f ∗θ ,θV∗(x, i, v, θ) for all (x, i) ∈ Rn × E,

and f ∗θ is α-discount optimal given that θ is the true parameter value.

Remark 4. (a) Notice that V(x, i, π, rλ, θ) = V(x, i, π, r, θ)+λ[V(x, i, π, c, θ)− η(x, i, π, θ)],
and by Definition 4, V(x, i, π, c, θ)− η(x, i, π, θ) = V(x, i, π, c− αη, θ),

(b) Remark 3 and Proposition 1 yield that supπ∈Π

∣∣V(x, i, π, rλ, θ)
∣∣ ≤ Mλ

α w(x, i), with Mλ
α :=

Nλ α+d
αβ and Nλ is a bound of ‖rλ‖w, implying in turn that V(·, ·, π, rλ, θ) ∈ Bw(Rn × E).

(c) If Assumptions 1, 2 and 3 hold, then by Proposition 3.4 in [28], the mappings π →
V(x, i, π, v, θ), π → V(x, i, π, c − αη, θ) and π → V(x, i, π, rλ, θ) are continuous on
Π for each (x, i) ∈ Rn × E and θ ∈ Θ.

3.3. Convergence of Value Functions and Estimation Methods

Finally, in this part, we will present one of the main results of this work, which
combines optimality and the statistical approximation scheme (in a discrete way) of our
unknown parameter. To do this, we define the concept of consistent estimator and the
approximation technique that will be used for it.

Definition 7. A sequence (θm)m∈N of measurable functions θm : Ω→ Θ is said to be a sequence
of uniformly strongly consistent (USC) estimators of θ ∈ Θ if, as m→ ∞,

θm(ω)→ θ Pπ,θ − a.s. for all π ∈ Π.

For ease of notation, we write θm := θm(ω) ∈ Θ. Let v : Rn ×U×Θ→ R be a measur-
able function satisfying similar conditions as those given in Assumption 3. The following
observations and estimation procedure are an adaptation to what was done in the first part
and show us that our set of hypotheses and procedures are consistent.

Remark 5. (a) Let (θm)m∈N be a sequence of USC estimators of θ ∈ Θ and let v : Rn × E×
Π×Θ→ R be a function that satisfies the Assumptions 1–3. Theorem 4.5 in [29], guarantees
that every sequence (V(x, i, π, v, θm))m∈N converges to V(x, i, π, v, θ), Pπ,θ almost surely.
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(b) Let (πm)m∈N be a sequence in Π. Since Π is a compact set, there exists a subsequence(
πmk

)
k∈N ⊂ (πm)m∈N such that πmk

W→ π ∈ Π, and thus, combining Remark 4 (a) and
Remark 4 (c), and applying a suitable triangular inequality, it is possible to deduce that for
every measurable function v satisfying Assumption 3,

V(x, i, πmk , v, θmk )→ V(x, i, π, v, θ) Pπ,θ-a.s. as k→ ∞.

(c) By Proposition 3, and taking into account that rλ in (8), the function V∗(·, ·, rλ, θ) verifies (10).
In addition, the second part of Proposition 3 ensures the existence of stationary policy f λ

θ ∈ F1.
(e) For each λ ≤ 0, θ ∈ Θ and α > 0, we define the set

Πλ,θ :=
{

π ∈ Π : αV∗(x, i, rλ, θ) = rλ(x, i, π, θ) +Lπ,θV∗(x, i, rλ, θ) ∀(x, i) ∈ Rn × E
}

. (11)

Since F1 can be seen as an embedding of Π, Proposition 3 (ii) guarantees that Πλ,θ is a
nonempty set.

(f) As in [4], the set of hypotheses considered in this paper and Lemma 3.15 in [28] ensures that
for each θ ∈ Θ fixed and any sequence (λm)m∈N, converging to λ (with λ, λm ≤ 0); if there

exists a sequence of policies
(
πλm ,θ)

m∈N ∈ Πλm ,θ such that πλm ,θ W→ π, then π ∈ Πλ,θ .
(g) Lemma 3.16 in [28] ensures that the mapping λ 7→ V∗(x, i, rλ, θ) is differentiable on (−∞, 0).

In fact, for each λ < 0 and θ ∈ Θ

∂V∗(x, i, rλ, θ)

∂λ
= V(x, i, πλ, c, θ)− η(x, i, πλ, θ). (12)

The unknown parameter θ will be estimated as Pedersen [39] describes. That is,
the functions hm : Ω×Θ→ R, for m = 1, . . . will measure how likely the different values
of θ are. If for each ω ∈ Ω fixed, the function hm(ω, θ) has a unique maximum point
θm(ω) ∈ Θ, then θ is estimated by θm(ω).

Under the assumption that, for m ∈ N and θ ∈ Θ, hm(·, θ) is a measurable function of
ω and that it is also twice continuously differentiable in θ for all Pπ,θ−almost all ω ∈ Ω, it
is proven that the function θ → hm(ω, θ) is continuous and has a unique maximum point
θm(ω) for each ω ∈ Ω fixed. The number m ∈ N is the index of a sequence of random
experiments on the measurable space (Ω,F ). This method is known as the approximate
maximum likelihood estimator.

In our scenery, given a partition of times {0 = t0 < t1 < tm := T} from [0, T], the out-
comes of the random experiments will be represented by a sequence XT := (xti : i = 0, . . . , m)
of a trajectory xu,θ(t) up to time T on (Ω,F ) := (C([0, ∞)),B(C([0, ∞))) and the function
hm will be called the least square function (LSE), i.e., hm(w, θ) := LSE(w, θ).

It is evident that xu,θ(t) in (1) is observed up to a finite time, say T, for which we define

LSE(XT , θ) :=
m

∑
i=1

(
xti − xti−1 − b(xti−1 , ψ(ti−1), uti−1 , θ)(ti − ti−1)

)2, (13)

with the drift function b as in (1). The above function generates the least square estimator
until time T with m observations:

θLSE ≡ θLSE(XT) := arg min
θ∈Θ

LSE(XT , θ). (14)

Remark 6. The fact that xu,θ(t) in (1) can only be observed in a finite horizon is one of the
hypotheses of the so-called model predictive control. However, at least from a theoretical point of view,
our version of the PEC makes no such assumption, but still chooses T as large as practically possible
and thus defines (13) and (14). In this sense, there is a connection between these two perspectives.

In [12,16,39], the consistency and asymptotic normality of θLSE are studied. In particu-
lar, Shoji (see [16]) shows that the optimization based on the LSE function is equivalent to
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the optimization based on the discrete approximate likelihood ratio function in the one-
dimensional stochastic differential equation case and with a constant diffusion coefficient
considered:

MLR(XT , θ) :=
m

∑
i=1

b(yti−1 , uti−1 , θ)
[
σ(yti−1)σ(yti−1)

>
]−1

(xti − xti−1)

− 1
2

m

∑
i=1

{
b(yti−1 , uti−1 , θ)>

[
σ(yti−1)σ(yti−1)

T
]−1
· b(yti−1 , uti−1 , θ)(ti − ti−1)

}
,

with yti−1 := (xti−1 , ψ(ti−1)), and b and σ as in (1). The MLR function generates the discrete
approximate likelihood ratio estimator:

θLR ≡ θLR(XT) := arg max
θ∈Θ

MLR(XT , θ).

Now, we will establish our main result.

Theorem 1. Let (θm)m∈N be a sequence of USC estimators of θ ∈ Θ. For each m, let πm be a
α-discount optimal policy. Then there exists a subsequence (mk)k of (m)m and a policy π∗ such

that πmk
W→ π∗. Moreover, if Assumptions 1–3 hold, as k→ ∞,

V∗(x, i, θmk )→ V∗(x, i, θ) Pπ∗ ,θ-a.s. for each x ∈ Rn and i ∈ E,

and π∗ is α-discount optimal for the θ-control problem Pπ∗ ,θ almost surely.

Proof. Consider a sequence of USC estimators (θm)m∈N such that θm → θ as m → ∞.
Let R > 0, and take the open ball BR × E := {(x, i) ∈ Rn × E | |x| < R, i ∈ E}.
For (x, i) ∈ BR × E, let (πm)m∈N ⊂ Π be a sequence of α-discounted optimal policies.
Since Π is a compact set, there exists a subsequence

(
πmk

)
k∈N ⊂ (πm)m∈N such that πmk

converges to π∗ ∈ Π in the topology of relaxed controls given in Definition 2.
Let us first fix an arbitrary mk ∈ N. Then, Theorem 6.1 in [33] ensures that the value

function V∗(x, i, θmk ) in (9) is the unique solution of the HJB Equation (10), i.e., it satisfies

αV∗(x, i, θmk ) = r(x, i, πmk , θmk ) +Lπmk ,θmk V∗(x, i, θmk ), (15)

and by Theorem 9.11 in [40], there exists a constant C0 (depending on R) such that, for fixed
θmk and p > n, we have

|V∗(x, i, θmk )|W2,p(B2R×E) ≤ C0(
∥∥V∗(x, i, θmk )

∥∥
Lp(B2R×E) +

∥∥r(x, i, πmk , θmk )
∥∥
Lp(B2R×E)

≤ (M + M(α))|B2R|1/p max
(x,i)∈B2R×E

w(x, i) < ∞, (16)

where |B2R| represents the volume of the closed ball with radius 2R, and M and M(α) are
the constants in Assumption 3 (b) and Proposition 1, respectively.

Now, observe that conditions (a)–(e) of Theorem A1 hold. In fact, for each πmk , (15)
can be written in terms of the operator (A2) as Lπmk ,θV∗(x, i, θmk ) = 0 with the functions v2,
λ, ρ equal to zero, v1 ≡ r and hmk (x, i) ≡ V∗(x, i, θmk ). So, taking ξmk ≡ 0, λ ≡ 0, conditions
(a),(c) and (d) hold. In addition, by (16), condition (b) is verified as well.

Then, by Theorem A1, we claim the existence of a function h(·, ·, θ) ∈ W2,p(Rn × E),
together with a subsequence (mk : k = 1, . . . ) such that V∗(·, ·, θmk )→ h(·, ·, θ) uniformly

in BR × E, and pointwise on Rn × E as k → ∞ and πmk
W→ π∗. Furthermore, h(·, ·, θ)

satisfies
αh(x, i, θ) = r(x, i, π∗) +Lπ∗ ,θh(x, i, θ) Pπ∗ ,θ-a.s., (17)
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with h(·, ·, θ) ∈ W2,p(BR × E). Since the radius R > 0 is arbitrary, we can extend our
analysis to all of (x, i) ∈ Rn × E.

Thus, as V∗(x, i, θ) is the unique solution of the HJB equation (17), we can deduce that
h(x, i, θ) coincides with V∗(x, i, θ). So, by (15) and (17), as k→ ∞,

V∗(x, i, θmk )→ V∗(x, i, θ) Pπ∗ ,θ-a.s., for each x ∈ Rn and i ∈ E.

On the other hand, by Proposition 3, for each i ∈ E and θmk ∈ Θ fixed, we have

αV∗(x, i, θmk ) ≥ r(x, i, π, θmk ) +Lπ,θmk V∗(x, i, θmk ) for all π ∈ Π. (18)

Hence, letting k→ ∞ and using Theorem A1 from appendix again, we obtain that (18)
converges to

αV∗(x, i, θ) ≥ r(x, i, π, θ) +Lπ,θV∗(x, i, θ) for all π ∈ Π. (19)

Thus, by (17) and (19), we obtain

αV∗(x, i, θ) = sup
π∈Π
{r(x, i, π, θ) +Lπ,θV∗(x, i, θ)}.

implying that π∗ is α-optimal for the θ-control problem with Markovian switching.

In the following section, we present a numerical example to illustrate our results.
To this end, we implement Algorithm 1. In it, first we introduce the number of iterations in
our process and define the variables we need to simulate the dynamic system x(t) and the
Markov chain ψ(t). Such simulations are inspired by the algorithm proposed in [41], and
allow us to obtain the discrete observations {xk : k = 1, 2, . . .} needed to feed (13) and (14)
and thus approximate the real value of θ.

Algorithm 1: Method of LSE to find θ

Data: Number of iterations to be performed m, for (1) and (2): stepsize dt,
arbitrary controllers u ∈ U, drift and diffusion coefficients b(·, ·, ·, ·) and
σ(·, ·); and Q, the generator of the continuous-time Markov chain ψ(t).

Result: Estimation of θ
Simulate (τi : i = 1, . . . ) ⊂ [0, T];
foreach τ ∈ (τi : i = 1, . . . ) do

Use Q to simulate ψ(τ);
Use Euler-Maruyama’s method to simulate (1)

end
for k = 1, . . . , m do

θLSE ← arg minθ∈Θ LSE(Xt, θ) given by (13)–(14)
end
return θLSE

Remark 7. Now we list some limitations of our approach.

1. Approximation of the derivative. In our case, we use central differences, but in each application,
the approximation type to be used must be analyzed.

2. Least squares approximation. The most common restrictions are the amount of data, the regu-
larity of the samples, and the size of the subintervals.

3. Euler–Maruyama method. The most common restrictions in this method occur if the differen-
tial equation presents stiffness, inappropriate step size, or sudden growth. In our application,
the Euler–Maruyama method converges with strong order 1/2 to the true solution. See
Theorem 10.2.2 in [42].
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4. Numerical Example

This application complements the one we used in [38]. We represent the stock of
pollution as the controlled diffusion process with Markovian switchings of the form

dx(t) = [u(t, ψ(t))− θx(t)]dt + σdW(t), x(0) = x > 0, ψ(0) = i, (20)

where ψ(t) is a Markov chain with generator

Q =

(
−λ0 λ0
λ1 −λ1

)
.

ψ(t) stands for the perception of society toward the current level of pollution at each
time. It takes values from the set E := {1, 2}. So, if the Markov chain is initially in state
ψ(0) = 1, then before its first jump from state 1 to state 2 at its first random jump time τ1,
the stock of pollution obeys the following SDE

dx(t) = [u(t, ψ(1))− θx(t)]dt + σdW(t), (21)

with initial state x(0) = 0. At time τ1, the Markov chain jumps to 2, where it will stay until
the next jump, at time τ2. During the period [τ1, τ2], the stock of pollution is driven by
the SDE

dx(t) = [u(t, ψ(2))− θx(t)]dt + σdW(t), (22)

with initial value x(τ1) at time τ1, and the stock of pollution switches to (22) from (21).
The stock of pollution will continue to alternate between these two states ad infinitum.

We also consider the pollution flow to be constrained. This means that our controller
variable u(t) will be taking values in

[0, η] if ψ(t) = 1, or in
[η, γ] if ψ(t) = 2.

for a constant 0 ≤ η ≤ γ. So, u(t) := u(t, ψ(t)). We introduce the reward rate function
r : [0, ∞)× E×U → R, that represents the social welfare defined by

r(x, i, u) :=
√

u− a(i)x, for all (x, i, u) ∈ [0, ∞)× E×U,

whereas the cost and constraint rates are

c(x, i, u) = c1(i)x + c2(i)u for all (x, i, u) ∈ [0, ∞)× E×U,

η(x, i, θ) :=
c1(i)x
α + θ

+ q,

where q is a positive constant. Clearly, (20) satisfies Assumption 1. The infinitesimal
generator for a function v ∈ C2(R× E) is

Lu,θv(x, i) = [u− θx]
∂v(x, i)

∂x
+

1
2

σ2 ∂2v(x, i)
∂x2 +

1

∑
j=0

qijv(x, j), for x > 0 and i ∈ E.

We use w(x, i) := x2i+ 1. It is easy to verify that Lu,θw(x, i) ≤ −b1w(x, i)+ g(x, i, u, θ),
with 0 < b1 < 2θ − q1i, where g(x, i, u, θ) := b1w(x, i) + (2ux− 2θx2 + σ2)i + qi1x2.

Take b1 such that b1 − 2θ + qi1 < 0, and note that for every (x, i) ∈ R× E, (u, θ) →
g(x, i, u, θ) is continuous on the compact sets U and Θ; therefore, there exists a constant
d1 such that g(x, i, u, θ) ≤ d1 for all (x, i) ∈ R× E, u ∈ U and θ ∈ Θ. So, Assumption 2
is satisfied.
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In this problem, the payoff rate is rλ(x, i, u) := r(x, i, u)− λc(x, i, u) where λ is the
Lagrange multiplier, the α−discounted expected payoff is

V(x, i, π, r1, θ) := Eπ,θ
x,i

[∫ ∞

0
e−αtrλ(x(t), ψ(t), π)dt

]
,

and the value function is

V∗(x, i, θ) = sup
π∈Π

V(x, i, π, r1, θ). (23)

In order to find the optimal control and the value function V∗(x, i, θ) given in (23), we
need to solve (10) for each i ∈ E. The HJB equations associated with this example are

αϕ(x, 1) = sup
0≤u≤η

{√
u− a(0)x + λ

[
c1(1)x + c2(1)u− α

(
c1(1)x
α + θ

+ q
)]

+ (u− θx)
∂ϕ(x, 1)

∂x
+

1
2

σ2 ∂2 ϕ(x, 1)
∂x2 +

2

∑
j=1

q1j ϕ(x, j)
}

for all x > 0.
(24)

αϕ(x, 2) = sup
0≤u≤γ

{√
u− a(2)x + λ

[
c1(2)x + c2(2)u− α

(
c1(2)x
α + θ

+ q
)]

+ (u− θx)
∂ϕ(x, 2)

∂x
+

1
2

σ2 ∂2 ϕ(x, 2)
∂x2 +

2

∑
j=1

q2j ϕ(x, j)
}

for all x > 0.
(25)

Assuming that a solution to (24) and (25) has the form ϕ(x, i) = k1(i)x + k2(i) with

k1, k2 : E→ R measurable functions, we get ∂ϕ(x,i)
∂x = k1(i) and ∂2 ϕ(x,i)

∂x2 = 0. Replacing the
derivatives of ϕ(x, i) into (24) and (25), we obtain

k1(i) =
λθc1(i)− (α + θ)a(i)

(α + θ)2 +
∑2

j=1 qijk1(j)

α + θ
,

αk2(1) = sup
0≤u≤η

(√
u− aλ,θ,1u

)
− λαq +

2

∑
j=1

q1jk2(j), (26)

αk2(2) = sup
η≤u≤γ

(√
u− aλ,θ,1u

)
− λαq +

2

∑
j=1

q2jk2(j), (27)

with

aλ,θ,i :=
(α + θ)a(i)− λ[θc1(i) + (α + θ)2c2(i)]

(α + θ)2 +
∑2

j=1 qijk1(j)

α + θ
> 0,

Notice that the suprema in (26) and (27) are attained at

f λ
θ (1) =


1

4(aλ,θ,0)2 if 1
2
√

η < aλ,θ,0,

η if 1
2
√

η ≥ aλ,θ,0,
(28)

f λ
θ (2) =


1

4(aλ,θ,1)2 if 1
2
√

γ < aλ,θ,1,

γ if 1
2
√

γ ≥ aλ,θ,1.
(29)
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Thus, k2(·) can be written as

k2(i) =

√
f λ
θ (i)− aλ,θ,i f λ

θ (i)

α
− λq +

1
α

1

∑
j=0

qijk2(j).

By Proposition 3, the optimal control is (28) and (29), and the value function is
ϕ(x, i), i.e.,

ϕ(x, i) = V∗(x, i, θ, r) =

[
λθc1(i)− (α + θ)a(i)

(α + θ)2 +
∑1

j=0 qijk1(j)

α + θ

]
x

+

√
f λ
θ (i)− aλ,θ,i f λ

θ (i)

α
− λq +

1
α

1

∑
j=0

qijk2(j).

(30)

For the numerical experiment, we consider the particular form of (1) given by (20) to

test Algorithm 1 with Q =

(
−1 1
1 −1

)
as the generator of the continuous-time Markov

chain ψ(t) embedded within (20). Also, let x(0) = 0, T = 5, dt = 10−4, u(t, 1) = 0.5,
u(t, 2) = 1.5, σ =

√
10−10, and θ = 2.5 as the true parameter value of the pollution decay

rate. These last data allow us to simulate (20) in the interval [0, 5], and, for the sake of
comparison, it will be considered as the real model (see Figure 1). Based on this information,
m = 50, 000 discrete observations were obtained. Now, we suppose that θ is the unknown
parameter and we estimate it by means of the least square function LSE in (13) and (14).
Substituting b(x, i, u, θ) = u(t, i)− θx(t) in (13), we obtain the following estimator for each
state i ∈ E = {1, 2}.

θ(i)LSEm =

m−1

∑
k=2

uxk − xkdxk

m−1

∑
i=2

x2
k

, (31)

where dxk := 1
2

xk+1−xk−1
tk+1−tk

. Given that the dynamic system for x(t) is governed by a stochas-
tic differential equation with Markovian switching, it is not possible to have a single value
for θ, but rather a set of values (the number of these values strictly depends on the number
of jumps that occur in the interval [0, T]), which we will denote as in (31). These approxi-
mations allow us to simulate the stochastic differential equation with Markovian switching
again with the same jumps. The outputs of the approximate stochastic differential equation

with Markovian switching xθ
j
m(t) and the one with the real value for θ, xθ(t) are displayed

in Table 1.
To graph the value function V∗θ (x, i) := V∗(x, i, θ, r) given in (30) we take η = 3,

γ = 3, a(1) = 1.25, a(2) = 2, c1(1) = 100, c1(2) = 150, c2(1) = 10, c1(2) = 1.5, α = 0.2,
and q = 60, and θ(i)LSEm with m = 10000, 12500, 16667, 25000 and 5000, see Figure 2.

The symbol
(

x(t)θLSEm , f λ
θLSEm

(i), V∗θLSEm
(x, i)

)
denotes the value estimates of the dy-

namic system x(t), the optimal control f λ
θ and of the value function V∗θ when we take θLSEm

instead of θ.
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Figure 1. Asymptotic behavior of x(t)θLSEm and ψ(t).

We obtained m = 50, 000 discrete observations of (20) on [0, 5]. Given that the Markov
chain is known, the vector of jump times (τ1, τ2, τ3, τ4, τ5) is known as well. The esti-
mator used in each interval [τk, τk+1] with k = 0, 1, 2, 3, 4 and τ0 = 0 is θLSEm given
in (31). Figures 1 and 2, together with Table 1 show that, as m increases, the estimator
approaches the true parameter value θ = 2.5, and the RMSE between the estimations(

x(t)θLSEm , f λ
θLSEm

(i), V∗θLSEm
(x, i)

)
and the actual values of

(
x(t)θ , f λ

θ (i), V∗θ (x, i)
)

decreases,
thus implying a good fit.
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Figure 2. Asymptotic behavior of the optimal reward V∗θLSEm
(x(t)θLSEm , i) (vertical axis) using the

estimator θLSEm with m = 10,000, 12,500, 16,667, 25,000 and 5000.
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Table 1. Estimated processes using θLSEm and the real processes (θ = 2.5).

m RMSE RMSE RMSE RMSE

(θ− θLSEm) (xθ − xθLSEm ) ( f λ
θ (i)− f λ

θLSEm
(i))

(V∗
θ (xθ, i)−

V∗
θLSEm

(θLSEm , i))

50,000 0.00496364 0.00059318 5.72448× 10−5 5.09465

25,000 0.00497008 0.0423565 5.72228× 10−5 1707.61

16,667 3.23512 0.112074 0.00174892 2648.67

12,500 0.0049845 0.0873181 5.72787× 10−5 2518.47

10,000 0.00498072 0.10305 5.72684× 10−5 2669.93

Theorem 5.5 in [28] ensures that for a fixed point z > 0 such that

q <
ηc1(i)z
(α + θ)2 +

[θc1(i) + (α + θ)2c2(i)]γ
α(α + θ)2 for all i = 1, 2

if the inequality 1

2

√(
α(α+θ)2q−αθc1(i)z
θc1(i)+(α+θ)2c2(i)

) > a(i)
α+θ holds, then the mapping λ 7−→ V∗(z, i, θ, rλ)

admits a critical point λ∗z,θ ≡ λ∗z,θ(α, z) < 0 satisfying

aλ∗z,θ ,θ(i) =
(α + θ)a(i)− λ∗z,θ [θc1(i) + (α + θ)2c2(i)]

(α + θ)2 =
1

2
√(

α(α+θ)2q−αθc1(i)z
θc1(i)+(α+θ)2c2

) .

Therefore, every πλ∗z,θ ∈ Πλ∗z,θ is α-optimal for the DPC and V(z, i, πλ∗z,i,θ , c, θ) =

η(z, i, πλ∗z,θ , θ); in particular, the α-optimal policy for the DPC is f
λ∗z,θ
θ ∈ F∩Πλ∗z,θ of the form

f
λ∗z,θ
θ (i) =

α(α + θ)2q− αθc1(i)z
θc1(i) + (α + θ)2c2(i)

, (32)

and the α-optimal value for the DPC is given by

V∗(z, i, θ, rλ∗z,θ ) = V∗(z, πλ∗z,i,θ , θ, r)

= − a(i)z
α + θ

+
1
α

√√√√(α(α + θ)2q− αθc1(i)z
θc(i) + (α + θ)2c2(i)

)
− a(i)

α + θ

[
(α + θ)2q− θc1(i)z

θc1(i) + (α + θ)2c2(i)

]
.

(33)

5. Conclusions

We studied controlled stochastic differential equations with Markovian switching of
the form (1), where the drift coefficient depends on an unknown parameter θ ∈ Θ.

Two problems were analyzed, each one under a corresponding reward criterion: the
discounted unconstrained problems (DUP) and the discounted problem with constraints
(DPC) with optimal value functions V∗θ (x, i, r) and V∗θ (x, i, rλ), respectively. Once a suitable
procedure estimation of θ is obtained, it generates a sequence of estimators (θm)m∈N such
that θm → θ as m→ ∞, and the results obtained guarantee the following:

• For each initial state and parameter θm, V∗θm
→ V∗θ almost surely for both problems.

• For each estimation θm and problem (DUP or PDC), there are optimal policies πθm .

• There is a subsequence of policies (πθmk
)k∈N and a policy π∗θ ∈ Π such that πθmk

W→ π∗θ ,
and, moreover, π∗θ is optimal for the θ-OCP.
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• Similar to the previous point, for the DUP, there is a subsequence of policies and a

policy π∗θ ∈ Πλ,θ such that πλmk ,θmk
W→ π∗θ , and π∗θ is optimal for the θ-DUP. Moreover,

if λmk < 0 is a critical point of V∗θmk
(x, rλ), then π∗θ is optimal for the θ-DCP.

The numerical part is one of the strengths of this work. Indeed, it aims at solving an
estimation problem and a control problem. This task requires knowledge and storage of the
optimal policies πθ for all the values of θ, which may take considerable offline execution
time. In addition, we propose and implement an algorithm to approximate θ.

Finally, the idea of modeling the dynamic x(t) as a controlled diffusion process with
Markovian switchings allows us to consider extra factors or elements that affect the pol-
lution stock. Such factors could be seen, in particular, as multiple pollution sources.
An interesting task or challenge would be to pose this scenario as a multi-objective prob-
lem, where both sources of contamination and the stock require to be minimized under
certain restrictions. This could be done by adapting and defining a suitable multi-objective
linear program (convex program) and guaranteeing the existence of a saddle-point—or
Pareto optimal policy—as studied in [43,44]. Another technique, called the multi-objective
evolutionary algorithm, combines multi-objective problems with statistical techniques to
approximate the Pareto optimal as in [45]. In both cases, it is still necessary to apply extra
techniques due to the unknown parameter θ.
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Appendix A. Convergence of the HJB-Equation

Let v1, v2 : O×U ×Θ× E→ R be two functions with the same properties of the rate
functions established in Assumption 3. Furthermore, for every x ∈ Rn, k ∈ E, u ∈ U, α > 0,
functions λ and ρ in B(O), and h inW2,p(Ō × E), let

Ψ̂(x, k, u, α, λ, ρ, θ; h) :=v1(x, k, u, θ) + λ(x)[v2(x, k, u, θ)− ρ(x)]

+
n

∑
i=1

bi(x, k, u, θ)∂ih(x, k)− αh(x, k),
(A1)

where bi is the i-th component of the drift function b in (1). We also define

Lu,θh(x, k) := Ψ̂(x, k, u, α, λ, ρ, θ; h) +
1
2

n

∑
i,j=1

aij(x, k)∂2
ijh(x, k),

with a as in Assumption 1 (d). For each π ∈ Π, we denote

Ψ̂(x, k, π, α, λ, ρ, θ; h) :=
∫

U
Ψ̂(x, k, u, α, λ, ρ, θ; h)π(du|x), and
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Lπ,θh(x, k) := Ψ̂(x, k, π, α, λ, ρ, θ; h) +
1
2

n

∑
i,j=1

aij(x, k)∂2
ijh(x, k).

The framework we consider requires the interchange of limits, which is an extension
of the adaptive case of Theorem 6.1 in [28], Theorem A1 in [26], Theorem 3.4 in [46] and
Theorem 5.2 in [47].

Theorem A1. LetO be a bounded C2 domain and suppose that Assumptions 1–3 hold. In addition,
assume that there exist sequences (λm)m∈N, (ρm)m∈N ⊂ B(O), (πm)m∈N) ⊂ Π, θm ∈ Θ and
(hm)m∈N ≡ (h(·, ·, θm))m∈N ⊂ W2,p(O × E), (ξm)m∈N ⊂ Lp(O × E), with p > n (n is the
dimension of (1)), satisfying the following:

(a) Lπm ,θm hm = ξm in O × E for m = 1, 2, · · · .
(b) There exists a constant M̃1 such that ‖hm‖W2,p(O×E) ≤ M̃1 for m = 1, 2, · · · .
(c) ξm converges in Lp(O × E) to some function ξ.
(d) θm converges to some θ, Pπ,θ-a.s.
(e) ρm converges uniformly to some function ρ.

(f) πm
W→ π.

Then, there exists a function h ∈ W2,p(O × E) and a subsequence (mk : k = 1, . . . ) ⊂
{1, 2, . . . } such that hmk → h in the norm of C1,η(O × E) for η < 1− n

p as k→ ∞. Moreover,

Lπ,θh = ξ in O × E Pπ,θ − a.s. (A2)

Proof. It is known that Sobolev’s spaceW2,p(O× E) is reflexive Theorem 3.5 in [48]. Then,
by Theorem 1.17 in [48], for every M ≥ 0, the ball

H :=
{

h ∈ W2,p(O × E) : ‖h‖W2,p(O×E) ≤ M
}

(A3)

is weakly sequentially compact. On the other hand, since p > n, by Theorem 6.2 (Part III)
in [48], for 0 ≤ η < 1− n

p , the embeddingW2,p(O × E) ↪→ C1,η(O × E) is compact; hence,

it is also continuous, and thus the set H in (A3) is relatively compact in C1,η(O× E). This
fact ensures the existence of a function h ∈ W2,p(Ō × E) and a subsequence

(
hmk

)
k∈N ≡

(hm)m∈N ⊂ H such that

hm → h weakly inW2,p(O × E) and strongly in C1,η(O × E). (A4)

Now, we show that, as m→ ∞,∫
O

g(x, k)Ψ̂(x, k, πm, αm, λm, ρm, θm; hm)dx →
∫
O

g(x, k)Ψ̂(x, k, π, α, λ, ρ, θ; h)dx, Pπ,θ-a.s., (A5)

for all g ∈ L1(O × E).
To this end, recall (A1) and note that, given (x, k) ∈ O× E, functions h ∈ W2,p(O× E)

and hm ∈ H, λm, λ, ρm, ρ ∈ B(O), a pair of policies π, πm ∈ Π, and θm, θ ∈ Θ, α ≥ 0,
the following holds.

∫
O

g(x, k)
∣∣Ψ̂(x, k, πm, α, λm, ρm, θm; hm)− Ψ̂(x, k, π, α, λ, ρ, θ; h)

∣∣dx

≤
∫
O

g(x, k)|v1(x, k, πm, θm)− v1(x, k, π, θm)|dx

+
∫
O

g(x, k)|v1(x, k, π, θm)− v1(x, k, π, θ)|dx

+
∫
O

g(x, k)|λm(x)v2(x, k, πm, θm)− λm(x)v2(x, k, π, θm)|dx

+
∫
O

g(x, k)|λm(x)v2(x, k, π, θm)− λm(x)v2(x, k, π, θ)|dx
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+
∫
O

g(x, k)|λm(x)v2(x, k, π, θ)− λ(x)v2(x, k, π, θ)|dx

+
n

∑
i=1

∫
O

g(x, k)|∂ihm(x, k)[bi(x, k, πm, θm)− bi(x, k, π, θm]|dx

+
n

∑
i=1

∫
O

g(x, k)|∂ihm(x, k)[bi(x, k, π, θm)− bi(x, k, π, θ)]|dx

+
n

∑
i=1

∫
O

g(x, k)|bi(x, k, π, θ)[∂ihm(x, k)− ∂ih(x, k)]|dx

+
∫
O

g(x, k)|λm(x)[ρm(x)− ρ(x)]dx|

+
∫
O

g(x)|ρ(x)[λm(x)− λ(x)]|dx

+ α
∫
O

g(x, k)|hm(x, k)− h(x, k)|dx

Since the embedding W2,p(O × E) ↪→ C1,η(O × E) is continuous, hypothesis (b)
together with the definition of the norm ‖ · ‖C1,η(O×E) lead to

max
{
|hm|, max

1≤i≤n
|∂ihm|

}
≤ ‖hm‖C1,η(O×E) ≤ M̄‖hm‖W2,p(O×E) ≤ M̄M̃1.

On the other hand, Assumptions 1 and 3, yield that

sup
π∈Π
|b(·, ·, π, ·)|+ sup

π∈Π
|v2(·, ·, π, ·)| ≤ K(Ō × E).

Hence, ∫
O

g(x, k)
∣∣Ψ̂(x, k, πm, α, λm, ρm, θm; hm)− Ψ̂(x, k, π, α, λ, ρ, θ; h)

∣∣dx

≤
∫
O

g(x, k)|v1(x, k, πm, θm)− v1(x, k, π, θm)|dx

+ ‖g‖L1(O×E)|v1(x, k, π, θm)− v1(x, k, π, θ)|

+ |λm|
∫
O

g(x, k)|v2(x, k, πm, θm)− v2(x, k, π, θm)|dx

+ |λm|‖g‖L1(O×E)|v2(x, k, π, θm)− v2(x, k, π, θ)|

+ K(Ō × E)‖λm − λ‖B(O)‖g‖L1(O×E)

+ M̄M̃1n max
1≤i≤n

∫
O

g(x, k)|bi(x, k, πm, θm)− bi(x, k, π, θm)|dx

+ M̄M̃1n max
1≤i≤n

max
k∈E
‖g‖L1(O×E)|bi(x, k, π, θm)− bi(x, k, π, θ)|

+ ‖hm − h‖C1,η(O×E)2nK(Ō × E)‖g‖L1(O×E)

+ |λm||‖ρm − ρ‖B(O)‖g‖L1(O×E)

+ ‖ρ‖B(O)‖λm − λ‖B(O)‖g‖L1(O×E).

(A6)

Observe that v1(·, ·π, θ), v2(·, ·, π, θ) and bi(·, ·, π, θ) i = 1, · · · , n are bounded on Ō ×
E, so the weak convergence criterion can be applied. In addition to that, Assumptions 1 (a)
and 3 (a) implies that these functions are continuous on Θ. Then, hypotheses (d) to (f),
together with (A4), lead to the right-hand side of (A6) going to zero as m→ ∞ Pπ,θ almost
surely, thus proving (A5).
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The existence of the constant K(Ō × E) used for the analysis in (A6) can be also used

to claim that |σ(x, k)| ≤ K(Ō × E), then we can assert that for each g in L
p

p−1 (O × E),

1
2

∣∣∣∣∣
∫
O

g(x, k)

[
n

∑
i,j=1

aij(x, k)∂2
ijhm(x, k)−

n

∑
i,j=1

aij(x, k)∂2
ijh(x, k)

]
dx

∣∣∣∣∣ ≤
n2

2
[
K(Ō × E)

]2 n

∑
i,j=1

∣∣∣∣∫O g(x, k)
[
∂2

ijhm(x, k)− ∂2
ijh(x, k)

]
dx
∣∣∣∣

(A7)

Thus the weak convergence of (hm : m = 1, 2, . . . ) to h in W2,p(O × E) yields that
the right-hand side of (A7) converges to zero almost surely as m → ∞. Notice also that

the convergence of (A5) is also valid for all g ∈ L
p

p−1 (O × E). The reason is because

L
p

p−1 (O)× E ⊂ L1(O× E) (recall the Lebesgue measure on O is bounded). This last fact

together with (A7) and hypothesis (c), yield that for every g in L
p

p−1 (O × E),∫
O

g(x, k)
[
Lπ,θh(x, k)− ξ(x, k)

]
dx = lim

n→∞

∫
g(x, k)

[
Lπm ,θm hm(x, k)− ξm(x, k)

]
dx = 0

Pπ,θ almost surely. This fact, along with Theorem 2.10 in [49], implies (A2), i.e., Lπ,θh = ξ
Pπ,θ almost surely in O × E. This completes the proof.
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