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Abstract: Overfitting often occurs in neural network training, and neural networks with higher gen-
eralization ability are less prone to this phenomenon. Aiming at the problem that the generalization
ability of photovoltaic (PV) power prediction model is insufficient, a PV power time-sharing predic-
tion (TSP) model combining variational mode decomposition (VMD) and Bayesian regularization
neural network (BRNN) is proposed. Firstly, the meteorological sequences related to the output
power are selected by mutual information (MI) analysis. Secondly, VMD processing is performed on
the filtered sequences, which is aimed at reducing the non-stationarity of the data; then, normalized
cross-correlation (NCC) and signal-to-noise ratio (SNR) between the components obtained by sig-
nal decomposition and the original data are calculated, after which the key influencing factors are
screened out to eliminate the correlation and redundancy of the data. Finally, the filtered meteorolog-
ical sequences are divided into two datasets based on whether the irradiance of the day is zero or not.
Meanwhile, the predictions are performed using BRNN for each of the two datasets. Then, the results
are reordered in chronological order, and the prediction of PV power is realized conclusively. It was
experimentally verified that the mean absolute value error (MAE) of the method proposed in this
paper is 0.1281, which is reduced by 40.28% compared with the back propagation neural network
(BPNN) model on the same dataset, the mean squared error (MSE) is 0.0962, and the coefficient of
determination (R2) is 0.9907. Other error indicators also confirm that VMD is of much significance
and TSP is contributive.

Keywords: PV power; variational mode decomposition; Bayesian regularization neural network;
time-sharing prediction; mutual information

MSC: 62R07; 68T07

1. Introduction

To date, there is a large number of research works focusing on photovoltaic (PV) power
prediction. Forecasting with model chains has yet to receive the attention that it deserves,
so in [1], the model-chain-based forecasting framework is extended to the probability space,
and a calibrated ensemble of model chains is used to generate probabilistic PV power
forecasts. Considering the effects of the factors of PV modules on the forecast results,
Zhou and Wang [2] proposed a novel multivariable hybrid prediction system combining
signal decomposition, artificial intelligence models, deep learning models, and a swarm
intelligence optimization strategy, which is effective in improving the forecasting efficiency
and outperforms other benchmark models. Machine learning and hybrid approaches are
proposed to provide effective forecasting with a data-driven approach based on previous
measurements from existing power plants [3]. The literature [4] reviewed the existing
research of PV forecasting methods from the perspective of multi-temporal scale and
multi-spatial scale, and found that the machine learning method shows excellent nonlinear
description ability in short-term prediction. However, traditional PV power prediction
models have poor generalization ability and are prone to overfitting problems [5,6]; they
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also lack consideration of the time-varying nature of PV power [7], which limits the
improvement of prediction accuracy.

Based on feedforward neural networks, the Bayesian regularization neural network
(BRNN) [8] achieves the goal of improving the generalization ability of the network by
adding regular terms to the network performance function, and thus circumventing the
overfitting phenomenon. Ref. [9] states that BRNN makes the output of the network
smoother by modifying the training performance function. In Ref. [10], an empirical study
of stock time series forecasting using the BRNN model found a significant improvement in
forecasting accuracy. However, relatively few studies have applied the BRNN model to the
field of PV power prediction; therefore, in this paper, BRNN is applied to the prediction of
PV power to achieve better results.

Variational mode decomposition (VMD) is a fully intrinsic, adaptive, and nonrecursive
decomposition technique [11]. Ref. [12] used the VMD method to decompose the historical
PV output power into several submodes, which avoids modal mixing and noise impact
and improves the prediction accuracy of the model, but the essential characteristics of the
output power and meteorological factors over time are not explored, and the prediction
results needs to be further optimized.

As we all know, there are many methods in prediction, such as time series fore-
casting [13,14], VMD [15], neural networks [16], and so forth. In order to improve the
generalization performance of the model, avoid the phenomenon of overfitting, filter the
input variables, and take the temporal correlation of the data into consideration, while
at the same time achieving the purpose of improving the prediction accuracy, this paper
proposes a time-sharing prediction (TSP) model combining VMD and BRNN for PV power
prediction. Firstly, VMD is used to reconstruct the features to be input, and then the data
are divided into two datasets considering the time dependence of the PV power generation
system. Then the factors are input into BRNN for prediction separately, and finally the
results are rearranged in chronological order to achieve the purpose of improving the
model prediction efficiency and reducing the prediction error.

2. Data Pre-Processing and Correlation Analysis

To verify the reliability of the proposed model, this paper uses Data Castle competition
PV power output prediction data [17], which contain desensitized meteorological data
and the actual output power of four electric fields. A total of 66,860 rows of data from its
training set 1 (electric field 1) are used as the experimental object, containing the available
meteorological factors—wind speed, wind direction, temperature, pressure, humidity,
and irradiance—in a total of six columns of timeseries data. In order to reduce the influence
of missing values or outliers, the dataset is preprocessed; meanwhile, to ensure that
all the input features of the model are correlated with the output target, the necessary
correlation tests are performed between all the meteorological factor sequences and the
actual output power.

2.1. Data Preprocessing

First, the meteorological data were sampled for 15 min, with a total of 96 data from
0:00 to 23:45 each day. On the one hand, for the missing data in a few moments, this study
fills in the missing data by fitting the two data before and after them; on the other hand,
due to the non-negative nature of the definition of irradiance itself, the negative values of
irradiance in the data are also corrected by the fitting method in this study.

2.2. Correlation Analysis

There are many factors influencing the PV power generation system. If a single
previous output power signal is used as the only input variable of the model, it is easy to
make large errors in the prediction process when the weather changes suddenly because
the influence of meteorological factors is ignored; however, if there are too many input
variables, the correlation existing between the independent variables may lead to covariance
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problems, which in turn increase the complexity of model training. Therefore, applying
correlation analysis to screen out the main factors affecting PV power output and then
using them as input variables for the neural network model can improve the prediction
accuracy while taking the time cost of model training into account.

Figure 1 shows the time series diagram of meteorological factor sequences and actual
power after preprocessing. Wind speed data, temperature data, pressure data and humidity
data were normalized to eliminate differences due to units.

Figure 1. Time series diagram of preprocessed data.

Most of the existing studies chose Pearson correlation coefficient or Spearman cor-
relation coefficient for correlation analysis of the PV power generation system data [18];
however, Pearson correlation analysis requires the data to satisfy normal distribution [19],
and Spearman correlation analysis requires the data to be monotonic. In this study,
the Kolmogorov–Smirnov test performed on the raw data using SPSS software showed
that the raw data did not obey a normal distribution, while as seen in Figure 1, the raw
data are not monotonic as well; therefore, the mutual information (MI) method is chosen in
this paper to perform the correlation test between the signals of meteorological factors in
the raw data and the actual power. The MI method is aimed at capturing the relationship
between each feature (both linear and nonlinear) [20]. For two variables X and Y, MI
between them is defined as

I(X; Y) = ∑
X,Y

p(x, y) log
p(x, y)

p(x)p(y)
, (1)

where p(x, y) is the joint probability distribution function of X and Y; p(x) and p(y) are
the marginal probability distribution functions of X and Y, respectively.

I(X; Y) is a non-negative number, where the larger its value, the stronger the correla-
tion between the two variables; if I(X; Y) = 0, it means that the variables are not correlated.

The MI values between the variables of PV power generation system and meteoro-
logical data are calculated as shown in Table 1. As can be seen from the table, there exists
correlation between the six columns of meteorological data and the actual output power
of PV power generation system. The correlation is sorted in descending order: irradiance,
temperature, wind direction, humidity, wind speed, and pressure. Among them, irradiance
plays an almost absolute role in the fluctuation of output power.
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Table 1. MI values between the variables.

Meteorological
Data

Wind
Speed

Wind
Direction Temperature Pressure Humidity Irradiance

I(X; Y) 0.4920 0.5386 0.5642 0.3504 0.4957 0.9180

3. VMD-BRNN-TSP Model

This paper proposes a TSP model for PV power generation system by combining
VMD and BRNN. The main theoretical support consists of three parts: VMD, BRNN and
TSP. Among them, to enhance the reliability of feature extraction, this paper performs the
secondary filtering of feature sequences by comparing two parameters, NCC (normalized
cross-correlation) and SNR (signal-to-noise ratio), between the implicit modal components
decomposed by VMD and the original sequences, in order to obtain the reconstructed
sequences for final input to neural network training. The framework of the proposed model
in this paper is shown in Figure 2.

Figure 2. VMD-BRNN-TSP model framework.

3.1. VMD

The meteorological characteristics that affect the PV power such as irradiance, temper-
ature, etc., are random nonstationary signals. By decomposing the meteorological variable
series and extracting its long-term trend over time, the components of the meteorolog-
ical variable series with higher correlation with PV power can be obtained to improve
the prediction accuracy to a certain extent. There is a great deal of existing research on
signal decomposition at the present [21]. VMD can effectively overcome the mode mixing
phenomenon. In this paper, the VMD method decomposes the original sequence into a
series of different components with finite bandwidths uk(t), each corresponding to a center
frequency of ωk. The bandwidth of each component can be estimated by the following
four steps.

Step 1: The bandwidth of each mode is estimated. The spectrum of each mode function
is modulated to the baseband by calculating the corresponding resolved signal of each mode
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through Hilbert transform to obtain the one-sided spectrum, and subsequently adding
an exponential term to adjust the center frequency of each mode. Gaussian smoothing
is applied to the demodulated signal to estimate the corresponding bandwidth, so the
constrained variational model is constructed as Equation (2) [22]:

min
{uk},{ωk}

{
K
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
◦ uk(t)

]
e−jωkt

∥∥∥2

2

}
,

s.t.
K
∑

k=1
uk = f (t),

, (2)

where K is the number of modal functions; δ(t) is the impulse function; t = 0, δ(t) = ∞;
t 6= 0,δ(t) = 0; t represents time; {uk} := {u1, . . . , uk}; {ωk} is the center frequency;
{ωk} := {ω1, . . . , ωk}; and the constraint is that the sum of the modes is equal to the input
signal f .

Step 2: To turn Equation (2) into an unconstrained optimization problem, this paper
introduces a quadratic penalty factor η and Lagrange multipliers λ. Using the augmented
Lagrangian solution [23], the initial minimization problem above is transformed into
seeking the saddle point of the following equation Equation (3):

L({uk}, {ωk}, λ) = η
K
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
◦ uk(t)

]
e−jωkt

∥∥∥2

2

+

∥∥∥∥ f (t)−
K
∑

k=1
uk(t)

∥∥∥∥2

2

+

〈
λ(t), f (t)−

K
∑

k=1
uk(t)

〉
.

(3)

Step 3: To solve the variational problem of Equation (3), the alternating direction
multiplier method is used for alternating updates. The problem is transformed to the
frequency domain and solved by Parseval/Plancherel Fourier isometryin L2 parametrics:

un+1
k ←

arg min
uk L

({
un+1

i<k

}
,
{

un+1
i≥k

}
,
{

ωk
i

}
, λn
)

, (4)

ûn+1
k (ω) =

f̂ (ω)− ∑
i 6=k

ûk(ω) + λ̂(ω)
2

1 + 2η(ω−ωk)
2 . (5)

Step 4: Update ωn+1
k and λn+1

k by the same method:

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
, (6)

λ̂n+1(ω)← λ̂n(ω) + τ( f̂ (ω)−
K

∑
k=1

ûn+1
k (ω)), (7)

K

∑
k=1

∥∥∥ûn+1
k + ûn

k

∥∥∥2

2
/‖ûn

k ‖
2
2 < ε, (8)

τ is the variable; ωn+1
k is the central frequency of the spectrum; ε is the convergence accuracy

and ε > 0, the update stops when the accuracy satisfies Equation (8).
Finally, it is converted to the time domain by the Fourier inverse transform, which

yields the submodes of the meteorological variable sequence after VMD.
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3.2. Secondary Feature Filtering

The analysis above shows that the selection of the number of modes K in the VMD
method depends on the quality of the decomposition results and will directly affect the
reconstruction effect. In this paper, NCC and SNR are calculated to evaluate the noise
reduction performance under different K values [24], and NCC and SNR are defined
as follows:

(1) NCC

NCC =

n
∑

i=1
f (i)g(i)√

(
n
∑

i=1
f 2(i))(

n
∑

i=1
g2(i))

, (9)

where f (i) is the original signal and g(i) is the reconstructed signal. For NCC ∈ [−1, 1], −1
indicates that the two curves are in opposite phases, 0 indicates orthogonal, and 1 indicates
identical, and the closer to 1, the higher similarity of the two curves will be:

(2) SNR

SNR = 10 lg

N
∑

i=1
f 2(i)

N
∑

i=1
[ f (i)− g(i)]2

. (10)

In addition to the number of modes K, the other decomposition parameters selected
in this paper are penalty factor alpha = 2000, noise tolerance tau = 0.025, DC component
DC = 0, convergence criterion tolerance tol = le− 6, and initial centralization frequency
init = 1.

Table 2 shows the numerical comparison of the noise reduction performance of the
six meteorological factor variables after VMD at different K values. To highlight the main
content of the table, there are several abbreviations in Table 2: wind speed (WS), wind
direction (WD), temperature (TEMP), pressure (P), humidity (H), and irradiance (I).

Table 2. NCC and SNR of each environment variable component at different K values.

NCC SNR
K WS WD TEMP P H I WS WD TEMP P H I

2 0.9746 ∗ 0.9884 ∗ 0.9594 ∗ 0.9174 ∗ 0.7502 ∗ 0.6878 12.9907 ∗ 16.3546 ∗ 10.992 ∗ 7.9484 ∗ 3.5835 ∗ 2.747
0.2466 0.0526 0.2892 0.4945 0.6959 0.7722 ∗ 0.2693 −0.0238 0.3792 1.1675 2.8667 3.9027 ∗

3
0.9719 0.9844 0.9589 0.9112 0.7436 0.6761 12.5585 15.0542 10.9435 7.6552 3.4874 2.6289
0.2389 0.1021 0.2861 0.4969 0.6880 0.7683 0.2507 0.0293 0.3705 1.1806 2.7744 3.8502
0.1062 0.0542 0.0617 0.0789 0.1681 0.1121 0.0463 −0.0049 0.0154 0.0265 0.1149 0.0411

4

0.9710 0.9774 0.9589 0.9076 0.7422 0.6731 12.426 13.4794 10.9365 5.6191 3.4667 2.5992
0.2310 0.1641 0.2855 0.4980 0.6848 0.7669 0.2356 0.1160 0.3691 1.1902 2.7387 3.8282
0.1145 0.1042 0.0639 0.0948 0.1781 0.1300 0.0528 0.0313 0.0159 0.0365 0.1237 0.074
0.0711 0.0581 0.0297 0.0336 0.0973 0.0881 0.0200 0.0075 0.0032 0.0049 0.0353 0.0281

5

0.9708 0.9670 0.9589 0.8768 0.7419 0.6282 12.3932 11.8417 10.9361 6.3434 3.4630 2.1788
0.2290 0.3023 0.2855 0.4569 0.6844 0.7013 0.2315 0.3739 0.3689 0.9951 2.7339 2.9375
0.1126 0.1029 0.0643 0.2802 0.1787 0.3415 0.0507 0.0459 0.0160 0.3516 0.1233 0.5341
0.0765 0.0592 0.0308 0.0497 0.1017 0.1232 0.0233 0.0152 0.0033 0.0107 0.0386 0.0619
0.0397 0.0442 0.0108 0.0339 0.0350 0.0711 0.0061 0.0068 0.0003 0.0023 0.00047079 0.0167

The maximum value in each column is marked with ∗ in the upper right corner of it.

By analyzing the values of NCC and SNR, a more suitable decomposition parameter
K can be selected to filter the signal sequences with stronger correlation with the PV power;
the larger the value of NCC and SNR, the stronger the correlation between the data, thus
achieving the purpose of noise reduction.

Analysis of Table 2 shows that for the six meteorological factor variable sequences,
the NCC and SNR between the component sequences and the original sequences reach the
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maximum when K = 2, and the NCC and SNR values step into a decreasing trend from
K = 3 onward. However, since the correlation between the initial data of irradiance and
output power has reached 96.9%, the correlation between its decomposed components and
output power is slightly decreased. To ensure the prediction accuracy, the input features of
the neural network finally adopted in this paper are determined: wind speed sequence,
wind direction sequence, temperature sequence, pressure sequence, and humidity sequence
are taken as the first component of VMD decomposition at K = 2, and irradiance is taken
as the same as the initial sequence.

3.3. BRNN

BRNN is a multilayer feedforward neural network based on the error back propagation
algorithm, including three layers of input, hidden and output [25]. Let the training samples
of the neural network be D(xi, ti),i = {1, 2, . . . , n}, where n is the number of training
samples, and the performance function of the neural network is defined as Equation (11):

JW =
1
2

n

∑
i=1

( f (xi, W, M)− ti)
2, (11)

where W is the network parameter vector; M is the network model; f is the Sigmoid activa-
tion function, with the expression f (x) = 1/(1− e(−x)); and t is the network training target.

The gradient descent method is used to adjust the network weights. ωhj = ωhj −∆ωhj,
ωhj is the first weight of the layer i; η is the network learning rate.

To avoid overfitting, this paper uses a regularization algorithm to optimize the network
structure. The regularization method adds regular terms EW to the network performance
function [26]:

EW =
1
2
‖W‖2

2 =
1
2

m

∑
i=1

ωi
2, (12)

where ω is the network weights, and m is the total number of network parameters. The ob-
jective function becomes F(W) = αEW + βJW , which is equal to Equation (13) [27]:

min
W,α,β

(F(W) =
1
2

β
n

∑
i=1
{ f (xi, W, M)− ti}2 +

1
2

α‖W‖2
2, (13)

where α and β are the regularization coefficients (α focuses on reducing the scale of weights,
β focuses on reducing the training error). The Bayesian regularization algorithm seeks
a balance between them, and the process of BRNN training is trying to find the optimal
parameters to minimize the objective function [28].

Assuming that the weights of both the dataset and the initial network obey Gaussian
distribution, the maximum posterior probability is solved by the Bayesian criterion to
obtain α and β at WMP that minimizes the objective function:

αMP =
γ

2EW(WMP)
, βMP =

n− γ

2JW(WMP)
, (14)

where m is the number of parameters of the neural network; H is the Hessian matrix
α∇2EW + β∇2 JW of the objective function at WMP; and the number of effective parameters
of the neural network is γ = m− 2αMP(tr(H−1)).

First, the neural network structure is determined, while the hyperparameters α and β
are initialized, and new values are continuously estimated using Equation (14); the matrix
and the number of effective parameters γ in the network that play a role in reducing
the error are calculated, and the number of neurons in the hidden layer is appropriately
increased when γ is close to m. In the overall iterative process, the network training
converges when the total error is stable.
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3.4. Time-Sharing Prediction

From the results of the MI analysis of PV power output with each meteorological
factor, it is clear that irradiance plays an almost decisive role in the magnitude of power
output. In recent years, some studies have found a link between PV power output and
weather conditions [18]; however, the difference in diurnal irradiance determined by the
Earth’s rotation has a more direct impact on PV power generation system in contrast.

There are differences in sunrise and sunset times for different weather conditions.
Integrating the practical needs and operational complexity, this paper selects the K-means
clustering method to classify the data [29]. The average daily irradiance is selected as the
initial basis of the clustering algorithm, the number of categories is set to 4, and the dataset
is sorted by the average daily irradiance from the largest to the smallest, and the dataset is
divided into four categories: sunny, cloudy, overcast, and rainy. Taking April 18 (sunny
day), April 26 (cloudy day), April 24 (overcast day), and April 13 (rainy day) of 2018 as
examples, the actual output power comparisons under the 4 weather types are plotted,
as shown in Figure 3. As can be seen from the figure, although the sunrise and sunset
moments are different every day, the difference between different weather types is mainly
in the fluctuation amplitude of the output power, which is more volatile and has a larger
amplitude during the daytime, while at night, the trend of the output power under all
weather types is relatively flat, and its value is basically maintained within a relatively
small negative range.

Figure 3. Comparison of actual output power for 4 weather types.

The presence or absence of irradiance in a PV power system directly determines
whether the system can produce electrical output. When the irradiance is 0, the system
needs to consume electrical energy to maintain the standby state of the whole system,
which is more stable, so the value of the output power at night is negative, and the
fluctuation trend is relatively gentle; only when the irradiance is not 0, the solar energy can
be converted into electrical energy and produce power output with the help of PV devices.
Based on the above characteristics of PV power generation system, this paper divides the
original dataset into two—working time (daytime) dataset and standby time (nighttime)
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dataset—and constructs a neural network for the prediction of both datasets to reduce the
systematic error.

4. Analysis of Experimental Results

The back propagation neural network (BPNN) is a multilayer feedforward neural
network trained according to the error back propagation algorithm, and is one of the most
widely used neural network models today. Because of its good prediction results on the
data used in this study, in order to verify the superiority of the proposed method and
the effectiveness of VMD decomposition and TSP, the BPNN model, BRNN model, VMD-
BRNN model and VMD-BRNN-TSP model were used to perform comparison experiments,
respectively. A total of 46 days of data from 1 July to 15 August 2017 were extracted from
the dataset, and the data of the first 39 days were used as the training set and the data of the
last 7 days were used as the prediction set. The prediction effects were plotted separately
as follows.

The overall prediction effect of the BPNN model is shown in Figure 4: the model
predicts the output power relatively well during the daytime, but the error is larger when
the data fluctuate drastically; not only that, the error is very significant during the dark
period when the data fluctuate more smoothly.

Figure 4. BPNN model prediction results.

The overall prediction effect of the BRNN model is shown in Figure 5: the model
overall seems to be significantly improved compared with the BPNN model, which verifies
the enhanced generalization ability.

The overall prediction effect of the VMD-BRNN model is shown in Figure 6: the
prediction effect of this model shows an improvement over the single BRNN model, which
is clearly reflected in the darkness of day 1, daytime of day 4, thus indicating that after the
VMD decomposition, the input features of the model are extracted twice, and the overall
prediction error is further reduced.
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Figure 5. BRNN model prediction results.

Figure 6. VMD-BRNN model prediction results.

The overall prediction effect of the VMD-BRNN-TSP model is shown in Figure 7:
the prediction effect of the model continues to be optimized on the basis of the VMD-
BRNN model, which is mainly reflected in the prediction effect during the darkness period,
and its prediction accuracy is obviously improved. This indicates that after the TSP process,
the model can make separate predictions for datasets with large differences in fluctuation
range, and can achieve more reduction in error.
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Figure 7. VMD-BRNN-TSP model prediction results.

In order to compare the prediction effects of different models, the comparison graph
for day 1 (9 August 2018) of the prediction set is taken for separate presentation in Figure 5.
As can be seen from Figure 8, the VMD-BRNN-TSP model performs well in PV power
prediction compared to the other 3 models, which achieves further improvement in predic-
tion accuracy.

Figure 8. Single-day prediction renderings of output power of 4 models.

5. Comparison of Experimental Errors

The commonly used evaluation metrics are mean absolute error (MAE), mean squared
error (MSE), coefficient of determination (R2), square root error (RMSE), and sum of
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squared error (SSE). The errors between the predicted power and real power of BPNN
model, BRNN model, VMD-BRNN model and VMD-BRNN-TSP model are calculated
respectively, and the comparisons are shown in Figure 9.

Figure 9. Error comparison chart.

For the convenience of comparing the values, the comparison of the prediction errors
of the four models is listed as shown in Table 3.

Table 3. Error values comparison.

Model MAE MSE R2 RMSE SSE

BPNN 0.2145 0.1618 0.9843 0.4022 108.7112
BRNN 0.1507 0.1119 0.9892 0.3345 75.2058

VMD-BRNN 0.1343 0.1005 0.9903 0.3169 67.5033
VMD-BRNN-

TSP 0.1281 0.0962 0.9907 0.3101 64.6384

As seen in Table 3, the VMD-BRNN-TSP model has different degrees of improve-
ment in prediction accuracy compared with the traditional BPNN model, BRNN model,
and VMD-BRNN model, and the error values likewise verify the effectiveness of VMD and
TSP in improving prediction accuracy.

6. Conclusions

In order to achieve more accurate prediction of PV power, enhance the generalization
ability of neural network model, and take the temporal correlation of the data into consid-
eration at the same time, a TSP model of PV power generation system based on VMD and
BRNN is proposed in this paper. After experiments, the conclusions of this paper are listed
as follows.

(1) The MI method is used for correlation analysis to ensure that the neural network
input features are all correlated with the output power to reduce the experimental error
and lay a good cornerstone for the subsequent training of the prediction model.

(2) The generalization performance of the neural network is enhanced using the
Bayesian regularization algorithm, and the model is still optimized when the prediction
effect of BPNN is already performing well. The prediction effect is improved again. Un-
der the MAE error index, the error of using BRNN alone is reduced by 29.74% compared
with that of using the single BPNN model.

(3) The meteorological factors related to the output power are decomposed using
VMD, and the two parameters of NCC and SNR are used as criteria for the secondary
feature filtering of the component series. The data are denoised again under the premise
of ensuring a high correlation degree, while the input dimension is reduced. Under the
MAE error index, the prediction model of BRNN after VMD has 10.88% lower error than
the model using BRNN alone, which reflects the effectiveness of VMD.
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(4) Starting from the temporal correlation of the PV power generation system, the datasets
input to the model are classified by whether the irradiance is 0 or not, and two datasets with
quite different fluctuation trends are obtained. Neural network prediction is performed
for both of them separately, and the results show that this process effectively improves the
prediction accuracy. Under the MAE error metric, the TSP model has 4.62% lower error than
the VMD-BRNN model.

In terms of comprehensive algorithm complexity and prediction accuracy, the VMD-
BRNN-TSP model proposed in this paper can effectively improve the prediction of PV
power, and has certain application value in practical work, such as PV power generation
system and power plant maintenance and stabilization.
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