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Abstract: A new and simple blockwise empirical likelihood moment-based procedure to test if a
stationary autoregressive process is Gaussian has been proposed. The proposed test utilizes the
skewness and kurtosis moment constraints to develop the test statistic. The test nonparametrically
accommodates the dependence in the time series data whilst exhibiting some useful properties of
empirical likelihood, such as the Wilks theorem with the test statistic having a chi-square limiting
distribution. A Monte Carlo simulation study shows that our proposed test has good control of type I
error. The finite sample performance of the proposed test is evaluated and compared to some selected
competitor tests for different sample sizes and a variety of alternative applied distributions by means
of a Monte Carlo study. The results reveal that our proposed test is on average superior under the
log-normal and chi-square alternatives for small to large sample sizes. Some real data studies further
revealed the applicability and robustness of our proposed test in practice.
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1. Introduction

In time series analysis, testing whether a time series process follows a Gaussian
distribution is customarily conducted as preliminary inference on the data before further
analysis can be performed. This makes the development and use of normality tests for
time series data a vital area in the field of applied and theoretical statistics. Various tests
for assessing consistency to Gaussianity in time series processes have been developed
and widely reported in literature (see [1–5], among others). These tests make use of
various forms of mathematical characterization of the underlying time series process in
developing the test statistics. For example, Epps [1] proposed a test based on the analysis
of the empirical characteristic function. Lobato and Velasco [2] as well as Bai and Ng [3]
developed tests based on the skewness and kurtosis coefficients. Moulines and Choukri
[6] based their test on both the empirical characteristic function as well as the skewness
and kurtosis coefficients. Bontemps and Meddahi [7] used moment conditions implied by
Stein’s characterization of the Gaussian distribution. Psaradakis and Vavra [5] proposed
a test by approximating the empirical distribution function of the Anderson Darling’s
statistic, using a sieve bootstrap approximation. On the other hand, Rao and Gabr [8]
proposed their test based on the bispectral density function.

As alluded to by Lobato and Velasco [2] as well as Bai and Ng [3], in time series
analysis, testing for normality is customarily performed by utilizing the skewness and
kurtosis tests. This is because of their lower computational cost, popularity, simplicity
and flexibility. The moment-based tests by Lobato and Velasco [2], as well as Bai and
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Ng [3], used classical measures of skewness and kurtosis involving standardized third and
fourth central moments. To handle the issues of data dependence, Lobato and Velasco [2]
used the skewness–kurtosis test statistic, but studentized by standard error estimators
that are consistent under serial dependence of the observations. On the other hand, to
cater for dependence, Bai and Ng [3] used the limiting distributions for the third and
fourth moments when the data are weakly dependent. One possible way to alleviate the
dependence problem in moment-based tests is to employ techniques that can address the
correlation that exists between the time series observations. Such techniques may include
some bootstrapping and resampling procedures. The blockwise-empirical likelihood (BEL)
technique is one such procedure that is widely used to address issues of correlated data in
time series processes (see [9]).

The use of the empirical likelihood (EL) methodology (see [10,11] for more details)
to develop simple, powerful and efficient moment-based tests for normality has received
enormous attention (see [12–15] for more insight). The application of the EL methodology
on independent and identically distributed (i.i.d.) data has been studied in a variety of
contexts, including inference on the skewness and kurtosis coefficients (see [16] for more
details), but our interest in this study concerns the application of the EL methodology on
weakly dependent time series processes. Due to the underlying dependence structure in
time series processes, the formulation of the EL usually fails, and in order to apply the EL
methodology to time series data, serial dependence among observations needs not to be
ignored. As a remedy, Kitamura [9] proposed the BEL methodology for weakly dependent
processes. This proposed technique has been shown to provide valid inference in various
scenarios with time series processes in a wide range of problems (for example, see [17–27],
among others). Similarly to the i.i.d. EL version, the BEL method creates an EL log-ratio
statistic with a chi-square limit for inference. However, the BEL construction crucially
involves blocks of consecutive observations in time, which serves to capture the underlying
time-dependence structure. It is important to note that the choice of block sizes is vital, as
it determines the coverage performance of the standard BEL methodology [9]. Thus, the
performance of the BEL is largely dependent on the choice of the block size b, which is an
integer defined on 1 ≤ b ≤ n.

In this article, we propose a goodness of fit (GoF) test statistic for Gaussianity in
weakly dependent stationary autoregressive processes of order one (AR(1)). We focused
on AR(1) processes because they are commonly encountered in the field of econometrics
as well as applied and theoretical statistics. The GoF test is constructed based on the third
and fourth moments, employing the standard BEL methodology. Thus, our proposed
procedure applies the standard BEL methodology that non-parametrically accommodates
the dependency in the time series process whilst exhibiting some useful properties of EL,
such as Wilks’s theorem. The next section will present the development of the proposed
test statistic. The article will further present the finite sample performance of our proposed
test in comparison with other existing competitor tests. Some real data applications will be
conducted and presented. Lastly, conclusions and recommendations will be drawn based
on the findings of the Monte Carlo (MC) simulations as well as the real data studies.

2. The Blockwise Empirical Likelihood Ratio Test Statistic

Let X1, X2, . . . , Xn be a sample of n consecutive equally spaced observations from
a strictly stationary, real-valued, discrete-time stochastic process {Xt : t ∈ Z} taking
values in Rd. Since this is a general definition, for this study we considered {Xt} for an
autoregressive process of order 1 model that is assumed to be stationary. Thus, we define
the autoregressive process of order 1 as given by

Xt = φXt−1 + εt,

where φ is a constant such that |φ| < 1. According to Nelson [28], Wei [29], as well as
Box et al. [30], among others, the requirement |φ| < 1 is called the stationarity condition
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for the AR(1) process. The problem of interest is to test the composite null hypothesis that
the one-dimensional marginal distribution of Xt is Gaussian, that is

H0 : Xt ∼ N(µ, σ2). (1)

Based on the observed sample Xi’s, we are interested in the alternative hypothesis
that the distribution of Xt is non-Gaussian. Without loss of generality, we then proposed
to use standardized random variables of the sample observations. To achieve this, we
adopted the common transformation technique of standardizing observed data points to
Zt by subtracting the mean (µ̂) and dividing by σ̂2. Thus, from the initial hypothesized
framework in (1), we estimate µ and σ2 by their maximum likelihood estimators, i.e.,
µ̂ = X̄ = 1/n ∑n

i=1 Xi and σ̂2 = S2 = 1/(n − 1)∑n
i=1(Xi − X̄)2. Let Zi = (Xi − X̄)/S,

i = 1, 2, . . . , n. Then, the composite null hypothesis becomes

H0 : Zt ∼ N(0, 1).

The parameter φ is unknown. Bai and Ng [3] derived and proved the limiting dis-
tribution of the sample skewness and kurtosis for a stationary time series process under
arbitrary τ and κ before extending the general results to τ = 0 (or, equivalently, µ3 = 0)
and κ = 3 (or, equivalently, µ4 = 3) under normality. Following the empirical likelihood
methodology, the rth moment of the transformed data, Zt, EZr

t , has sample moments of the
form ∑n

i=1 piZr
i , where Zt ∼ N(0, 1). The probabilities pi’s are components of the empirical

likelihood, ∏n
i=1 pi, which is used to maximize the empirical likelihood function given

empirical constraints. Under the null hypothesis that the standardized observations are
from a Gaussian distribution, the unbiased empirical moment equations are

n

∑
i=1

piZ3
i − E(Z3) =

n

∑
i=1

piZ3
i = 0

n

∑
i=1

piZ4
i − E(Z4) =

n

∑
i=1

piZ4
i − 3 = 0,

(2)

where the probability parameters pi’s fulfill the two fundamental properties of probability
theory which states that 0 ≤ pi ≤ 1 and ∑n

i=1 pi = 1. We now consider Z1, Z2 . . . , Zn for the
problem of inference about the process mean EZr

t = µr ∈ Rd. Considering the unbiased
empirical moment equations in (2), the hypotheses for the ELR test can be written as

H0 : E(Zr) = µr vs Ha : E(Zr) 6= µr. (3)

where r takes values 3 and 4. Since there is dependence in the time series data, one cannot
use the traditional EL by Owen [11], which was specifically developed for independent,
identically distributed data. Thus, the i.i.d. formulation of EL fails for dependent data
by ignoring the underlying dependence structure. Therefore, following the works of
Kitamura [9], we then adopted the standard BEL (also discussed by Nordman et al. [26],
and Kim et al. [31], among others) to construct the test statistic. The technique involves
choosing an integer block length 1 ≤ b ≤ n and forming a collection of length b data blocks,
which could possibly be maximally overlapping (OL) as given by

{(Zi, · · · , Zi+b−1)} for i = 1, 2, · · · , M with M = n− b + 1,

or non-overlapping (NOL) as given by

{(Zb(i−1)+1, · · · , Zib)} for i = 1, 2, · · · , M with M = [n/b].

In both cases, all blocks have constant length b for a given sample size n. For inference
on the mean parameter µr, each block in the OL collection i = 1, 2, · · · , M, contributes a
centered block sum given by
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Bi,µr ≡
i+b−1

∑
j=1

(Zr
j − µr), (4)

or with NOL blocks

Bi,µr ≡
bi

∑
j=b(i−1)+1

(Zr
j − µr). (5)

The blocking schemes (4) and (5) aim to preserve the underlying dependence between
neighboring time observations. We then consider the profile blockwise empirical likelihood
function for µr given as

LBEL,n(µr) = sup

{
M

∏
i=1

pi : pi ≥ 0,
M

∑
i=1

pi = 1,
M

∑
i=1

piBi,µr = 0d

}
, (6)

where 0d = (0, 0, . . . , 0)′ ∈ Rd. Under a zero-expectation constant, LBEL,n(µr) assesses the
plausibility of µr through utilizing probabilities ∑M

i=1 pi, which are assigned to the centered
block sums Bi,µr to maximize the multinomial likelihood, ∏M

i=1 pi. In the absence of the
mean constraint in (6), the maximization of the multinomial likelihood is performed when
each pi = 1/M, which leads to the corresponding BEL ratio

RBEL,n(µr) = LBEL,n(µr)/M−M.

The computation of LBEL,n(µr) for the BEL version is similar to that described by
Owen (1988, 1990) for i.i.d. data. Thus, when 0d lies within the interior convex hull of
{Bi,µr : i = 1, 2, . . . , M}, then for LBEL,n(µr) the standard Lagrange multiplier arguments
imply that the maximum is attained at probabilities

pi,µr =
1

M(1 + λBEL,n,µr Bi,µr )
∈ (0, 1), i = 1, 2, . . . , M,

with the Lagrange multiplier λBEL,n,µr Bi,µr ∈ Rd satisfying

M

∑
i=1

Bi,µr

M(1 + λBEL,n,µr Bi,µr )
= 0d.

For more computational details of this result, see Kitamura [9]. Further, Kitamura [9]
alluded that, under certain mixing and moment conditions, as well as for traditional small
b asymptotics, that is, b−1 + b2/n→ 0 as n→ ∞, the log-EL ratio of the standard BEL has a
chi-square limiting distribution. Thus, under regularity conditions that can be found in [9],
one can easily show that

− 2
n

bM
logRBEL,n(µr,0)

d−→ χ2
d, (7)

at the true mean parameter µr,0 ∈ Rd (for detailed proof, see [9]). Nordman et al. [26] as well
as Kim et al. [31] further provided a detailed rationale and explanation to support (7), that
is, the limiting distribution for the log-EL ratio of weakly dependent data has a chi-square
limiting distribution. For this log-EL ratio, (bM)−1 represents an explicit block adjustment
factor in (7) to ensure the distributional limit for the log-EL ratio of the BEL. A block length
of b = 1 results in the EL distributional result of Owen [10,11]. Our choice of the ideal block
length for the proposed test statistic is discussed in the next section. Now, let us consider the
−2 log-likelihood ratio test statistic for the null hypothesis, which is given by

(−2LLR)r = −2
n

bM
logRBEL,n(µr,0). (8)

In order to determine whether to reject or not reject H0, we used the likelihood ratio
to compare to size-adjusted critical values. Thus, for our proposed blockwise empirical
likelihood ratio test, we propose to reject the null hypothesis if
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BELT := max
r∈G

(−2LLR)r > Cα, (9)

where Cα is the critical value and r ∈ G, with G = {3, 4}. The values of G are integers
representing the third and fourth moment constraints that are used to maximize the test
statistic. Our proposed test statistic (9) is a cumulative sum (CUSUM)-type test statistic and
it is well accepted in the change point literature (for example, see [32–35]). Alternatively,
one can consider the test statistic based on the Shiryayev-Roberts (SR) approach (for
example, see [36]). However, for empirical likelihood moment-based GoF tests, it has
been demonstrated that the CUSUM-type test statistic is superior in power performance as
compared to the SR-type test statistic [12,13,15].

The classical EL method can be considered a special case of the BEL method (without
data blocking, thus, b = 1). That is when b = 1 implies both M = n− b + 1 for OL blocks
and M = n/b for NOL blocks reduces to n. Since the standard BEL method mimics the i.i.d.
case, under the condition that b = 1 one can show that (8) for (3) has a chi-square limiting
distribution. Applying the EL methodology and the Wilks theorem [37], Shan et al. [12]
showed that, under the usual classical case of the EL (with standardized data), a similar test
statistic, (−2LLR)k, for k ∈ G, with G = {3, 4, 5, 7} has a chi-square limiting distribution (for
further details, see lemma 2.1 and proposition 2.1 and their respective proofs by Shan et al. [12]).
Referring to the proofs by Owen [10,11], Nordman et al. [20] reported that the EL with i.i.d.
has a key feature in allowing a nonparametric casting of the Wilks theorem, meaning, when
evaluated at the true mean, the log-likelihood ratio has a chi-square limiting distribution. This
was first extended to the BEL method with weakly dependent processes by Kitamura [9],
who showed that a similar result for the classical EL method applies to the BEL method.
However, according to [9], the BEL method requires choosing a suitable block size b for the
optimal coverage accuracy. The next section will present a MC simulation-based approach to
determine the ideal block size for the proposed test statistic.

3. Monte Carlo Simulation Procedures
3.1. Block Size Selection

The standard implementation of the BEL method typically involves data blocks of
constant length for an observed time series and therefore requires a corresponding block
length selection. In addition, the performance of the BEL method often depends critically
on the choice of the block length. In the literature, little is known about the best block
size selection for optimal coverage accuracy with the standard BEL method. In practice,
researchers usually borrow from the block bootstrap literature, where optimal orders for
block sizes vary in powers of the sample size such as n1/3 or n1/5 (see [38,39], among
others). Additionally, data-driven block length choices also borrow from bandwidth
selection with kernel spectral density estimators such as the Bartlett kernel (see [9,40]) where
such block selections are also based on a fixed block size order (i.e., n1/3). Kitamura [9]
recommended that the empirical block selections for the BEL method should involve
estimated adjustments to the block order n1/3, and this may not in fact be optimal for
the coverage accuracy of the standard BEL method. In implementation, the block order
is usually adjusted by a constant factor, which is often set to C = 1 or 2 [31,39]. Several
studies that looked at weakly dependent time series data (both autoregressive and moving
average models) have adopted the use of the optimal block order of Cn1/3 (see [31,40],
among others).

Using R, we conducted an extensive MC experiment to establish the ideal block sizes
to use for an AR(1) process, which is our time series process of interest. To achieve this
objective, we assessed the coverage accuracy of the BEL method on inference about the
mean parameter (µ0 = 0, mean for a stationary, weakly dependent time series) at the
0.05 nominal level for different sample sizes (n = 100, 250, 500 and 1000) with varying
choices of block sizes. As investigated and alluded to by Nordman et al. [26], the coverage
accuracy of the BEL method depends on the block length b. We borrowed the works of
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Kim et al. [31] on the choice of block order adjustment, Cn1/3 and constant factor C, which
was set to C = 0.5, 1, 2 and 3. In essence, we employed four different block sizes of the form
b = Cn1/3, where C = 0.5, 1, 2, 3. Thus, we considered varying the block sizes in powers of
the sample sizes by utilizing n1/3. Under the null hypothesis, we generate data from the
following AR(1) process.

Xt = φXt−1 + εt, (10)

where εt is i.i.d. N(0, 1), and the autoregressive parameter φ takes nineteen values from
−0.9 through to 0.9 at 0.1 intervals apart. We reported the results for both the detailed grids
of negative and positive values of φ because our test statistic is proposed for applications
on −1 < φ < 1. Coverage probabilities for both the BEL method with OL and NOL blocks
were assessed. However, it is important to note that NOL blocks are known to perform
either similarly or slightly worse than the OL block versions [31]. We only opted for the
normal distribution of the error term since the EL method has been reported to have small
coverage errors in time series data for both normal and non-normal errors [41,42]. In order
to assess the overall performance of the BEL method under the several simulated scenarios,
the mean, as well as the mean average deviations, were used.

From the results (see Tables 1 and 2), we can see that under small sample sizes (i.e.,
n = 100 and 250) the standard BEL method performs well with OL blocks and block sizes
of n1/3 and 2n1/3. Under these sample sizes, the BEL method with NOL blocks performed
slightly less than the BEL method with OL blocks. In addition, from Table 2, the coverage
probabilities based on the BEL method with block sizes of 0.5n1/3 continue to be the less
accurate statistic. The performance of the BEL method with block sizes n1/3, 2n1/3 and 3n1/3

is comparable for moderate to large sample sizes (i.e., n = 500 and 1000). It is important to
note that when φ→ −0.9, the BEL method is generally conservative, and when φ→ 0.9,
the BEL method is regarded as largely permissive or anti-conservative. This poor coverage
performance was also reported in MC simulations conducted by Nordman et al. [26]. This
is a major weakness of the standard BEL method as is it sensitive to the strength of the
underlying time-dependence structure (see [20,26,31]). However, due to the simplicity,
flexibility, and wide range of applications of the standard BEL method in various applied
and theoretical statistics problems, we adopted it for our proposed test statistic. From the
simulation results, we decided to adopt block sizes n1/3 and 2n1/3 for further investigation
because of the better coverage accuracy for the BEL method for both the NOL and OL blocks.
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Table 1. Coverage probabilities for 95% BEL CIs for the mean of Xt = φXt−1 + εt (εt i.i.d. standard
normal), with n = 100, 250 for NOL and OL blocks of size b = Cn1/3 using 5000 simulations. Means
and mean average deviations (from 0.95) of coverage probabilities are indicated in bold.

NOL Blocks OL Blocks

φ 0.5n1/3 n1/3 2n1/3 3n1/3 0.5n1/3 n1/3 2n1/3 3n1/3

n = 100
−0.9 0.9998 0.9970 0.9522 0.9208 1.0000 0.9988 0.9810 0.9708
−0.8 0.9976 0.9888 0.9374 0.9098 0.9992 0.9928 0.9716 0.9528
−0.7 0.9938 0.9742 0.9266 0.8926 0.9960 0.9846 0.9588 0.9401
−0.6 0.9850 0.9636 0.9230 0.8958 0.9914 0.9762 0.9512 0.9306
−0.5 0.9778 0.9564 0.9116 0.8892 0.9846 0.9704 0.9436 0.9228
−0.4 0.9706 0.9492 0.9076 0.8820 0.9784 0.9610 0.9384 0.9176
−0.3 0.9630 0.9420 0.9072 0.8802 0.9688 0.9546 0.9322 0.9130
−0.2 0.9562 0.9370 0.9026 0.8800 0.9600 0.9486 0.9272 0.9088
−0.1 0.9504 0.9340 0.9000 0.8756 0.9530 0.9440 0.9224 0.9046

0 0.9402 0.9322 0.8924 0.8624 0.9444 0.9400 0.9258 0.8998
0.1 0.9300 0.9342 0.9054 0.8580 0.9266 0.9324 0.9088 0.8952
0.2 0.9180 0.9170 0.8948 0.8558 0.9254 0.9288 0.9064 0.8894
0.3 0.9010 0.9046 0.8896 0.8582 0.9122 0.9200 0.9026 0.8816
0.4 0.8852 0.8964 0.8848 0.8466 0.8880 0.9040 0.8996 0.8752
0.5 0.8578 0.8860 0.8794 0.8448 0.8570 0.8972 0.8868 0.8736
0.6 0.8254 0.8584 0.8634 0.8398 0.8134 0.8628 0.8748 0.8614
0.7 0.7514 0.8116 0.8274 0.8180 0.7620 0.8114 0.8478 0.8266
0.8 0.6526 0.7350 0.7824 0.7780 0.6482 0.7428 0.7896 0.7830
0.9 0.4538 0.5416 0.6438 0.6508 0.4716 0.5456 0.6474 0.6510

Mean 0.89 0.90 0.88 0.85 0.89 0.91 0.90 0.88
MAD 0.09 0.07 0.07 0.10 0.09 0.06 0.06 0.07

n = 250
−0.9 0.9870 0.9966 0.9792 0.9602 0.9924 0.9984 0.9906 0.9836
−0.8 0.9832 0.9864 0.9608 0.9398 0.9890 0.9910 0.9772 0.9628
−0.7 0.9768 0.9740 0.9490 0.9302 0.9848 0.9794 0.9678 0.9538
−0.6 0.9744 0.9658 0.9398 0.9238 0.9804 0.9732 0.9630 0.9452
−0.5 0.9708 0.9594 0.9372 0.9220 0.9768 0.9656 0.9592 0.9392
−0.4 0.9668 0.9554 0.9338 0.9200 0.9696 0.9622 0.9552 0.9356
−0.3 0.9628 0.9504 0.9326 0.9182 0.9644 0.9570 0.9524 0.9318
−0.2 0.9586 0.9450 0.9310 0.9174 0.9592 0.9518 0.9502 0.9294
−0.1 0.9532 0.9422 0.9282 0.9156 0.9538 0.9482 0.9474 0.9274

0 0.9424 0.9428 0.9298 0.9148 0.9534 0.9456 0.9344 0.9330
0.1 0.9422 0.9354 0.9246 0.9118 0.9402 0.9344 0.9322 0.9252
0.2 0.9258 0.9324 0.9224 0.9154 0.9374 0.9318 0.9304 0.9224
0.3 0.9158 0.9270 0.9130 0.9098 0.9260 0.9310 0.9308 0.9230
0.4 0.9142 0.9210 0.9228 0.9018 0.9012 0.9256 0.9296 0.9180
0.5 0.8880 0.9062 0.9126 0.9020 0.8922 0.9136 0.9158 0.9144
0.6 0.8594 0.8850 0.9088 0.8946 0.8654 0.9006 0.9050 0.9060
0.7 0.8182 0.8652 0.8918 0.8938 0.8094 0.8794 0.8968 0.9006
0.8 0.7348 0.7998 0.8558 0.8706 0.7350 0.8084 0.8692 0.8730
0.9 0.5880 0.6746 0.7578 0.7906 0.5614 0.6742 0.7664 0.8020

Mean 0.91 0.92 0.92 0.91 0.91 0.93 0.93 0.92
MAD 0.06 0.05 0.04 0.04 0.06 0.04 0.03 0.03
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Table 2. Coverage probabilities for 95% BEL CIs for the mean of Xt = φXt−1 + εt (εt i.i.d. standard
normal), with n = 500, 1000 for NOL and OL blocks of size b = Cn1/3 using 5000 simulations. Means
and mean average deviations (from 0.95) of coverage probabilities are indicated in bold.

NOL Blocks OL Blocks

φ 0.5n1/3 n1/3 2n1/3 3n1/3 0.5n1/3 n1/3 2n1/3 3n1/3

n = 500
−0.9 0.9890 0.9886 0.9768 0.9610 0.9938 0.9884 0.9826 0.9780
−0.8 0.9854 0.9800 0.9678 0.9492 0.9902 0.9821 0.9712 0.9668
−0.7 0.9810 0.9764 0.9600 0.9428 0.9870 0.9764 0.9644 0.9594
−0.6 0.9768 0.9704 0.9564 0.9398 0.9826 0.9707 0.9606 0.9556
−0.5 0.9724 0.9652 0.9518 0.9388 0.9784 0.9664 0.9560 0.9522
−0.4 0.9674 0.9630 0.9494 0.9360 0.9734 0.9631 0.9538 0.9506
−0.3 0.9460 0.9592 0.9470 0.9334 0.9704 0.9602 0.9522 0.9480
−0.2 0.9598 0.9566 0.9452 0.9316 0.9646 0.9564 0.9508 0.9462
−0.1 0.9560 0.9528 0.9444 0.9314 0.9600 0.9544 0.9490 0.9440

0 0.9486 0.9496 0.9440 0.9212 0.9498 0.9540 0.9460 0.9346
0.1 0.9426 0.9440 0.9364 0.9302 0.9478 0.9458 0.9424 0.9356
0.2 0.9442 0.9384 0.9316 0.9224 0.9324 0.9426 0.9384 0.9306
0.3 0.9234 0.9280 0.9360 0.9216 0.9238 0.9384 0.9376 0.9344
0.4 0.9096 0.9312 0.9288 0.9198 0.9142 0.9330 0.9366 0.9272
0.5 0.8836 0.9262 0.9266 0.9182 0.8926 0.9240 0.9312 0.9290
0.6 0.8676 0.9092 0.9192 0.9160 0.8690 0.9118 0.9294 0.9336
0.7 0.8264 0.8778 0.9114 0.9140 0.8168 0.8914 0.9240 0.9274
0.8 0.7408 0.8304 0.8892 0.9018 0.7448 0.8498 0.9150 0.9076
0.9 0.5626 0.7070 0.8178 0.8372 0.5862 0.7280 0.8964 0.8548

Mean 0.91 0.93 0.93 0.92 0.91 0.93 0.94 0.94
MAD 0.06 0.04 0.02 0.03 0.06 0.03 0.02 0.02

n = 1000
−0.9 0.9998 0.9860 0.9732 0.9638 1.0000 0.9868 0.9786 0.9720
−0.8 0.9944 0.9776 0.9660 0.9504 0.9966 0.9792 0.9668 0.9586
−0.7 0.9830 0.9720 0.9606 0.9470 0.9878 0.9732 0.9600 0.9524
−0.6 0.9750 0.9664 0.9562 0.9430 0.9776 0.9690 0.9564 0.9500
−0.5 0.9676 0.9616 0.9540 0.9416 0.9722 0.9642 0.9522 0.9482
−0.4 0.9618 0.9598 0.9524 0.9402 0.9680 0.9604 0.9502 0.9454
−0.3 0.9570 0.9568 0.9508 0.9386 0.9634 0.9572 0.9484 0.9450
−0.2 0.9530 0.9552 0.9490 0.9380 0.9592 0.9550 0.9474 0.9440
−0.1 0.9502 0.9524 0.9480 0.9374 0.9560 0.9534 0.9454 0.9418

0 0.9504 0.9488 0.9422 0.9404 0.9486 0.9570 0.9442 0.9414
0.1 0.9428 0.9442 0.9404 0.9406 0.9432 0.9494 0.9482 0.9442
0.2 0.9402 0.9450 0.9368 0.9396 0.9380 0.9472 0.9452 0.9464
0.3 0.9256 0.9354 0.9464 0.9348 0.9332 0.9428 0.9436 0.9372
0.4 0.9216 0.9360 0.9430 0.9318 0.9250 0.9334 0.9360 0.9414
0.5 0.9148 0.9324 0.9338 0.9368 0.9166 0.9296 0.9374 0.9402
0.6 0.8856 0.9246 0.9294 0.9284 0.8722 0.9194 0.9344 0.9360
0.7 0.8412 0.9064 0.9306 0.9288 0.8550 0.9012 0.9290 0.9264
0.8 0.7870 0.8696 0.9066 0.9186 0.7814 0.8652 0.9030 0.9124
0.9 0.6516 0.7660 0.8492 0.8882 0.6476 0.7626 0.8628 0.8842

Mean 0.92 0.94 0.94 0.94 0.92 0.94 0.94 0.94
MAD 0.05 0.03 0.02 0.02 0.05 0.03 0.02 0.01

3.2. Finite Sample Performance

This section compares the finite sample behavior of the proposed testing procedure in
different situations. The R statistical package was used for all MC simulations. In order to
conduct the MC power study, firstly we had to compute the φ and size-adjusted critical
values of the proposed test. The rationale behind having φ dependent critical values is
that in addition to sample size, the type I error control for weakly dependent time series
process is heavily dependent on φ (for example, see [43]). We simulated an AR(1) model
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with normal errors. Without a loss of generality, we generated 20,000 samples of size 100,
500 and 1000 with φ taking values 0,±0.1,±0.2,±0.3,±0.4,±0.5,±0.6,±0.7,±0.8 and ±0.9.
These simulations were conducted for both the BEL with NOL and OL blocks for block
sizes n1/3 and 2n1/3. The upper alpha quantile of the empirical distribution of the test
statistic was considered the critical value for each simulated scenario. These critical values
are correct only if the AR(1) model is the data-generating process and the errors are indeed
normal (for example, see [44]).

Under the null hypothesis, we generate data from an AR(1) process defined in (10),
where the autoregressive parameter φ ∈ {0,±0.5, 0.6, 0.7, 0.8,±0.9} (similar to [2,4]). We
report the findings for a detailed grid of positive values of φ because positive autocorrelation
is particularly relevant for many empirical applications. The error terms εt are i.i.d. random
variables, which may follow any of the following seven alternative distributions:

• Standard normal (N(0, 1)),
• Standard log-normal (Log N),
• Student t with 10 degrees of freedom (t10),
• Chi-squared with 1 (χ2

1) and 10 degrees of freedom (χ2
10),

• Beta with parameters (2, 1) (β(2, 1)),
• Uniform on [0, 1] (U(0, 1)).

To simulate the process defined in (10), we generated independent realizations for these
distributions. When φ 6= 0, the process in (10) is not stationary. To cater to this challenge, we
adopted the approach used by Nieto-Reyes et al. [4] of disposing some past observations. We
set our past to 1000 and n = number of replications—past. These alternative distributions have
been used before for similar purposes (see [2,4]). Before the main power study, we conducted
a MC experiment to further establish the block size (i.e., n1/3 or 2n1/3) and the BEL block
structure (i.e., NOL or OL) that will result in the optimal power for our proposed test. In
Table 3, we report the empirical rejection probabilities for the proposed tests with NOL and
OL blocks for block sizes n1/3 and 2n1/3. We considered three sample sizes, n = 100, 500 and
1000, with φ ∈ {0,±0.5, 0.6, 0.7, 0.8,±0.9}. Four alternative distributions (i.e., Log N, t10, χ2

10
and U(0, 1)) for the error term were used. In these experiments, 5000 replications were carried
out at a nominal level of α = 0.05. The main conclusion derived from these experiments is
that the BEL statistic with both the NOL and OL blocks and a block size of n1/3 were generally
superior under almost all the simulated cases. The proposed procedure for the NOL and OL
blocks gave comparable power. Due to the latter, we decided to adopt OL blocks with block
sizes n1/3. Our choice of block sizes was also recommended and used by Kitamura [9] and
also, as stated earlier, NOL blocks are known to perform either similarly or slightly worse than
the OL block versions [31].
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Table 3. Empirical rejection probabilities of the process defined in (10) for NOL and OL blocks with
varying block sizes at the 0.05 nominal level for n = 100, 500, 1000 using 5000 replications.

NOL Blocks OL Blocks

φ b Log N t(10) χ2
10 U(0, 1) Log N t(10) χ2

10 U(0, 1)

n = 100
−0.9 n1/3 0.0636 0.0474 0.0670 0.0512 0.0240 0.0460 0.0470 0.0564

2n1/3 0.0986 0.0502 0.0676 0.0468 0.0382 0.0486 0.0616 0.0652
−0.5 n1/3 0.9884 0.0632 0.5088 0.2832 0.9928 0.0620 0.5098 0.2908

2n1/3 0.9806 0.0542 0.4582 0.2484 0.9846 0.0538 0.4578 0.2630
0 n1/3 1.0000 0.0690 0.8842 0.9996 1.0000 0.0772 0.8730 0.9988

2n1/3 1.0000 0.0518 0.8464 0.9948 1.0000 0.0586 0.8250 0.9938
0.5 n1/3 0.9996 0.0544 0.4812 0.4612 1.0000 0.0532 0.4456 0.4244

2n1/3 0.9984 0.0396 0.3624 0.4046 0.9954 0.0452 0.3272 0.3836
0.6 n1/3 0.9964 0.0544 0.3000 0.2486 0.9948 0.0456 0.3064 0.2146

2n1/3 0.9896 0.0314 0.2196 0.2328 0.9764 0.0470 0.2346 0.2208
0.7 n1/3 0.9672 0.0470 0.1978 0.1198 0.9542 0.0506 0.1924 0.1218

2n1/3 0.9226 0.0400 0.1204 0.1206 0.8884 0.0476 0.1282 0.1124
0.8 n1/3 0.7766 0.0516 0.1048 0.0656 0.7674 0.0518 0.0998 0.0612

2n1/3 0.6770 0.0260 0.0720 0.0760 0.6450 0.0420 0.0706 0.0728
0.9 n1/3 0.3268 0.0562 0.0596 0.0858 0.3284 0.1012 0.0595 0.0828

2n1/3 0.3118 0.0490 0.0558 0.0552 0.2928 0.0770 0.0520 0.0544
n = 500

−0.9 n1/3 0.7696 0.0496 0.1158 0.0600 0.6694 0.0442 0.1060 0.0652
2n1/3 0.7984 0.0490 0.1288 0.0550 0.6254 0.0462 0.1146 0.0562

−0.5 n1/3 1.0000 0.0974 0.9988 0.9186 1.0000 0.0974 0.9990 0.9282
2n1/3 1.0000 0.0808 0.9986 0.8860 0.9994 0.0892 0.9992 0.8962

0 n1/3 1.0000 0.4280 1.0000 1.0000 1.0000 0.4474 1.0000 1.0000
2n1/3 1.0000 0.3596 1.0000 1.0000 1.0000 0.4050 1.0000 1.0000

0.5 n1/3 1.0000 0.2174 0.9982 0.9906 1.0000 0.2280 0.9990 0.9914
2n1/3 1.0000 0.1954 0.9972 0.9880 1.0000 0.1818 0.9960 0.9842

0.6 n1/3 1.0000 0.1332 0.9778 0.7884 1.0000 0.1364 0.9730 0.7884
2n1/3 1.0000 0.1090 0.9656 0.7754 1.0000 0.1156 0.9618 0.7704

0.7 n1/3 1.0000 0.0802 0.8274 0.3436 1.0000 0.0802 0.8420 0.3524
2n1/3 1.0000 0.0738 0.7862 0.3622 1.0000 0.0730 0.7890 0.3512

0.8 n1/3 1.0000 0.0572 0.4684 0.1204 1.0000 0.0600 0.4742 0.1092
2n1/3 1.0000 0.0516 0.4388 0.1310 0.9998 0.0506 0.4166 0.1248

0.9 n1/3 0.9610 0.0576 0.1576 0.0558 0.9616 0.0518 0.1404 0.0490
2n1/3 0.9508 0.0484 0.1242 0.0564 0.9466 0.0462 0.1254 0.0516

n = 1000
−0.9 n1/3 0.9832 0.0562 0.2254 0.0556 0.9836 0.0482 0.2190 0.0632

2n1/3 0.9842 0.0520 0.2448 0.0526 0.9696 0.0502 0.2130 0.0482
−0.5 n1/3 1.0000 0.1926 1.0000 1.0000 1.0000 0.2130 1.0000 1.0000

2n1/3 1.0000 0.1862 1.0000 0.9974 1.0000 0.1770 1.0000 0.9986
0 n1/3 1.0000 0.8058 1.0000 1.0000 1.0000 0.8220 1.0000 1.0000

2n1/3 1.0000 0.7844 1.0000 1.0000 1.0000 0.7946 1.0000 1.0000
0.5 n1/3 1.0000 0.4934 1.0000 1.0000 1.0000 0.4788 1.0000 1.0000

2n1/3 1.0000 0.4656 0.9998 0.9970 1.0000 0.4860 1.0000 1.0000
0.6 n1/3 1.0000 0.2872 1.0000 0.9782 1.0000 0.3018 1.0000 0.9818

2n1/3 1.0000 0.2710 0.9936 0.9768 1.0000 0.2882 0.9998 0.9754
0.7 n1/3 1.0000 0.1354 0.9862 0.6346 1.0000 0.1422 0.9852 0.6174

2n1/3 1.0000 0.1296 0.9790 0.6280 1.0000 0.1426 0.9846 0.6170
0.8 n1/3 1.0000 0.0746 0.7962 0.1862 1.0000 0.0654 0.7786 0.1744

2n1/3 1.0000 0.0720 0.7476 0.1912 1.0000 0.0652 0.7372 0.1840
0.9 n1/3 0.9992 0.0474 0.2714 0.0610 0.9994 0.0530 0.2564 0.0658

2n1/3 0.9966 0.0472 0.2330 0.0608 0.9992 0.0500 0.2388 0.0606
Note: Bold represents the most powerful test under the respective simulated scenario.
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For the main power comparison study, we considered some well-known existing
procedures to test if a stationary process is Gaussian. We adopted 3 (three) competitor tests,
namely the Epps and Pulley (EPPS) test (see [1] for more details), the Lobato and Velasco
(LV) test (see [2] for further insight) and the Psaradakis and Vavra (PV) test (see [5] for
further insight). These tests have been considered in other studies where power compar-
isons have been conducted, and these include studies by Lobato and Velasco [2] as well as
Nieto-Reyes et al. [4]. Our choice of competitor tests was also limited to the availability
of the tests in R as well as tests that reasonably control type I error. The results of the MC
power study are presented in Tables 4–6. We report the empirical rejection probabilities for
the proposed blockwise empirical likelihood ratio test, with OL blocks of size n1/3 (referred
to as BELT henceforth). As in the previous MC simulation experiment, we considered three
sample sizes, n = 100, 500 and 1000, with φ ∈ {0,±0.5, 0.6, 0.7, 0.8,±0.9}. Seven alternative
distributions for the error term were used (i.e., N(0, 1), Log N, t10, χ2

1, χ2
10, β(2, 1) and

U(0, 1) as defined earlier). Each simulation scenario was repeated 5000 times at a nominal
level of α = 0.05.

Table 4. Empirical rejection probabilities of the process defined in (10) at the 0.05 nominal level for
n = 100 using 5000 replications.

Rejection Rates for n = 100
φ Test N(0, 1) Log N t10 χ2

1 χ2
10 β(2,1) U(0, 1)

−0.9 BELT 0.0474 0.0226 0.0478 0.0280 0.0684 0.0514 0.0574
EPPS 0.1268 0.0534 0.1216 0.0728 0.1226 0.1438 0.1574
LV 0.0284 0.1454 0.0316 0.0892 0.0400 0.0224 0.0234
PV 0.0628 0.2972 0.0640 0.1642 0.0880 0.0824 0.0302

−0.5 BELT 0.0530 0.9950 0.0610 0.9966 0.4956 0.4862 0.2932
EPPS 0.0712 0.6810 0.0532 0.8528 0.2044 0.4840 0.5538
LV 0.0456 0.9994 0.1896 0.9988 0.4794 0.1698 0.0096
PV 0.0482 0.9984 0.1286 0.9980 0.3584 0.3780 0.2664

0 BELT 0.0468 1.0000 0.0552 1.0000 0.8868 0.9576 0.9978
EPPS 0.0632 0.9672 0.0858 0.9960 0.5426 0.9706 0.9948
LV 0.0428 1.0000 0.2950 1.0000 0.7820 0.7460 0.5446
PV 0.0484 1.0000 0.1568 1.0000 0.8048 0.9820 0.9602

0.5 BELT 0.0510 0.9998 0.0532 0.9996 0.4534 0.3762 0.4248
EPPS 0.0732 0.8566 0.0646 0.9598 0.2658 0.5590 0.5668
LV 0.0342 0.9978 0.1578 0.9984 0.4160 0.1030 0.0002
PV 0.0384 0.9998 0.0862 0.9992 0.4040 0.4242 0.1100

0.6 BELT 0.0554 0.9960 0.0520 0.9962 0.3084 0.2122 0.2214
EPPS 0.0750 0.6182 0.0610 0.8188 0.1990 0.3596 0.3392
LV 0.0332 0.9872 0.1204 0.9738 0.2848 0.0676 0.0020
PV 0.0660 0.9932 0.0826 0.9864 0.2932 0.2108 0.0510

0.7 BELT 0.0524 0.9624 0.0500 0.9494 0.1986 0.1540 0.1064
EPPS 0.0798 0.3232 0.0664 0.4846 0.1462 0.2170 0.2158
LV 0.0324 0.9050 0.0832 0.8292 0.1646 0.0382 0.0028
PV 0.0600 0.9340 0.0868 0.8900 0.1520 0.0846 0.0326

0.8 BELT 0.0482 0.7980 0.0488 0.7238 0.0952 0.0986 0.0606
EPPS 0.1104 0.1464 0.0972 0.2038 0.1308 0.1576 0.1636
LV 0.0154 0.6246 0.0408 0.4400 0.0658 0.0240 0.0050
PV 0.0648 0.6964 0.0684 0.5388 0.0920 0.0692 0.0546

0.9 BELT 0.0522 0.4330 0.0502 0.2026 0.0576 0.1026 0.0874
EPPS 0.1708 0.1304 0.1474 0.1390 0.1516 0.1832 0.1844
LV 0.0092 0.1750 0.0142 0.0836 0.0184 0.0048 0.0002
PV 0.0782 0.3020 0.0744 0.1830 0.0840 0.0642 0.0324

Note: Bold represents the most powerful test under the respective simulated scenario.
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The findings in Tables 4–6 shows that our proposed test, the BELT, has good control of
type I error as compared to all other tests considered. For small samples (i.e., n = 100), the
BELT test was superior under the χ2

1 alternative distribution (see Table 4). The BELT and
PV tests were on average the most powerful under the Log N alternative distribution. The
BELT test was superior under the χ2

10, whilst the EPPS test was superior under the β(2, 1)
and U(0, 1) alternative distributions. The LV test was overly the most powerful test under
the t10 distribution. Our proposed test was on average the second most superior test under
the β(2, 1) and U(0, 1) distributions.

For medium sample sizes of n = 500 (see Table 5), our proposed test overly outper-
formed all tests under Log N, χ2

1, χ2
10 and β(2, 1) alternatives. However, under the Log N

distribution, our proposed test is comparable to the LV test. On the other hand, the LV
test was generally superior to all other tests under the t10 alternative distribution. Our
proposed test was generally the second most powerful test under the U(0, 1) alternative
distribution. The EPPS and PV tests are on average the least powerful tests.

Table 5. Empirical rejection probabilities of the process defined in (10) at the 0.05 nominal level for
n = 500 using 5000 replications.

Rejection Rates for n = 500
φ Test N(0, 1) Log N t10 χ2

1 χ2
10 β(2,1) U(0, 1)

−0.9 BELT 0.0490 0.6774 0.0478 0.4806 0.1046 0.0904 0.0538
EPPS 0.0760 0.3736 0.0594 0.2214 0.0694 0.0896 0.0986
LV 0.0692 0.8852 0.0866 0.6136 0.1222 0.0728 0.0562
PV 0.0460 0.7134 0.0780 0.3820 0.0630 0.0660 0.0492

−0.5 BELT 0.0466 1.0000 0.0888 1.0000 0.9986 0.9992 0.9248
EPPS 0.0604 0.9998 0.1372 1.0000 0.7692 0.9900 0.9928
LV 0.0422 1.0000 0.4564 1.0000 0.9942 0.9968 0.9638
PV 0.0558 1.0000 0.2216 1.0000 0.9680 0.9954 0.9570

0 BELT 0.0560 1.0000 0.3856 1.0000 1.0000 1.0000 1.0000
EPPS 0.0554 1.0000 0.3266 1.0000 0.9976 1.0000 1.0000
LV 0.0452 1.0000 0.7436 1.0000 1.0000 1.0000 1.0000
PV 0.0452 1.0000 0.4938 1.0000 1.0000 1.0000 1.0000

0.5 BELT 0.0520 1.0000 0.1900 1.0000 0.9958 0.9982 0.9888
EPPS 0.0610 1.0000 0.1494 1.0000 0.8748 0.9972 0.9948
LV 0.0430 1.0000 0.4528 1.0000 0.9938 0.9960 0.9708
PV 0.0384 1.0000 0.2072 1.0000 0.9930 0.9980 0.9196

0.6 BELT 0.0542 1.0000 0.1218 1.0000 0.9766 0.9226 0.7842
EPPS 0.0596 0.9994 0.1040 1.0000 0.7276 0.9060 0.8186
LV 0.0482 1.0000 0.3238 1.0000 0.9558 0.8890 0.4742
PV 0.0420 1.0000 0.1386 0.9990 0.9274 0.9172 0.4590

0.7 BELT 0.0534 1.0000 0.0856 1.0000 0.8334 0.6234 0.3440
EPPS 0.0634 0.9998 0.0824 1.0000 0.4724 0.5792 0.4224
LV 0.0414 1.0000 0.2088 1.0000 0.7392 0.4152 0.0690
PV 0.0480 0.9970 0.1074 0.9968 0.7186 0.5494 0.0842

0.8 BELT 0.0512 1.0000 0.0742 1.0000 0.4812 0.2648 0.1168
EPPS 0.0850 0.9812 0.0728 0.9622 0.2554 0.2584 0.1844
LV 0.0410 1.0000 0.1174 0.9988 0.3758 0.1288 0.0166
PV 0.0514 0.9896 0.0752 0.9920 0.3744 0.2070 0.0308

0.9 BELT 0.0450 0.9582 0.0422 0.8414 0.1450 0.0878 0.0584
EPPS 0.1174 0.5838 0.0962 0.4574 0.1516 0.1580 0.1430
LV 0.0176 0.8318 0.0384 0.5552 0.0688 0.0218 0.0100
PV 0.0452 0.5176 0.0720 0.3350 0.0212 0.0104 0.0072

Note: Bold represents the most powerful test under the respective simulated scenario.

For large samples (n = 1000 in Table 6), the BELT and LV tests are the most superior
under the Log N alternative distribution. When the alternative was t10, the LV test was on
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average the most powerful test. Our proposed test, the BELT, was the most superior test
under the χ2

1, χ2
10 and β(2, 1) alternative distributions. The EPPS test was on average the

most powerful under the U(0, 1) distribution, with the BELT test being the second most
powerful test.

Table 6. Empirical rejection probabilities of the process defined in (10) at the 0.05 nominal level for
n = 1000 using 5000 replications.

Rejection Rates for n = 1000
φ Test N(0, 1) Log N t10 χ2

1 χ2
10 β(2,1) U(0, 1)

−0.9 BELT 0.0510 0.9816 0.0474 0.9098 0.2172 0.1236 0.0646
EPPS 0.0688 0.7914 0.0542 0.4806 0.0822 0.0786 0.0990
LV 0.0910 0.9920 0.1182 0.8958 0.2408 0.1294 0.0684
PV 0.0590 0.9240 0.0520 0.6160 0.0840 0.0450 0.0520

−0.5 BELT 0.0480 1.0000 0.2096 1.0000 1.0000 1.0000 1.0000
EPPS 0.0544 1.0000 0.2508 1.0000 0.9784 1.0000 1.0000
LV 0.0464 1.0000 0.6976 1.0000 1.0000 1.0000 1.0000
PV 0.0520 1.0000 0.4010 1.0000 1.0000 1.0000 1.0000

0 BELT 0.0496 1.0000 0.8112 1.0000 1.0000 1.0000 1.0000
EPPS 0.0572 1.0000 0.5934 1.0000 1.0000 1.0000 1.0000
LV 0.0488 1.0000 0.9422 1.0000 1.0000 1.0000 1.0000
PV 0.0480 1.0000 0.7910 1.0000 1.0000 1.0000 1.0000

0.5 BELT 0.0560 1.0000 0.4866 1.0000 1.0000 1.0000 1.0000
EPPS 0.0560 1.0000 0.2586 1.0000 0.9940 1.0000 1.0000
LV 0.0488 1.0000 0.6720 1.0000 1.0000 1.0000 1.0000
PV 0.0490 1.0000 0.3960 1.0000 1.0000 1.0000 1.0000

0.6 BELT 0.0442 1.0000 0.3028 1.0000 1.0000 1.0000 0.9798
EPPS 0.0572 1.0000 0.1738 1.0000 0.9592 0.9972 0.9826
LV 0.0438 1.0000 0.4970 1.0000 0.9996 1.0000 0.9722
PV 0.0590 0.9994 0.2300 1.0000 0.9998 0.9992 0.8800

0.7 BELT 0.0552 1.0000 0.1394 1.0000 0.9888 0.9202 0.6256
EPPS 0.0618 0.9998 0.1016 1.0000 0.7678 0.8564 0.6302
LV 0.0470 1.0000 0.3144 1.0000 0.9774 0.8898 0.3628
PV 0.0490 1.0000 0.1404 0.9990 0.9580 0.9072 0.2490

0.8 BELT 0.0468 1.0000 0.0690 1.0000 0.7744 0.4996 0.1740
EPPS 0.0744 1.0000 0.0754 0.9996 0.4172 0.4036 0.2364
LV 0.0510 1.0000 0.1512 1.0000 0.6782 0.3184 0.0408
PV 0.0622 0.9930 0.0880 0.9924 0.6550 0.3826 0.0430

0.9 BELT 0.0496 1.0000 0.0536 0.9886 0.2578 0.1454 0.0652
EPPS 0.0902 0.9200 0.0882 0.7720 0.1780 0.1624 0.1220
LV 0.0362 0.9924 0.0538 0.9008 0.1550 0.0624 0.0120
PV 0.0514 0.5760 0.0560 0.4746 0.0008 0.0006 0.0002

Note: Bold represents the most powerful test under the respective simulated scenario.

In order to obtain a clearer visualization of the performance of the different tests, the
ranking procedure was used (for example, see [15]). Table 7 shows the ranking of all the
tests considered in this study according to the average powers computed from the values
in Tables 4–6. The rank of power is based on the respective alternative distributions and
sample sizes. Using average powers, we can select the tests that are, on average, most
powerful against the respective alternative distributions. One of the major findings derived
from the ranking is that on average our proposed test was superior under the Log N, χ2

1
and χ2

10 for small to large samples.
Lastly, we decided to determine the computational cost of the new algorithm by focus-

ing on the computational time of the proposed test as compared to that of the competitor
tests. For accessing and comparing the computational times, we opted for the R benchmark.
These experiments were conducted using a notebook installed with 64 Bit Windows 10
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Home edition. The processor was a 4th generation Intel Core i5-4210U, which has a speed
of 1.7 GHz cache and random access memory of 4GB PC3 DDR3L SDRAM. The sample
size was set to 100 with 1000 replications for each test where φ = 0.5 under a chi-square
alternative distribution with 1 degree of freedom. The results (see Table 8) show a clear
advantage of our proposed approach to that of the PV test.

Table 7. Ranking of tests using average powers computed from the empirical rejection probabilities
in Tables 4–6 for n = 100, 500 and 1000.

Power Rankings
n Ranking Log N t10 χ2

1 χ2
10 β(2,1) U(0, 1)

100 1 BELT, PV LV BELT BELT EPPS EPPS
2 LV EPPS, PV PV LV, PV BELT, PV BELT
3 EPPS BELT LV EPPS LV PV
4 EPPS LV

500 1 BELT, LV LV BELT BELT BELT,EPPS EPPS
2 PV PV LV LV PV, LV BELT
3 EPPS BELT PV, EPPS PV PV, LV
4 EPPS EPPS

1000 1 BELT, LV LV BELT BELT BELT EPPS
2 PV, EPPS PV, BELT LV LV EPPS BELT
3 EPPS EPPS, PV PV LV, PV LV
4 EPPS PV

Table 8. Comparisons of computational times (in seconds) for the studied tests.

Test Replications Elapsed Relative User.self Sys.self

BELT 1000 13.91 5.434 13.31 0.59
EPPS 1000 8.09 3.160 7.40 0.66

LV 1000 2.56 1.000 2.47 0.09
PV 1000 1394.86 544.867 1381.02 13.16

4. Real Data Applications
4.1. The Canadian Lynx Data

Firstly, we used the Canadian lynx dataset, which has been extensively used in various
statistical applications and previously found to be non-Gaussian [1,4,8]. The dataset has
been shown to model well with an autoregressive time series process (see [45–47], among
others). The Canadian lynx dataset consists of 114 observations of the annual record of the
number of lynxes trapped in the Mackenzie River district of North-West Canada for the
period from 1821 to 1934 (see [45] for more details). The Canadian lynx data are

269, 321, 585, 871, 1475, 2821, 3928, 5943, 4950, 2577, 523, 98, 184, 279, 409, 2285, 2685,
3409, 1824, 409, 151, 45, 68, 213, 546, 1033, 2129, 2536, 957, 361, 377, 225, 360, 731, 1638, 2725,
2871, 2119, 684, 299, 236, 245, 552, 1623, 3311, 6721, 4254, 687, 255, 473, 358, 784, 1594, 1676,
2251, 1426, 756, 299, 201, 229, 469, 736, 2042, 2811, 4431, 2511, 389, 73, 39, 49, 59, 188, 377,
1292, 4031, 3495, 587, 105, 153, 387, 758, 1307, 3465, 6991, 6313, 3794, 1836, 345, 382, 808,
1388, 2713, 3800, 3091, 2985, 3790, 674, 81, 80, 108, 229, 399, 1132, 2432, 3574, 2935, 1537, 529,
485, 662, 1000, 1590, 2657, 3396.

The goal of this section was to carry out a bootstrap study to assess the robustness and
applicability of our proposed test in practice. The approach was to use a sample of size 100
by randomly selecting from the Canadian lynx data and then test for normality at 0.05 level
of significance. Before the bootstrap study, we conducted the augmented Dickey–Fuller
test for stationary assumption on the complete dataset. The augmented Dickey–Fuller Test
(Dickey–Fuller = −6.31, p-value = 0.01) revealed that the Canadian lynx data are stationary.
We then used a graphical approach to access the normality and the findings (see Figure 1)
support the findings reported by Rao and Gabr [8], Epps [1] as well as Nieto-Reyes et al. [4]
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that the data are indeed non-normal. Having confirmed that the data are stationary and
non-Gaussian, we then employed a bootstrap technique using the proposed test where we
randomly removed 14 observations of the Canadian lynx data and then derived the p-value
from the remaining observations. We also repeated this technique 5000 times for the EPPS
and LV tests. We considered these tests because they performed quite well in our MC power
study. The findings showed that the proposed BELT test had a p-value of 3.846× 10−4.
The p-values that were obtained for the other tests, that is, 6.028× 10−5 for the EPPS test
and 1.558× 10−3 for the LV test, were all suggestive for one to conclude that the Canadian
lynx data are indeed non-Gaussian. The p-values obtained from the traditional tests as
well as our proposed test proved to be consistent in illustrating the non-normality of the
Canadian lynx data. Thus, our proposed test statistic has demonstrated robustness and
that it is applicable when applied to some non-Gaussian real-life data.
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Figure 1. Diagnostic plots for the Canadian lynx data. The upper plot shows a time-series plot,
which reveals evidence of stationarity. The middle plots are the histogram (middle-left) and the
quantile–quantile plot (middle-right), and both plots suggest that the time series process has a non-
normal distribution. The lower plots show the autocorrelation functions, and for both plots, the
autocorrelations are close to zero, giving further evidence of stationarity.

4.2. The Souvenir Data

This real data study intends to demonstrate the practical applicability of our proposed
test under a normally distributed time series process using 84 monthly sales for a souvenir
shop at a beach resort town in Queensland, Australia (see [48] for more details). These sales
were recorded from January 1987 to December 1993 and have been used for various time
series applications (for example, see [49,50], among others). However, the time series data are
not consistent with the normal distribution and are not stationary [49]. To verify these claims,
we conducted tests for the Gaussianity and stationarity of a time series process using the k
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random projections test and the augmented Dickey–Fuller test, respectively. We supplemented
these tests with diagnostic plots for assessing the stationarity and normality in time series
processes (see Figure 2).
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Figure 2. Diagnostic plots for the souvenir data. The upper plot shows a time-series plot, which
reveals evidence of non-stationarity. The middle plots are the histogram (middle-left) and the
quantile–quantile plot (middle-right), and both plots suggest that the time series process has a
non-normal distribution. The lower plots show the autocorrelation functions.

The results revealed that the monthly sales for the souvenir shop do not follow a Gaus-
sian process (k = 16, p-value < 2.2× 10−16) and are not stationary (Dickey–Fuller = −2.0809,
p-value = 0.5427), which is a similar finding reported by the graphical plots presented
in Figure 2. Since the goal is to examine the performance of our proposed test under a
normally distributed time series process, we used the Holt–Winters exponential smoothing
to obtain the forecast errors for the monthly sales of the souvenir shop, which are well-
known to be stationary and consistent with normality [49]. The Holt–Winters exponential
smoothing was ideal because the time series process of the log of monthly sales for the
souvenir shop can be described using an additive model with a trend and seasonality. Thus,
to obtain the forecasts, we fitted a predictive model for the log of the monthly sales. We
then obtained the forecast errors (n = 72) and used the same testing procedures reported
earlier to assess whether these errors are indeed normally distributed and stationary.

From the plots (see Figure 3), it is clear that the forecast errors are normally distributed
and stationary. The k random projections test (k = 16, p-value = 0.7923) and the augmented
Dickey–Fuller test (Dickey–Fuller = −4.5942, p-value = 0.01) also revealed that the forecast
errors follow a Gaussian process and are stationary. To demonstrate the robustness and
applicability of our proposed test, we conducted a bootstrap study (using 5000 replications)
by randomly deleting two observations at a time in order to test whether the forecast errors
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follow a Gaussian process. For the sake of comparison, this procedure was repeated for
each of the selected competitor tests. The respective p-values were noted under the null
hypothesis that the forecast errors follow a Gaussian process. At 5% level of significance,
our proposed test reported a p-value of 0.6418158, whilst the EPPS, LV and PV tests reported
p-values of 0.3776963, 0.7008432 and 0.611926, respectively. Thus, our proposed test as well
as the selected competitor tests suggest that the forecast errors of the monthly sales for
the souvenir shop follow a Gaussian process. This is consistent with the graphical plots
presented in Figure 3 as well as past applications [49]. This real data study has further
demonstrated the robustness and applicability of our proposed test in practice.
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Figure 3. Diagnostic plots for the souvenir forecast errors. The upper plot shows a time-series
plot, which reveals evidence of stationarity. The middle plots are the histogram (middle-left) and
the quantile–quantile plot (middle-right), both plots suggest that the time series process has a
normal distribution. The lower plots show the autocorrelation functions, and for both plots, the
autocorrelations are close to zero, giving further evidence of stationarity.

5. Conclusions

A simple BEL-based procedure to test if a stationary autoregressive time process
is Gaussian has been proposed. Coefficients of skewness and kurtosis provide conve-
nient measures for characterizing the shape of the normal distribution in time series
processes [2,3]. Our proposed test utilizes these moment constraints (i.e., the skewness
and kurtosis coefficients) to develop the test statistic. The test applies the standard BEL
methodology (see [9] for more details) that nonparametrically handles the dependence
in the time series data. The test statistic has a chi-square limiting distribution and has
good control of type I error as compared to the existing traditional competitor tests studied.
Monte Carlo simulations have shown that our proposed test is overly powerful under
the Log N, χ2

1, and χ2
10 for small to large sample sizes. Further, the real data studies have
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demonstrated the applicability of the proposed testing procedure in practice. This study
has once again proved the efficiency and power of the nonparametric empirical likelihood
methodology in developing moment-based GoF tests, and presently this has only been
well-established for i.i.d. data [12–15]. We utilized a CUSUM-type statistic to construct our
test statistic, and we advocate for future studies to consider the common alternative to the
CUSUM-type statistic, which is to utilize the Shiryayev–Roberts statistic [36].

Through MC simulation experiments, we have also discovered that the coverage
performance of the standard BEL method depends on the strength of the underlying
dependence structure of the time series process. However, the coverage performance
improves with the increasing sample size, and a similar finding was also reported by
Nordman et al. [20]. The selection of an optimal block size for the standard BEL method
is problematic and is a major drawback of this technique. As a remedy, in the recent past,
a few studies have proposed various methods to address this drawback (see [20,26,31]).
Nordman et al. [20] proposed a modified BEL method for handling both the short- and long-
range dependence for time processes. On the other hand, in order to handle dependence
in weakly dependent time processes, Nordman et al. [26] as well as Kim et al. [31]
proposed the expansive BEL (EBEL) method and the progressive BEL (PBEL) method,
respectively. Unlike the standard BEL method, which depends critically on the choice of
block length selection, the EBEL uses a simple and nonstandard data-blocking technique
that considers every possible block length. The PBEL requires no block length selection,
but rather it uses a data-blocking technique where block lengths increase by an arithmetic
progression. All these proposed methods exhibit better coverage accuracy than the standard
BEL method, and we suggest that future research can adopt these data-blocking methods
for our proposed testing procedure.
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