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Abstract: The optimal control currently decides the minimum energy consumption within the
problems attached to subways. Among other things, we formulate and solve an optimal bi-control
problem, the two controls being the acceleration and the feed-back of a Riemannian connection. The
control space is a square, and the optimal controls are of the bang–bang type. The third component of
the optimal solution is the maximum value function, as a solution of the Hamilton–Jacobi–Bellman
PDE. The examples of energy optimal trajectories refer to the lines of the Bucharest subway.
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1. Introduction

The applications of optimal control in railway problems were initiated in the 1960s
(see the paper [1]). In the earliest research, a train operation control method was proposed
based on the single mass model, and the purpose of researchers was to find a minimum
energy cost trajectory for a single train.

This paper describes a method for the calculation of optimal control strategies in an
important engineering application, Bucharest Metro.

The paper proposes an optimization method based on Hamilton–Jacobi–Bellman PDE
(implicitly on Pontryagin’s Maximum Principle (PMP)), not only to find optimal switching
points in three operation phases: accelerating, coasting, and braking; and from these
switching points being able to determine the optimal speed profile; but also to ensure a
fixed trip time.

The bibliography contributed to the understanding of this paper through the following
topics: The [1] application of optimization theory for bounded state variable problems to
the operation of the train; the [2] optimal speed profile determination with a fixed trip time
in the electric train operation of the Cat LinhHa Dong Metro Line based on Pontryagin’s
Maximum Principle; the [3]-optimal control of a subway train with regard to the criteria
of minimum energy consumption; the [4–6]-optimal control and viscosity solutions of
Hamilton–Jacobi–Bellman equations; the [7] nominal and robust train timetabling prob-
lems; the [8]-results of the implementation of an optimal control system in an integrated
control center for metro lines; [9]-a systems approach to reduce urban rail energy con-
sumption; [10]-pseudospectral optimal train control; [11]-train control problem; [12]-train
bi-control problems on a Riemannian setting; [13]-Romania’s railway development 1950–
1989: changing priorities for socialist construction; and an [14]-integrated optimization on
the train control and timetable to minimize the net energy consumption of metro lines.
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It is important to show how our work is connected to the existing literature and how
it contributes to the field. By making our paper self-contained, we provide readers with a
clear and comprehensive understanding of subway problems, making it easier for them to
follow and engage with new ideas. All the references are interconnected and support the
theme of our work.

2. The Isoperimetric Bi-Controlled Train Problem

The mathematical ingredients used in the study of train control are as follows [12]: T
is the time allowed for the journey, δ is the distance between two consecutive stations, u(t)
is the acceleration of the train, v(t) is the speed of the train, and −r(v(t)) is the resistive
acceleration due to the friction. Let us accept that the movement of the train is governed by
the Riemannian Newton law

ẍ(t) + Γ(x(t))(ẋ(t))2 = u(t)− r(v(t)),

where r(v), v ∈ [0, ∞) is a strictly increasing and convex function, the acceleration u(t) (control
variable) is limited by the relation |u(t)| ≤ 1, and the feed-back control Γ(x(t)) = γ(t)
(pullback of the connection Γ(x)) is also limited to |Γ(x(t))| ≤ 1. The theory of energy
consumption involves the positive part of the control u(t) (acceleration), namely,

u+(t) =
1
2
(u(t) + |u(t)|),

The most accepted resistive force

r(v) = a + bv + cv2, v ∈ [0, ∞),

an increasing and convex trinomial, is fixed by three real numbers a > 0, b > 0, c > 0. The co-
efficients of the previous polynomial refer to the parameters that describe the mathematical
representation of a physical property of the rolling stock (such as its motion or behavior).
The fact that these coefficients are fixed by the manufacturers suggests that they have been
determined and set based on specific design requirements and specifications.

The Riemannian Newton’s law is a mathematical model that can be used to describe
the movement of objects in a Riemannian manifold, which is a type of space that has a
specific type of geometry. If we accept that this law determines the movement equation of
the train, then it implies that the train’s motion and behavior can be modeled and analyzed
using this law. This can provide insights into various aspects of the train’s motion, such as
its velocity, acceleration, and trajectory.

The state variables are x (position) and v (speed), and the control variables are u and Γ(x).
Let us introduce the following notations and assumptions: (i) U = L∞([0, T]) is

the set of measurable and bounded functions on the interval [0, T], endowed with the
supremum norm

||u||∞ = sup
t∈[0,T]

|u(t)|;

the normed space (U , ‖ · ‖∞) is called the space of acceleration controls;
(ii)W is the set of measurable and bounded functions Γ(x(t)) = γ(t) on the interval

[0, T], endowed with the supremum norm (space of pullback controls);
(ii) V = C0,1([0, T]) is the set of piecewise C1 functions v(t) on the interval [0, T],

endowed with the norm
||v|| = ||v||∞ + ||v̇||∞.

A feasible triple (u, v, Γ(x)) ∈ F = U ×V ×W must satisfy ||u||∞ ≤ 1, v(0) = v(T) = 0,
and |Γ(x(t))| ≤ 1.

To determine the optimal path of a train on a Riemannian manifold, such that the total
energy expended by the train is minimized, while satisfying constraints such as the train’s
initial and final positions and velocities, and any other relevant physical or operational
restrictions. In this problem, the additional forces mentioned (traction, cruising, braking,
descendent or ascendent, and centrifugal forces) can be neglected, and the focus is solely
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on finding the most energy-efficient path for the train. Neglecting additional forces, the
isoperimetric bi-controlled train problem is:

Minimize the mechanical energy consumption

J(u(·)) =
∫ T

0
u+(t)v(t) dt

subject to
(i) two first order ODEs constraints

ẋ(t) = v(t), v̇(t) + Γ(x(t))v(t)2 = u(t)− r(v(t)), v(0) = v(T) = 0,

(ii) one isoperimetric constraint ∫ T

0
v(t) dt = x(T) = δ,

and (iii) two bi-control inequality constraints

|u(t)| ≤ 1, |Γ(x(t))| ≤ 1.

To solve the previous problem, we seek to apply the Pontryagin maximum princi-
ple [12]. For this, we use a new objective functional

J1(u(·)) =
∫ T

0
(−u+(t)v(t) + p1v(t)) dt

and the associated Hamiltonian

H(x, u, v, Γ(x)) = −u+v + p1v + p2(−Γ(x(t))v(t)2 + u− r(v)),

where p1 = ct and p2 = p2(t) are the Lagrange multipliers. The Hamiltonian can be
rewritten as a piecewise function of degree at most one with respect to u, respectively, Γ(x).
Detailing the energy consumption function u+, we write the Hamiltonian in the form of a
brace with two branches

H(x, v, u, Γ(x)) =
{

p2u + p1v− p2(Γ(x(t))v(t)2 + r(v)) for u < 0
u(p2 − v) + p1v− p2(Γ(x(t))v(t)2 + r(v)) for 0 ≤ u.

If the reader is interested in the unit of measures analysis, please see [10].

3. Hamilton-Jacobi-Bellman PDE

Our goal here is first to look more closely at the Hamilton–Jacobi–Bellman PDE
attached to a minimum problem formulated for the optimal functionality of a subway [4].

The previous isoperimetric bi-controlled train problem is a minimum problem with
the current cost (simple integral)

J(u(·), Γ(x)(·)) =
∫ T

0
u+(t)v(t) dt,

subject to
|u(t)| ≤ 1, |Γ(x(t))| ≤ 1.

We assume that this cost function defines the maximum value function

ξ(x, v, t) = max
u(·),Γ(x)(·)

J(u(·), Γ(x)(·)),

which satisfies the terminal condition ξ(x, v, T) = g(x, v).

Theorem 1. Suppose ξ(x, v, t) is a C2 function. Then, ξ(x, v, t) is the solution of the unitemporal
Hamilton–Jacobi–Bellman (HJB) PDE

∂ξ

∂t
(x, v, t) + max

u(·),Γ(x)(·)

{
∂ξ

∂x
(x, v, t)v(t)
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+
∂ξ

∂v
(x, v, t)(−Γ(x(t))v(t)2 + u(t)− r(v(t)))− u+(t)v(t)

}
= 0

with the terminal condition ξ(x, v, T) = g(x, v).

Remark 1. The Hamilton–Jacobi–Bellman PDE can be written also as

∂ξ

∂t
(x, v, t) + max

u(·),Γ(x)(·)
H
(

x, v, u, Γ(x),
∂ξ

∂x
(x, v, t),

∂ξ

∂v
(x, v, t)

)
= 0,

where H is the control Hamiltonian.

Remark 2. The Hamilton–Jacobi–Bellman (HJB) is a key result in the optimal control theory, and
it provides a necessary and sufficient condition for the optimality of a control strategy with respect
to a maximum value function. The solution to the HJB PDE is the maximum value function, which
represents the maximum achievable performance (such as cost, reward, or energy expenditure) for a
given system. By taking the maximizer of the Hamiltonian involved in the HJB PDE, the optimal
control strategy can be obtained. This control strategy is the one that leads to the maximum value
function, and it can be used to control the system in the most efficient or optimal manner.

Theorem 2. In this case, the Hamiltonian is linear affine in the controls u and Γ(x). Consequently,
the extrema are of bang–bang type. They are attained at vertices (−1,±1), (1,±1) of the control
set C : |u(t)| ≤ 1, |Γ(x)| ≤ 1.

Using the vertices of the control condition |u(t)| ≤ 1, that is −1, 1, the unitemporal
Hamilton–Jacobi–Bellman PDE splits in two PDEs:

∂ξ

∂t
(x, v, t) + H

(
x, v,−1, Γ(x),

∂ξ

∂x
(x, v, t),

∂ξ

∂v
(x, v, t)

)
= 0,

∂ξ

∂t
(x, v, t) + H

(
x, v, 1, Γ(x),

∂ξ

∂x
(x, v, t),

∂ξ

∂v
(x, v, t)

)
= 0.

3.1. Solving the Hamilton-Jacobi-Bellman PDE

For u = −1, Γ(x) = ±1, the Hamilton–Jacobi–Bellman PDE can be written as

∂ξ

∂t
+

∂ξ

∂x
v− ∂ξ

∂v
[(a± 1)v2 + bv + c] = 0. (1)

The attached symmetric system

dt
1

=
dx
v

= − dv
(a± 1)v2 + bv + c

,

has two first integrals

t + C1 = −
∫ dv

(a± 1)v2 + bv + c
and x + C2 = −

∫ v dv
(a± 1)v2 + bv + c

.

So, the family of solutions of the Hamilton–Jacobi–Bellman PDE is

ξ(x, v, t) = ϕ

(
t +

∫ dv
(a± 1)v2 + bv + c

, x +
∫ v dv

(a± 1)v2 + bv + c

)
,

where ϕ is an arbitrary C1 function.
For u = 1, Γ(x) = ±1, the Hamilton–Jacobi–Bellman PDE can be written as

∂ξ

∂t
+

∂ξ

∂x
v− ∂ξ

∂v
[(a± 1)v2 + bv + c]− v = 0. (2)

The attached symmetric system is

dt
1

=
dx
v

= − dv
(a± 1)v2 + bv + c

=
dξ

v
,
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with the previous first integrals, and the third one x + C3 = ξ. So, the family of solutions of
the Hamilton–Jacobi–Bellman PDE is

ξ(x, v, t) = x + ψ

(
t +

∫ dv
(a± 1)v2 + bv + c

, x +
∫ v dv

(a± 1)v2 + bv + c

)
,

where ψ is an arbitrary C1 function.
Obviously, the values of the integrals depend, according to the well-known theory, on

the values of the parameters a, b, c, and the control Γ(x) = ±1. The discussions depend on
the second-order equation (a± 1)v2 + bv + c = 0, with the discriminant ∆ = b2− 4(a± 1)c.

For instance, taking a = 3, b = 4, c = 1 and Γ = 1, the Equation (1) has two first
integrals

t− 1
2

1
2v + 1

= C1 and x +
1
4

(
ln(2v + 1) +

1
2v + 1

)
= C2.

So, a solution for the PDE (1) may be

ξ(x, v, t) = t + 2x +
1
2

ln(2v + 1) .

It should be noted that the consumed energy increases only logarithmically in relation to
the speed.

3.2. General Solutions of Previous HJB PDEs

The expressions of general solutions of previous HJB PDEs are of the form

ξ(x, v, t) = ϕ(t + f1(v), x + f2(v)) and ξ(x, v, t) = x + ψ(t + f1(v), x + f2(v)) ,

as u = −1 or u = 1.
The relation between the functions f1 and f2 is f ′2(v) = v f ′1(v). If a± 1 6= 0, then

f2(v) =
1

2(a± 1)
ln[(a± 1)v2 + bv + c]− b

2(a± 1)
f1(v) .

The solution that verifies the final condition ξ(x, v, T) = g(x, v) is found as follows:
Let us denote α = t + f1(v) and β = x + f2(v). Then, the results are v = f−1

1 (α− t)
and x = β− f2( f−1

1 (α− t)). We find

ξ(x, v, T) = g(β− f2( f−1
1 (α− T)), f−1

1 (α− T)) ,

and finally

ξ(x, v, t) = g(x + f2(v)− f2( f−1
1 (t− T + f1(v))), f−1

1 (t− T + f1(v)) ,

for u = −1, and

ξ(x, v, t) = x− [x + f2(v)− f2( f−1
1 (t− T + f1(v))]

+g(x + f2(v)− f2( f−1
1 (t− T + f1(v))), f−1

1 (t− T + f1(v)) ,

for u = 1.

Theorem 3. (i) If u = −1, Γ(x) = ±1, then the general solution of HJB PDE is

ξ(x, v, t) = g(x + f2(v)− f2( f−1
1 (t− T + f1(v))), f−1

1 (t− T + f1(v)).

(ii) If u = 1, Γ(x) = ±1, then the general solution of HJB PDE is

ξ(x, v, t) = x− [x + f2(v)− f2( f−1
1 (t− T + f1(v))]

+g(x + f2(v)− f2( f−1
1 (t− T + f1(v))), f−1

1 (t− T + f1(v)).
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3.3. Numerical and Graphical Data

The energy consumption on Metrorex Line 2 is mainly (see Figure 1 (T,V,L,E,P,I,O),
PieChart, percentages) consumed in T = Traction, V = Ventilation, L = Lighting, E = Elevator,
P = Pump, I = Installed cabinets, and O = Others, among which the traction energy plays
the most important role.

> with(Statistics);
W = [“T” = 51.11, “V” = 17, “L” = 11, “E” = 8, “P” = 7, “I” = 2, “O” = 3.89];
PieChart(W, sector = 0 .. 360, datasetlabels = default);
(the PieChart command generates a pie chart for the specified data in Maple 18 or

in excel).

Figure 1. Energy consumption on Metrorex Line 2.

The minimal energy consumption of the Bucharest metro in 2021 is given in Table 1
(Y = Year, M = Month, L = Line, Tc = Total consumption(MWh), T = Traction(MWh),
S = Services):

Table 1. The monthly minimal energy consumption.

Y M L Tc (MWh) T (MWh) S (MWh)

2021 January 2 4761.686 2452.123 2309.563
February 2 4295.421 2187.123 2108.298

Mars 2 4540.070 2332.408 2207.662
April 2 4320.398 2093.818 2226.581
May 2 4049.267 2289.615 1759.652
June 2 4208.933 2029.242 2179.691
July 2 4493.935 2288.184 2205.750

August 2 4583.121 2225.885 2357.236
September 2 4392.613 2286.295 2106.317

October 2 4512.719 2379.071 2133.647
November 2 4323.225 2076.666 2246.558
December 2 4587.205 2481.574 2105.631

Total - 53,068.592 27,122.005 25,946.587

3.4. Viscosity Solutions of the PDE (1)

Hamilton–Jacobi–Bellman PDEs are of central importance in applied mathematics.
A major drawback, however, is that the HJB PDE admits classical solutions only for a
sufficiently smooth value function, which is not guaranteed in most situations. Several
notions of generalized solutions have been developed to cover such situations, for example
including viscosity solutions (see [4]).
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Viscosity solutions need not be differentiable anywhere and thus are not sensitive to
the classical problem of the crossing of characteristics. The only regularity required for this
kind of solution is continuity.

By defining viscosity solutions for the first order PDE (1), we denote by

D =
∂

∂t
+ v

∂

∂x
− [(a± 1)v2 + bv + c]

∂

∂v
,

the differential operator attached to PDE (1) and we attach two PDE inequations≤ 0 (resp. ≥ 0).
Let Ω ⊂ R3 be a bounded, open set.

Definition 1. A continuous function η : Ω = Ī1 × Ī2 ×R→ R is a viscosity sub-solution (resp.
viscosity super-solution) of PDE (1), if for any point (x0, v0, t0) ∈ Ω and any C2 function ϕ such
that ϕ(x0, v0, t0) = η(x0, v0, t0) and ϕ ≥ η (resp. ϕ ≤ η) in a neighborhood of (x0, v0, t0), we
have Dϕ(x0, v0, t0) ≤ 0 (resp. Dϕ(x0, v0, t0) ≥ 0), where D is the differential operator attached to
PDE (1).

A continuous function η : Ω is a viscosity solution of (1) if it is both a viscosity sub-solution
and a viscosity super-solution.

We define the Euclidean distance to the boundary given by the formula d : Ω →
[0, ∞), d(x, v, t) = min{||(x, v, t)− (y1, y2, t3)||, (y1, y2, t3) ∈ ∂Ω}.

Lemma 1. The function distance to the boundary d is uniformly Lipschitz.

Proof. The set ∂Ω is compact. Consequently, for each (x, v, t) ∈ Ω there exists z(x, v, t) ∈ ∂Ω
such that d(x, v, t) = ||(x, v, t)− z(x, v, t)||. Let us have another point (x0, v0, t0) ∈ Ω and
d(x0, v0, t0) = ||(x0, v0, t0)− z0||. Then

d(x, v, t)− d(x0, v0, t0) = ||(x, v, t)− z(x, v, t)|| − ||(x0, v0, t0)− z0||

≤ ||(x, v, t)− z0)|| − ||(x0, v0, t0)− z0|| ≤ ||(x, v, t)− (x0, v0, t0)||+ ||(x0, v0, t0)− z0||

−||(x0, v0, t0)− z0|| = ||(x, v, t)− (x0, v0, t0)||.

The converse is obvious. Hence,

|d(x, v, t)− d(x0, v0, t0)| ≤ ||(x, v, t)− (x0, v0, t0)||.

Open problem Using the distance d, can we construct a viscous solution of PDE (1)?
Open problem A posynomial is a function of the form ξ(x, v, t) = ∑N

k=1 ckxa1k va2k ta3k ,
where all the coordinates x, v, t, and all the coefficients ck are positive real numbers, and
the exponents aik are real numbers. Posynomials are closed under addition, multiplication,
and non-negative scaling.

Using a posynomial, can we build a viscous solution of PDE (1)?
The viscosity solution theory is a mathematical framework used to also study the

solutions of linear PDEs. This approach aims to provide a solution in a weaker sense, before
establishing its regularity. The theory is useful in situations where the existence of general
solutions is difficult to establish, as is often the case with linear equations. By starting with
a weaker solution and then showing regularity, this approach provides a systematic way to
study and understand linear PDEs.

4. Six Forces Acting on the Moving Train

In the most general situation, the forces acting on the train are: traction force, cruising
force, braking force, descendant or ascendant force, and centrifugal force [2].

Let δ be the length of a certain interstation. The previous train simplified model can
be improved with a complete model adding traction force, cruising force, braking force,
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descendant or ascendant force, and centrifugal force. For that, we need xcr, xco and xbr as
decision constants given by the metro staff.

Let Ftr(x, v) be the maximum available traction force according to the motor character-
istic; let Fcr(x, v) be the force to keep cruising at position x (air friction force); let Fbr(x, v)
be the maximum available braking force; and let ϕ be a binary variable with no unit. All of
these determine a resultant force as a piecewise C2 accolade force with four branches

F(x, v) =


Ftr(x, v) for 0 ≤ x ≤ xcr
Fcr(x, v) for xcr < x ≤ xco

ϕFcr(x, v) for xco < x ≤ xbr
−Fbr(x, v) for xbr < x ≤ δ,

where v = ẋ is the speed. The force F(x, v) must be greater than 0 in traction mode or less
than 0 in braking mode. It stands for the output force acting upon the train given by ATO.
A positive value of F(x, v) denotes that the train is motoring.

The value ϕ = 0 indicates that the train control mode is CO, while the value ϕ = 1
stands for the case in which the control mode is CR. For example, coasting is implemented
when the train arrives at xco, and ϕ is thus set as 0. When the train speed increased to the
limit, CR will be implemented again and ϕ becomes 1. Then, the resistance force FR is used
to decide the following control regimes. Denote h = (vlim(x)− v(x)) + ϕ(x− ∆x)FR(x, v).
The function ϕ can be written as

ϕ(x) =
{

0 for h > 0
1 for h ≤ 0,

where vlim(x) and v(x) are the speed limit and train speed at position x, respectively. The
value ϕ(x − ∆x) represents the train control mode in the previous distance step, where
∆x represents the length of the distance step. The force FR(x, v) is the resultant resistance,
consisting of friction resistance, air drag, and additional resistance caused by grades
and curves.

In motion, the mass of the train is

m(x) = Mtrain + µτ(n),

where Mtrain is the rolling stock mass; τ(n) is the number of passengers on the train in the
n-interstation; and µ is the average mass of a person. The actual train mass is necessary for
computing the traction force.

By linear interpolation, we obtain a simplified model of traction force,

Ftr(x, v) =

{
F0(v) + (F1(v)− F0(v))

m(x)−M0
M1−M0

for M0 ≤ m(x) < M1

F1(v) + (F2(v)− F1(v))
m(x)−M1
M2−M1

for M1 ≤ m(x) ≤ M2,

where M0, M1, and M2 represent train masses when the train is empty, nominally loaded,
and maximum loaded, respectively; F0(v), F1(v), and F2(v) indicate the traction force in
the above three circumstances.

We introduce three forces: (1) Rbasic(v) = a + bv + cv2 with a, b, c coefficients fixed by
rolling stock manufacturers; (2) Rgrad(x) is the resistance caused by the gradient; and (3)
Rc(x) is the resistance caused by the trajectory (the track). The total force

FR(x, v) = Rbasic(v) + Rgrad(x) + Rc(x),

determines the resultant force

F(x, v) = F(x, v)− FR(x, v)

acting upon the train.
Let m(x) be the mass of the moving body. If the train goes downhill, then the force

F1 = m(x)g sin θx appears, where g is the gravitational acceleration and θx is the angle of
the slope (negative means downhill).
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If the track is curvilinear, then the centrifugal force F2 = m(x)v2

rx
appears, where v is the

velocity of the moving body, rx is the radius of curvature.
When cruising is applied, the resultant force F(x, v) should be equal to zero; then,

Fcr(x, v) is the resultant

Fcr(x, v) = FR(x, v) + a + bv + cv2 + m(x)g sin θx +
m(x)v2

rx
.

4.1. Additional Constraints

Train control schemes should be subject at least to the following additional constraints:
(i) For operational safety and passenger comfort, the acceleration should be limited

within a proper range, i.e., adec ≤ dv
dt (x) ≤ acc;

(ii) The train must stop when it arrives at a station, i.e., v(xn) = 0 for each n ∈ [1, 2N];
(iii) Train velocity must be positive and not exceed the speed limit, i.e., 0 ≤ v(x) ≤

vlim(x).

4.2. Broken Extremals

Let us explain how we can use broken extremals and the Erdmann–Weierstrass corner
conditions in order to describe the metro optimal movement.

We accept that the objective functional (mechanical work)

I =
∫ T

0
f (t, y(t), y′(t))dt

can be written

I =
∫ tcr

0
+
∫ tco

tcr
+
∫ tbr

tco
+
∫ T

tbr

,

with corners at tcr, tco, and tbr, and the ends at left and right being variable in each case.
For each corner a ∈ {tcr, tco, tbr}, we must have two Erdmann–Weierstrass conditions

( f − y′ fy′)|a− = ( f − y′ fy′)|a+ , fy′ |a− = fy′ |a+ .

Therefore, on each interval, we have one Euler–Lagrange equation and two Erdmann–
Weierstrass corner conditions.

5. Bucharest Subway Structure

Let us underline the structure of the subway in Bucharest.
The Bucharest Metro (see [13]) was first considered in 1930 and again in 1952 when the

General Directorate of the Metro was established, although it was thought that the subsoil
conditions would require an excessive amount of metal to support the tunnels.

The first section of the subway line in Bucharest was built between 1975 and 1979,
this underground construction being designed and built with Romanian machinery. The
current network of the Bucharest metro was built at a sustained pace until 1989, with the
first three main lines being completed.

In 2020, the subway in Bucharest stretched on a route with a length of 77 km of
double railway. To date, five main lines of the underground metro have been built, with 63
metro stations, these being spaced, on average, at 1.5 km. Following the subway map (see
Internet), highway 1 forms a belt that encircles the city center, having a common segment
with the route of highway 3. Highway 2 crosses the city from north to south, and highway
3 crosses the municipality from west to east.

The number of people using the subway in Bucharest varies between 120,000 and
250,000 passengers. Until 1990, Bucharest metro trains were manufactured only in Romania,
at the IVA plant in Arad. After 1990, over 40 Bombardier trains were purchased, replacing
some of the IVA trains. We mention that the travel speed of the subway trains in Bucharest
is 80 km/h, and the commercial speed is 40 km/h.



Mathematics 2023, 11, 1035 10 of 11

In this section, case studies on Metrorex Line 2 in peak hours are employed to illustrate
the effectiveness of the improved train control and integrated optimization model.

The propulsion system is designed to achieve the traction and braking diagram.
Functional data: The propulsion system is designed to achieve a traction and braking
diagram with (A = force(kN), B = velocity(km/h)).

The metro lines in operation at Bucharest subway are: M1: Crângas, i-Dristor-(Pantelimon)-
Obor-Piat,a Victoriei-Gara Bucures, ti Nord-Crângas, i; M2: Pipera-Piat,a Unirii-Berceni; M3:
Preciziei-Eroilor-Anghel Saligny; M4: Gara de Nord-Străules, ti; M5: Râul Doamnei-Eroilor.

6. Conclusions

We have developed a mathematical rescheduling model that can tackle the diverse op-
timization problems in metro energy management. This model classifies different problems
based on their objective function, decision variables, and instant power demand evaluation.
The objective function is a mechanical part and the problem itself is an optimal control
problem, which minimizes the objective function subject to constraints defined by (ODEs).
This problem is solved through a Hamilton–Jacobi–Bellman (PDE) of first order. The goal
is to reduce the metro’s electricity usage, which in turn results in lower global energy
consumption. Six forces affect the movement of the trains, which are outlined in Section 4
and used to form the system of ODEs. To solve the problem, we propose to find viscosity
solutions of HJB PDEs. Optimizing the energy-efficient train control and service timetable
can significantly reduce energy consumption in existing urban rail systems, with low capital
investment and minimal changes to operating rules. The conducted research has also been
applied in real-world problems, covering the design, execution, and exploitation stages.

This paper focuses on reducing the energy consumption of metro trains in existing
urban rail systems through the use of energy-efficient train control and optimization of
service schedules.

Energy-efficient train control and service timetable optimization are preferred to
reduce metro train energy consumption in existing urban rail systems. Energy saving
could be achieved with relatively low capital investment and minor modifications of the
operating rules, via optimal control results.

The bibliography [1–14] also describes the stages of practical application of the con-
ducted research, being the problems of design, execution and exploitation.
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