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Abstract: The Social Internet of Things (SIoT) ecosystem tends to process and analyze extensive
data generated by users from both social networks and Internet of Things (IoT) systems and derives
knowledge and diagnoses from all connected objects. To overcome many challenges in the SIoT
system, such as big data management, analysis, and reporting, robust algorithms should be proposed
and validated. Thus, in this work, we propose a framework to tackle the high dimensionality of
transferred data over the SIoT system and improve the performance of several applications with
different data types. The proposed framework comprises two parts: Transformer CNN (TransCNN),
a deep learning model for feature extraction, and the Chaos Game Optimization (CGO) algorithm for
feature selection. To validate the framework’s effectiveness, several datasets with different data types
were selected, and various experiments were conducted compared to other methods. The results
showed that the efficiency of the developed method is better than other models according to the
performance metrics in the SIoT environment. In addition, the average of the developed method
based on the accuracy, sensitivity, specificity, number of selected features, and fitness value is 88.30%,
87.20%, 92.94%, 44.375, and 0.1082, respectively. The mean rank obtained using the Friedman test is
the best value overall for the competitive algorithms.

Keywords: Social Internet of Things (SIoT); Deep Learning (DL); Chaos Game Optimization (CGO);
feature selection

MSC: 68T07

1. Introduction

The IoT concept was proposed by Kevin Ashton in 1999, and there are many sectors in
developed and developing countries that have investigated IoT-based projects [1–4]. Thus,
an IoT application relies on uniquely identifiable objects with sensing, connectivity, and
interoperation capabilities [5]. It is worth mentioning that a certain number of IoT-based
standards have been developed, while there are still some research challenges for designing
IoT middleware and providing security [6]. Then, the SIoT was proposed as an extension
of IoT technology. The idea of the SIoT consists of establishing social relationships between
IoT devices. Moreover, the SIoT aims to provide decentralized intelligence by allowing IoT
objects to become social and smart. Along with decentralizing the intelligence, an SIoT
object can request support from its social IoT objects to complete a specific request. More
importantly, the Quality of Experience (QoE) is high in the SIoT, which may also lead to

Mathematics 2023, 11, 1032. https://doi.org/10.3390/math11041032 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11041032
https://doi.org/10.3390/math11041032
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4561-2185
https://orcid.org/0000-0002-9711-0235
https://orcid.org/0000-0002-7682-6269
https://doi.org/10.3390/math11041032
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11041032?type=check_update&version=2


Mathematics 2023, 11, 1032 2 of 17

creating a business model by monetizing information and connectivity sharing [7]. Upon
receiving the client’s request, the SIoT object checks if it can handle the received request.
Elsewhere, the request will be forwarded to its friends. Therefore, selecting social friends is
a crucial step that impacts the reliability of the SIoT application [8]. As stated in [7,9], five
important social relationships can be established between SIoT objects, as summarized in
Table 1.

Table 1. SIoT relationships .

SIoT Relationship Explanation

Parent This relationship can be set between objects that belong to the same manufacturer.

Owner This relationship can be set between objects that belong to the same owner.

Social This relationship can be set randomly or periodically.

Co-location This relationship can be set between objects that exist in the same location.

Co-work This relationship can be set between objects that share a common objective.

There needs to be standard architecture for the SIoT. Nevertheless, there are four
available SIoT architectures: device, global connection, platform, and application layers [10].
As reported in [11], the SIoT has been successfully applied to a smart home for home safety
and energy efficiency. One of the big challenges of the SIoT is related to identifying and
communicating relevant data, given that the SIoT data may be structured/instructed [9].
Additionally, various types of SIoT data, including audio, video, and text, can be accessed
and communicated in an SIoT network. In this regard, the authors of [12] developed a
realistic SIoT dataset extracted from a smart city scenario. The considered dataset allows
the incorporation of static and mobile devices. Besides, the data model allows the creation
of a profile for each object to define the potential set of offered services and applications
that can be deployed. More specifically, an analysis of the impact of each social relationship
on network navigability was presented in [12]. The topic of the data analysis of the SIoT
has been addressed in many recent papers [13,14].

Lakshmanaprabu et al. [15] introduced a framework for effectively classifying SIoT
data. The developed framework was based on map-reduce and a supervised classifier
model. In particular, the SIoT was investigated for analyzing the trajectories of many users.
Therefore, a recommendation system was developed in [15,16] for service discovery using
the knowledge–desire–intention (KDI) model. Another topic that has attracted researchers
concerns sentiment analysis in the SIoT. Notably, three levels of sentiment analysis exist,
and they embrace the document level, sentence level, and aspect level. The first level
categorizes sentiments from the entire document, while the second predicts the sentiment
popularities expressed in each sentence. The aspect level is more efficient than the first and
the second levels, as it classifies sentiments expressed in opinions [17]. Despite the amount
of SIoT data, the multimodality and accuracy of sentiment analysis are the main challenges.

Therefore, this paper aimed to develop a novel multimodal deep learning model
that can predict the user-generated data sentiment, activity, event, crisis-related event, or
social-media-related event in the SIoT. This model depends on an architecture combining
two model structures, including Transformers and Convolution Neural Networks (CNN)
as feature extraction methods and using an alternative feature selection method. Actually,
those features refer to the representations or patterns used to discriminate between the
classes/groups of data; some of these features are redundant. Therefore, the combination of
Transformer and the CNN can help with learning different levels of features and extracting
meaningful representations such as contextual representations in textual data. The feature
selection method is developed according to the behavior of Chaos Game Optimization
(CGO) [18], which simulates the concepts of chaos theory [19]. Based on these concepts,
CGO has been applied to solve different optimization techniques, including constrained
engineering design problems [20], parameter extraction of the three-diode photovoltaic
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model [21], energy futures price forecasting [22], and proton exchange membrane fuel
cells [23]. The developed method starts by constructing the DL architecture, named the
Transformer CNN (TransCNN), and uses it to extract the features from the tested datasets.
This process is followed by dividing the dataset into training and testing, then using the
binary version of CGO to find the relevant features of the training set from those extracted
ones. After that, the best solution (relevant features) is used to reduce the size of the testing
set by removing the irrelevant features and to evaluate the quality of those features using
different performance metrics.

The main contributions can be summarized as follows:

• We propose TransCNN as a new DL architecture as our main feature extractor with
pluggable components that exploit textual and numerical data.

• We present an alternative FS technique based on a binary version of Chaos Game
Optimization (CGO).

• We evaluated the efficiency of the developed method by comparing with other models
and using different SIoT datasets.

The rest of this study is organized as follows: Section 2 presents the related works of
the techniques applied to handle the SIoT dataset. Section 3 introduces the background
of Transformer-based models and chaos game optimization. The proposed method is
presented in Section 4. The results and their discussion are given in Section 5. The
conclusion is presented in Section 6.

2. Related Works

The authors of [24] presented a framework for mining Twitter and analyzing users’
perceptions of the SIoT. The proposed framework allows us to obtain a Twitter feed. The
data cleaning and pre-processing detects slang, applies lemmatization, and removes stop
words. After that, extensive sentiment analysis was conducted based on an Improved
Popularity Classifier (IPC), SentiWordNet (SWNC), Fragment Vector Model (FVM), and
hybrid classifier that combines the IPC and SWNC. The experimental results discussed
in [24] demonstrated that the FVM, which is a semi-supervised algorithm, achieved the
best accuracy of 94.88%. The approach presented in [24] is simple to apply. However, it has
yet to be compared to other benchmark techniques. Further, it is limited to unimodal text.

The work presented in [25] targeted the classification of sentiments in Twitter real-time
data, where multiple-sentence tweets and multi-tweet threads were considered. Thus,
Reference [25] explored a Hierarchical Attention Network (HAN) that was developed
based on a Recurrent Neural Network (RNN) composed of GRU/LSTMs and attention
mechanisms. In particular, the main motivation for the approach described in [25] consists
of analyzing sentiments in real-time Twitter data, including multiple sentences, as well
as multiple tweets. Moreover, the HAN allows one to read a full sentence, and then,
the attention mechanism selects the most-significant words. Next, the HAN outputs a
sentence that incorporates the semantic content of the input sentence. Additionally, the
HAN includes a sentence hierarchy process for creating document embedding. Two English
tweet datasets, including the Standard Twitter sentiment Gold standard (STC-Gold) and
the SemEval-2017 datasets, were used for evaluating the proposed HAN, which achieved
an accuracy of 71.7% and 94.6%, respectively. The evaluation of the results of the approach
introduced in [25] is limited to two datasets. Additionally, the authors did not exploit
multimodal text.

So far, the problem of multimodal sentiment analysis has been studied in many re-
search papers. The model explained in [26] integrated interactive Transformer and Softmax
mapping. The former can detect the current interactive information between modalities,
while the latter projects each modality in a new space for further fusion. The Multimodal
Opinion Sentiment and Emotion Intensity (CMU-Mosei) (http://multicomp.cs.cmu.edu/
resources/cmu-mosei-dataset/, accessed on 2 January 2020) and Multimodal Emotion-
Lines (Meld) (https://affective-meld.github.io/, accessed on 2 January 2020) datasets were
selected for testing the proposed approach, which demonstrated good results compared

http://multicomp.cs.cmu.edu/resources/cmu-mosei-dataset/
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to the benchmark techniques. In particular, the best accuracy achieved by the proposed
approach was 82.47% for binary classification. We mention that the contribution introduced
in [26] was limited to linguistic and acoustic modalities.

The contribution presented in [27] considered two levels of multimodal fusion for
sentiment analysis. The first level combines text with audio and combines text with
video features. The Softmax fusion was applied to combine the prediction results. The
Multimodal Corpus of Sentiment Intensity (CMU-Mosi), CMU-Mosei, and Interactive
Emotional Dyadic Motion Capture (Iemocap) (https://sail.usc.edu/iemocap/, accessed
on 2 January 2020) datasets were evaluated, and the proposed approach outperformed
the benchmark techniques for binary and multi-classification, where the best-achieved
accuracy attained a value of 97.86%. The effectiveness of the approach presented in [27] is
mainly related to fusion at the data and decision levels.

The framework published in [28] allows a dynamic fusion of various modalities for
sentiment analysis. Besides, the authors of [28] suggested and validated a new loss function
that supported finding the suitable target sub-space. Considering the CMU-Mosi and
CMU-Mosei datasets, the approach described in [28] achieved the best accuracy among
the benchmark techniques for the two evaluated datasets, and the best accuracy attained
a value of 87.5%. Notably, the framework designed in [28] performs the fusion of audio,
visual, and language data. Unfortunately, the validation of the results was limited to two
datasets.

The idea presented in [29] focused on human multimodal language based on a network
that extracts multimodal sequence features. Thus, the model proposed in [29] considers
language, vision, and acoustics. More specifically, the Gated Recurrent Unit (GRU) net-
work [30] was explored to generate internal modal information. Then, the Softmax function
was used to calculate the correlation between two timestamps. Finally, the ReLU function
and Sigmoid layer were used for sentiment analysis. The proposed method was validated
using the CMU-Mosei dataset, where the proposed approach demonstrated the best F1-
score for binary sentiment classification. It achieved good results for six label classifications
for emotion classification. We mention that the best accuracy achieved by the method
proposed in [30] was 93.1%. More specifically, the approach published in [31] enables
analyzing multimodal sentiment while considering the constraint of time delay between
multimodal signals.

The model’s objective presented in [31] is to handle the problem of the dynamic
weights of multimodal data. To this end, a Bidirectional Encoder Representation Trans-
former (BERT) [32] and a Transformer encoder [33] were adopted. Hence, the CMU-Mosei
and CMU-Mosi datasets were used, and the results discussed in [32] were evaluated in
terms of the mean absolute error, Pearson correlation, and accuracy. It is worth mentioning
that the approach proposed in [31] provided the best results for all performance metrics
for the two datasets.It is worth mentioning that the framework presented in [31] is based
on different encoding techniques for dealing with multimodal data. Hence, BERT was
adopted to provide lexical embedding, while the Transformer’s encoder was proven to
be effectivefor visual and acoustic data. Another advantage of the framework described
in [31] is that it was tested for aligned and non-aligned data.

The authors of [34] proposed an Integrating Consistency and Difference Network
(ICDN) that relies on mapping transfer between different modalities. The mapping transfer
was also investigated to extract multimodal features. The CMU-Mosi and CMU-Mosei
datasets were explored to validate the proposed approach for multi-classification and
regression tasks. More specifically, the approach presented in [34] attained the best results
regarding the accuracy, F1-score, mean absolute error, and correlation compared to the
baseline techniques. The best-achieved accuracy for binary and multi-classification was
83.8% and 52.0%, respectively. The major advantage of the ICDN over related works
concerns the reduction of interference between irrelevant modalities. The model presented
in [35] can support inter- and intra-modality dynamics. Further, the asymmetric window
is used to represent the asymmetric weights of context. The approach presented in [35]

https://sail.usc.edu/iemocap/
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was tested on the CMU-Mosi dataset, and it achieved the best accuracy and the best F1-
score of 80% and 79.9%, respectively. The model introduced in [35] is limited to analyzing
sentiments in user-generated videos.

The authors of [36] recently developed a self-attention fusion framework that considers
text, audio, and visual features. Hence, the proposed framework allows the detection
of internal and external features’ correlation. It is built based on an attention network,
which takes the three stated features and outputs the attention scores to indicate the
importance of each feature. More specifically, the self-attention framework is hierarchical
and based on a read–write mechanism to capture the correlation of different modalities.
The experimental results shown in [36] were conducted using the CMU-Mosi dataset
and showed the effectiveness of the self-attention mechanism for increasing the accuracy
compared to the benchmark techniques.

With the high-quality results obtained using the previously discussed method, they
still had some limitations with respect to their quality. For example, the ability to balance
between global and local search still requires more improvements. Since this will influence
the quality of the selected features that will reflect the classification accuracy, this motivated
us to propose an alternative FS method based on the integration between the CGO and
TransCNN as a DL model.

3. Background

In this section, the background of Chaos Game Optimization (CGO) is introduced (as
in Algorithm 1). In general, CGO emulates the concepts of chaos theory [18,37]. The CGO
is similar to other MH techniques, which generate a set of solutions (i.e., eligible seeds) X
as defined in the following formula:

Xij = LBj + rand× (UBj − LBj), j = 1, 2, . . . , D, i = 1, 2, . . . , N (1)

where D represents the dimension of the solution. rand is a random value belonging to
[0,1].

Thereafter, the fitness value of Xi is computed, and the solution that has the best fitness
is assigned as the best solution Xb. The next process is to compute the mean values of the
chosen solutions, named the Mean Group (MGi). Then, a temporary triangle is constructed
according to Xi, Xb, and MGi. Then, each temporary triangle produces four new solutions
(seeds) as defined in the following equations.

XN1
i = Xi + αi × (βi × Xb − γi ×MGi), i = 1, 2, . . . , n (2)

XN2
i = Xb + αi × (βi × Xi − γi ×MGi), i = 1, 2, . . . , n (3)

XN3
i = MGi + αi × (βi × Xi − γi × Xb), i = 1, 2, . . . , n (4)

XN4
i = Xi(Xk

i = Xk
i + R), k = 1, 2, . . . , d (5)

where βi and γi are random values generated from [0,1]. αi refers to the factorial used
to simulate the movement limitations of X. The value of αi can be updated using the
following formula:

αi =


Rand
2× Rand
(δ× Rand) + 1
(ε× Rand) + ( ε),

(6)

where Rand denotes a uniformly random value. ε and δ are the random integer values.
Then, the fitness value of the four seeds is computed, then we replace the worst solutions
with these new solutions. After that, the stop conditions are checked, and in case they are
satisfied, the updating process is stopped and the best solution returned.



Mathematics 2023, 11, 1032 6 of 17

Algorithm 1 Algorithm of CGO.

1: Input:
2: D: the number of starting eligible seeds.
3: Initialize the starting positions (Sj

k) with random values of eligible seeds (Sk).
4: Output:
5: G: the global best eligible seed.
6: Method:
7: Compute the objective function for each eligible seed.
8: repeat
9: for k = 1 to D do

10: Create a mean group (Mk).
11: Construct temporary triangles on three vertices of Sk, G, and Mk.
12: Create new seeds by Equations (2) to (5).
13: if boundaries are crossed by new seeds then
14: Position limitations can be adjusted for new seeds.
15: end if
16: Assess the fitness of new points.
17: if new seeds have a higher objective function than the last initial eligible seeds

then
18: Substitute the last points by the new ones.
19: end if
20: if the best solution is achieved then
21: Amend G.
22: end if
23: end for
24: until The iteration criterion has been met.
25: Return G.

4. Proposed SIoT Method
4.1. Proposed DL Model for Feature Extraction

This section briefly describes the basics of the Transformer-based architecture for
text feature representation learning and the vanilla Transformer encoder for numerical
data representation. In addition, we describe the proposed discriminative DL model
implemented for feature extraction, named the TransCNN.

The DistilBERT was produced using a distillation process (knowledge transfer) and
the vanilla Bidirectional Encoder Representations from Transformers (BERT) model [32].
For instance, DistilBERT possesses 40% fewer parameters than BERT and uses only 6
Transformer encoders rather than 12, as in BERT. In addition, DistilBERT was trained on
the same corpora as BERT, where Next-Sentence Prediction (NSP) and segment embedding
learning were omitted when training the model.

DistilBERT receives a sequence of tokens X = x1, . . . , xs representing a sentence X as a
data sample where the objective is to learn the semantic representation S3 of X via several
Transformer encoders and output a feature vector. The sequence X is tokenized using the
Wordpiece sub-word tokenizer [32] to generate the input embeddings (S1) representing a
word, segment, and positional embeddings for each token. The Wordpiece tokenizer adds
extra token embeddings to the input X, including [SEP] and [CLS] at the beginning and
the end, respectively. A multi-layered Recurrent Neural Network (RNN) with an attention
mechanism is used to sum up S1 embeddings and generate a single contextual vector S2.
Later, the S3 feature vector is produced by concatenating all S2 for the input sequence X
and stored in the [CLS] token with a dimension of 768 vector.

For a vanilla Transformer encoder, the input data will pass through a multihead
attention block composed of a Multi-Layer Feedforward Neural Network (MLFFNN) [38],
and the generated output will add to the original input using a residual connection similar
to the ResNets network structure. In addition, a layer normalization is applied to the output
of the MLFFNN block. With the help of the attention mechanism, the Transformer block
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can dynamically decide which of the learned features is more important than the others
using four components, including the Query (Q), Key (K), Value (V), and a scoring function
such as a dot-product or a small MLP. A dot-product attention mechanism is defined in
Equation (7).

ATT(Q, K, V) = So f tmax(
QKt
√

d
)V. (7)

where QKt represents the dot-product matrix for all possible pairs (Q,K). To obtain the
attention weights, a Softmax function is used with a multiplication to the value vector. 1√

d
represents the scaling factor to control the attention values’ variance. The dot-product atten-
tion can be extended to a multihead attention with multiple (Q,K,V) triplets’ concatenation,
which is defined as in Equation (8).

MultiheadAtt(Q, K, V) = Concat(head1, . . . , headh)WO

headi = ATT(QWQ
i , KWK

i , VWV
i ).

(8)

where WQ, WK,WV , and WO are learnable parameter matrices and h is the number of heads.
The proposed model, named the TransCNN, is composed of several core components,

including Transformer-based encoders, 1D convolution, and 1 × 1 convolution blocks.
Transformer-based encoders have been widely used in various applications such as time
series forecasting [39], text classification [40,41], and image processing [42,43]. The Tran-
sCNN architecture is designed as shown in Figure 1, where a specific trainable layer is used
to extract the input data features. The extracted feature vector for each data sample will be
the input of the feature selection algorithm used to boost the performance of a specific task
and reduce the number of redundant features by preserving only the most relevant.
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Figure 1. TransCNN model architecture.

To design a robust DL architecture, selecting components is very challenging when
using the DL model on a different task where the input type is not the same (text or
numerical data). For this reason, the TransCNN is built with pluggable Transformer-
based encoder blocks, where in the case of textual data, the TransCNN used a pre-trained
Transformer-based model named DistilBERT [44]. In contrast, the TransCNN uses four
vanilla Transformer encoders if the input data are numerical. Mainly, the TransCNN data
flow is as follows: input→ Trans f ormer → 1D convolution→ (1× 1) convolution. In the
following paragraphs, we detail the components of each building block of the TransCNN.

4.1.1. Transformer Block

The objective for textual data input is to learn and obtain better representations using
DistilBERT as the main Transformer block. We fine-tuned only the top encoder layer of the
pretrained DistilBERT (distilbert-base-uncased) for several epochs during the training of
the TransCNN to speed up the learning process and minimize the overall model size. The



Mathematics 2023, 11, 1032 8 of 17

[CLS] vector extracted using DistilBERT with a size of 768 representing the sequence X will
be fed to the 1D convolution block for feature representation refinement.

In terms of numerical data input, the objective is to learn and extract attention-based
representations of the raw data by maximizing the model performance on a specific task
using a vanilla Transformer encoder with a multihead attention mechanism similar to the
BERT architecture. In our model, we used a Transformer block with four encoder blocks
and a variant number of heads ranging from one to nine based on the data sample attributes
with a feedforward layer of dimension 512. At this stage, we trained the Transformer on
the data samples from scratch rather than using a pre-trained Transformer block.

4.1.2. Convolution and Classification Blocks

At this stage, the output from the Transformer block is fed to a convolution block
consisting of three sequential convolution layers with an output channel equal to 16,
32, and 64, respectively. Each convolution layer uses the Rectified Linear Unit (ReLU)
activation function and a 1D convolution with a kernel size of 1× 3. In addition, each
convolutional layer is followed by a batch normalization layer and a max-pooling layer
with size 2. Later, the output from the convolution above blocks is fed to two 1 × 1
pointwise convolutions with a kernel size of 1 × 1. The 1 × 1 pointwise convolution
replaces the MLP layer in our model, where the first 1× 1 convolution layer is used as our
feature extractor during inference and the second 1× 1 convolution layer is used as our
classification layer during training. The feature extraction layer generates different sizes
of feature representations from the input raw data features, which will be to the feature
selection algorithm a new representation of the input data sample. The objective is to learn
better feature representations rather than relying on raw features. The 1× 1 convolution
layer uses the H-swish activation function, which replaces the Sigmoid activation function
introduced in the paper [45], defined as in Equation (9).

h− swish(x) = x · σ(x), σ(x) =
ReLU6(x + 3)

6
. (9)

where σ(x) represent the piecewise linear hard analog function.
The model was fine-tuned for 100 epochs for numerical datasets and 5 epochs when

using text datasets (due to the large amount of data and the significant parameters in the
pre-trained DistilBERT) with a batch of size 64. Meanwhile, to update the model’s weight
and bias parameters, we used the AdamW optimizer with a learning rate of 5 × 10−3. To
overcome the model’s overfitting, we used a dropout layer with a probability of 0.38 and an
early-stopping mechanism for the validation loss. We used the cross entropy loss function
to compute the loss between the output logits of the model and the target classes.

4.2. Proposed MH Model for Feature Selection

The training dataset was used to train the model to recognize the key features, and the
test dataset was used to compare the feature extraction methods. The stages of the binary
CGO optimization technique are shown in Figure 2. First, the CGO is tasked with creating
a collection of N agents X that represent the optimal FS solution. Then, a task is completed
using the following formula:

Xi = rand× (U − L) + L, i = 1, 2, . . . , N, j = 1, 2, . . . , Dim (10)

In Equation (11), the dimension of the particular problem is indicated by the symbol
Dim (i.e., the number of features). In contrast, U and L define the search space. The
Boolean addition of each Xi must then be obtained. This is performed by using the
following equations:

BXij =

{
1 i f Xij > 0.5
0 otherwise

(11)
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By utilizing an optimization strategy, which is dependent on the binary BXi and
classification errors, the goal value from each Xi is computed.

Fiti = λ× γi + (1− λ)×
(
|BXi|
Dim

)
, (12)

where the ratio of the defined feature sets is represented by ( |BXi |
Dim ). The KNN classification

error is indicated by the symbol γi. KNN is frequently used since it has fewer parameters
and is significantly more stable than other classification approaches. In contrast, the
measurement λ always requires adjusting for the proportion of the chosen characteristics
and the categorization error.

The best option is then brought back after looking at the stopping criteria to see if they
have been met, or the automatic updating procedures are repeated.

Figure 2. The steps of CGO as the FS method.

5. Experiments and Results

Within this section, we discuss the results of the developed SIoT model based on the
CGO algorithm as the FS technique and the TransCNN as the feature extraction approach.
The performance of a modified CGO is compared with a set of ten algorithms including the
Honey Badger Algorithm (HBA) [46], Grey Wolf Optimizer (GWO) [47], Dwarf Mongoose
Optimization (DMOA) [48], Chameleon (Chame) [49], Electric Fish Optimization (EFO) [50],
Arithmetic Optimization Algorithm (AOA) [51], Aquila Optimizer (AO) [52], Reptile Search
Algorithm (RSA) [53], LSHADE [54], and Self-adaptive Differential Evolution algorithm
(SaDE) [55]. In this experiment, we used the original values of the parameters of each of
these algorithms. In addition, for a fair comparison, we set the number of iterations and
the number of solutions to 30 and 20, respectively. Those algorithms were conducted using
Matlab 2014b installed on a computer with Windows 10 64 bit with 8 GB RAM Intel Core
i5 processor.

5.1. Dataset Description

During our experiments, we used several datasets covering a variety of data types,
tasks, and attributes related to SIoT applications. Table 2 lists the attributes and tasks we
used in our experiments. For instance, Human Activity Recognition (HAR), healthcare,
event detection, and sentiment analysis were the tasks. The data types included numerical
and text. The total datasets used to validate the proposed framework was eight. For
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the numerical datasets, we used the following datasets from the UCI repository: GPS
trajectories dataset, GAS sensors dataset, Hepatitis dataset, MovementAAL (Indoor User
Movement Prediction from RSS) dataset, and UCI HAR dataset. For the text datasets,
we used the following datasets: STS-Gold [56], SemEval2017 Task4 dataset [57] and C6
dataset [58]. In addition, 77% and 33% split ratios for the training and testing set were used,
respectively. In addition, the new version of the extracted features using the proposed DL
model is given in Table 3.

Table 2. The new version of the obtained features using the DL model.

Dataset Data Type #Features #Instances #Classes Task

GPS trajectories Numerical 163 769 2 Predict vehicle type
Car or Bus

UCI HAR Numerical 1153 10299 6 HAR
Hepatitis Numerical 2433 232 2 Healthcare
STS-Gold English Text 193 2034 2 Sentiment analysis
SemEval2017
Task4 English Text 289 61854 3 Sentiment analysis

GAS sensors Numerical 129 2577 3 HAR
MovementAAL Numerical 513 314 2 HAR
C6 English Text 577 3262 6 Crisis event detection

Table 3. (Original) The datasets descriptions and their corresponding samples and attributes.

Dataset Data Type #Features #Instances #Classes Task

GPS trajectories Numerical 6 163 2 Predict vehicle type
Car or Bus

UCI HAR Numerical 9 10299 6 HAR
Hepatitis Numerical 19 155 2 Healthcare
STS-Gold English text 192 2034 2 Sentiment analysis
SemEval2017
Task4 English text 192 61854 3 Sentiment analysis

GAS sensors Numerical 11 919438 3 HAR
MovementAAL Numerical 4 13197 2 HAR
C6 English text 192 32462 6 Crisis event detection

5.2. Evaluation Metrics

In our experiments, several evaluation indicators were used to validate the proposed
framework and present a clear insight into the performance of the developed optimization
method. In addition, we combined the common evaluation metrics to perform a fair
comparison against state-of-the-art methods, including accuracy, fitness value, sensitivity,
and specificity. The used evaluation metrics are defined as follows [59]:

AVAcc =
1

Nr

Nr

∑
k=1

Acck
Best, (13)

AccBest =
TP + TN

TP + FN + FP + TN
where AVAcc represents the average accuracy and AccBest represents the highest obtained
accuracy value. Nr is the number of iterations or runs. TP, TN, FP, and FN represent the
True Positive, True Negative, False Positive, and False Negative rates from the confusion
matrix representing the classification report [59].

AVSens is calculated as:

AVSens =
1

Nr

Nr

∑
k=1

Sensk
Best, (14)



Mathematics 2023, 11, 1032 11 of 17

SensBest =
TP

TP + FN
where AVSens represents the average sensitivity based on SensBest, which is also known as
the true positive rate, representing the rate of predicting positive classes.

5.3. Results and Discussion

The comparison results between the developed CGO and others are given in Tables 4–8.
In Table 4, the average classification accuracy is shown, and it can be seen that the developed
CGO performs better on seven datasets. This nearly represents 88% of the total number of
datasets. This is followed by the HBA, which has the best accuracy for one dataset:Hepatitis.
CGO and the HBA obtained the same accuracy, equal to 94.10%, on the STSGold dataset in
terms of textual datasets. In addition, Figure 3 depicts the average accuracy among the eight
datasets, and we can observe that CGO has a higher value. In terms of average accuracy, CGO
outperformed the HBA by more than 1%. This indicates the efficiency of CGO over all other
methods, whereas the HBA is ranked second and the RSA third.

Table 4. Accuracy of CGO and other approaches (bold is the best value).

HBA GWO DMOA Chame CGO EFO AOA AO RSA LSHADE SaDE

SemEval2017 0.5913 0.5864 0.5970 0.5931 0.6049 0.5873 0.6011 0.5900 0.5758 0.5933 0.5887
STSGold 0.9410 0.9091 0.9337 0.9214 0.9410 0.9337 0.9361 0.9238 0.9189 0.9386 0.9337
GPS Trajectories 0.8704 0.7963 0.7963 0.7963 0.8889 0.7963 0.7963 0.8519 0.8704 0.7963 0.7963
GAS Sensors 0.9835 0.9812 0.9824 0.9835 0.9871 0.9824 0.9847 0.9847 0.9812 0.9824 0.9835
Hepatitis 0.9351 0.8961 0.8961 0.8961 0.9221 0.8961 0.9091 0.9091 0.9221 0.8961 0.8961
MovementAAL 0.7981 0.7788 0.7981 0.7885 0.8462 0.7788 0.8269 0.7885 0.8077 0.7885 0.7788
UCI-HAR 0.9009 0.8951 0.8968 0.8979 0.9013 0.8948 0.8972 0.8931 0.8972 0.8938 0.8955
C6 0.9714 0.9684 0.9687 0.9687 0.9730 0.9710 0.9717 0.9694 0.9684 0.9707 0.9707

Figure 3. Average accuracy for the eight SIoT datasets.

According to the sensitivity values given in Table 5, it can be noticed that CGO and
the HBA have the best sensitivity values for three and two datasets, respectively. They are
followed by the RSA, EFO, and GWO, which have the highest sensitivity for one dataset. In
addition, the average sensitivity among the eight datasets, as in Figure 4, shows that CGO
is the best algorithm. The RSA follows CGO, which provided a sensitivity better than the
other methods, and the HBA is in the third position according to the sensitivity measure.
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Table 5. Sensitivity of CGO and other approaches.

HBA GWO DMOA Chame CGO EFO AOA AO RSA LSHADE SaDE

SemEval2017 0.5720 0.5325 0.5599 0.5516 0.5952 0.5317 0.5634 0.5544 0.5534 0.5486 0.5340
STSGold 0.9609 0.9502 0.9609 0.9466 0.9644 0.9715 0.9609 0.9537 0.9395 0.9680 0.9680
GPS Trajectories 0.8621 0.7586 0.7586 0.7586 0.8966 0.7586 0.7586 0.8621 0.9310 0.7586 0.7586
GAS Sensors 0.9919 0.9839 0.9839 0.9839 0.9960 0.9879 0.9919 0.9919 0.9919 0.9839 0.9879
Hepatitis 0.9474 0.8684 0.8684 0.8684 0.9211 0.8684 0.8947 0.8947 0.8947 0.8684 0.8684
MovementAAL 0.6800 0.6600 0.6800 0.6600 0.7400 0.6600 0.7200 0.6800 0.7200 0.6600 0.6600
UCI-HAR 0.8750 0.8992 0.8952 0.8851 0.8891 0.8972 0.8952 0.8952 0.8871 0.8952 0.8972
C6 0.9754 0.9630 0.9595 0.9613 0.9736 0.9648 0.9683 0.9648 0.9648 0.9630 0.9630

Figure 4. Average sensitivity for the eight SIoT datasets.

Table 6 illustrates the specificity value obtained using CGO and the other methods.
These values show that the HAB and CGO have nearly the same performance since both
have the best value for the four datasets. In addition, they have the same value for the
two datasets named Trajectory and Sensors. At the same time, the RSA provides results
better than the other methods in terms of specificity. The same observation can be noticed
in Figure 5, which depicts the average specificity among the eight datasets.

Table 6. Specificity of CGO and other approaches (bold is the best value).

HBA GWO DMOA Chame CGO EFO AOA AO RSA LSHADE SaDE

SemEval2017 0.8175 0.8481 0.8441 0.8422 0.8270 0.8456 0.8353 0.8348 0.8418 0.8418 0.8436
STSGold 0.8968 0.8175 0.8730 0.8651 0.8889 0.8492 0.8810 0.8571 0.8730 0.8730 0.8571
GPS Trajectories 0.8800 0.8400 0.8400 0.8400 0.8800 0.8400 0.8400 0.8400 0.8000 0.8400 0.8400
GAS Sensors 0.9983 0.9967 0.9967 0.9967 0.9983 0.9967 0.9983 0.9983 0.9983 0.9967 0.9967
Hepatitis 0.9231 0.9231 0.9231 0.9231 0.9231 0.9231 0.9231 0.9231 0.9487 0.9231 0.9231
MovementAAL 0.9074 0.8889 0.9074 0.9074 0.9444 0.8889 0.9259 0.8889 0.8889 0.9074 0.8889
UCI-HAR 0.9833 0.9767 0.9784 0.9816 0.9841 0.9784 0.9800 0.9788 0.9820 0.9767 0.9776
C6 0.9897 0.9881 0.9877 0.9877 0.9893 0.9881 0.9893 0.9889 0.9897 0.9885 0.9885
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Figure 5. Average specificity for the eight SIoT datasets.

Table 7 depicts the average of the selected features obtained using CGO and the other
methods. From those results, we can notice that the smallest number of selected features
is obtained using CGO for the five datasets. The HBA, AO, and RSA have the smallest
number of selected features in one dataset. Moreover, it can be seen from Figure 6 that
CGO has a loweraverage of the selected features among the tested datasets, followed by
AO, and the RSA, which are the second and third, respectively, best algorithms according
to the selected features.

Table 7. Number of selected features obtained using CGO and other methods (bold is the best value).

HBA GWO DMOA Chame CGO EFO AOA AO RSA LSHADE SaDE

SemEval2017 28 61 131 39 12 232 73 15 22 172 233
STSGold 35 45 88 23 16 160 44 53 20 151 160
GPS Trajectories 50 149 319 57 20 630 153 10 5 462 621
GAS Sensors 91 22 34 16 40 93 18 14 30 73 96
Hepatitis 460 504 1102 184 40 2038 374 59 100 1473 2037
MovementAAL 120 167 249 132 141 415 206 181 345 383 418
UCI-HAR 151 253 531 33 28 958 203 100 30 693 948
C6 123 113 222 76 58 473 110 61 88 351 471

Figure 6. Average selected features for the eight SIoT datasets.
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Finally, Table 8 shows the average fitness value obtained using the competitive al-
gorithms to handle the SIoT datasets. From these results, one can see that CGO has the
smallest fitness value for five datasets, followed by the HBA, which has the smallest value
for two datasets. The average fitness value overall for the eight datasets is depicted in
Figure 7, and we can observe from this figure that the CGO has nearly a 0.10 fitness value,
which is the smallest value. At the same time, the HBA can obtain a fitness value smaller
than other methods.

Table 8. Fitness value obtained using CGO and other approaches (bold is the best value).

HBA GWO DMOA Chame CGO EFO AOA AO RSA LSHADE SaDE

SemEval2017 0.3776 0.3934 0.4082 0.3797 0.3633 0.4520 0.3844 0.3731 0.3842 0.4258 0.4511
STSGold 0.0713 0.1053 0.1055 0.0827 0.0614 0.1430 0.0804 0.0962 0.0782 0.1339 0.1430
GPS Trajectories 0.1168 0.2027 0.2249 0.1908 0.1003 0.2654 0.2033 0.1340 0.1168 0.2435 0.2642
GAS Sensors 0.0171 0.0341 0.0424 0.0195 0.0140 0.0885 0.0223 0.0169 0.0185 0.0729 0.0898
Hepatitis 0.0587 0.1142 0.1388 0.1011 0.0702 0.1773 0.0972 0.0842 0.0702 0.1541 0.1773
MovementAAL 0.1983 0.2317 0.2304 0.2162 0.1396 0.2801 0.1960 0.1939 0.1739 0.2652 0.2807
UCI-HAR 0.0905 0.1163 0.1389 0.0948 0.0913 0.1778 0.1102 0.1049 0.0951 0.1557 0.1764
C6 0.0273 0.0481 0.0667 0.0414 0.0258 0.1082 0.0446 0.0382 0.0299 0.0873 0.1081

Figure 7. Average fitness value for the eight SIoT datasets.

For further analysis, the results obtained using CGO and the other methods are given
in Table 9. These results represent the mean rank obtained using the Friedman test. This
test aims to determine whether there is a significant difference between the developed
method and other methods. From those results, we can notice that the developed CGO has
the best mean rank based on the accuracy, sensitivity, specificity, number of features, and
fitness value. The HBA follows this in terms of the accuracy, sensitivity, specificity, and
fitness value. However, according to the performance of the algorithms based on the value
of several features, AO is ranked second.

Table 9. Friedman test for CGO and the other methods.

HBA GWO DMOA Chame CGO EFO AOA AO RSA LSHADE SaDE

Accuracy 8.81 2.44 5.44 5.25 10.75 4.19 8.31 5.63 5.19 5.25 4.75
Sensitivity 7.88 4.13 4.81 3.00 9.38 5.56 7.56 7.06 6.75 4.63 5.25
Specificity 8.13 4.31 5.50 5.44 8.44 4.69 7.31 5.31 7.00 5.19 4.69
No. features 5.00 5.75 7.63 3.38 2.25 10.56 5.50 3.13 3.50 8.88 10.44
Fitness value 2.44 7.00 7.88 4.88 1.31 10.63 5.50 3.75 3.25 9.00 10.38
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From the previous discussion, it can been noticed that the CGO algorithm has a high
ability to increase the prediction performance with a minimum number of features. This
was achieved because CGO can balance the exploration and exploitation phases during the
search process.

5.4. Future Work

The developed framework can be extended to future work to other applications,
including medical, agriculture, and others. In addition, it can be modified using fractional
calculus and another hybrid mechanism. Meanwhile, searching for the optimal hyper-
parameters of the proposed DL models using MH algorithms can be beneficial to improve
the framework’s overall performance.

6. Conclusions and Future Work

This paper developed an alternative Social Internet of Things (SIoT) technique based on
integrating the advantages of the Deep Learning (DL) model and meta-heuristic approach.
The DL, the TransCNN, was applied to extract the features from the tested dataset. At the
same time, Chaos Game Optimization (CGO) is an MH technique used to determine the
relevant features. To evaluate the performance of the developed SIoT model, we compared
it with ten other well-known methods, including the HBA, GWO, DMOA, Chame, EFO,
AOA, AO, RSA, LSHADE, and SaDE. These methods were applied as FS methods and
have demonstrated their efficiency. According to the obtained results, the developed SIoT
provided better performance than the other models based on the accuracy, specificity,
sensitivity, and fitness value.

Author Contributions: Conceptualization, M.A.E., A.D., S.A.C. and M.A.; methodology, M.A.E.,
A.D., S.A.C. and M.A.; software, M.A.E., A.D., S.A.C. and M.A.; validation, M.A.E., A.D., S.A.C.
and M.A.; formal analysis, M.A.E., A.D., S.A.C. and M.A.; investigation, M.A.E., A.D., S.A.C. and
M.A.; writing—review and editing, M.A.E., A.D., S.A.C. and M.A.; visualization, M.A.E., S.A.C. and
M.A.; supervision, M.A.E. and A.D. All authors have read and agreed to the published version of the
manuscript.

Funding: This research project was funded by the Deanship of Scientific Research, Princess Nourah
bint Abdulrahman University, through the Program of Research Project Funding After Publication,
grant No (43- PRFA-P-17).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are available from the authors upon request.

Acknowledgments: This research project was funded by the Deanship of Scientific Research, Princess
Nourah bint Abdulrahman University, through the Program of Research Project Funding After
Publication, Grant No. (43- PRFA-P-24).

Conflicts of Interest: The authors declare that there are no conflict of interest regarding the publica-
tion of this paper.

References
1. Elsisi, M.; Tran, M.Q. Development of an IoT architecture based on a deep neural network against cyber attacks for automated

guided vehicles. Sensors 2021, 21, 8467. [CrossRef]
2. Tran, M.Q.; Amer, M.; Abdelaziz, A.Y.; Dai, H.J.; Liu, M.K.; Elsisi, M. Robust Fault Recognition and Correction Scheme for

Induction Motors Using an Effective IoT with Deep Learning Approach. Measurement 2023, 207, 112398. [CrossRef]
3. Cheng, W.S.; Chen, G.Y.; Shih, X.Y.; Elsisi, M.; Tsai, M.H.; Dai, H.J. Vickers hardness value test via multi-task learning convolutional

neural networks and image augmentation. Appl. Sci. 2022, 12, 10820. [CrossRef]
4. Sakkarvarthi, G.; Sathianesan, G.W.; Murugan, V.S.; Reddy, A.J.; Jayagopal, P.; Elsisi, M. Detection and Classification of Tomato

Crop Disease Using Convolutional Neural Network. Electronics 2022, 11, 3618. [CrossRef]
5. Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805. [CrossRef]
6. Chelloug, S.A.; El-Zawawy, M.A. Middleware for internet of things: Survey and challenges. Intell. Autom. Soft Comput. 2018, 24,

309–318 . [CrossRef]

http://doi.org/10.3390/s21248467
http://dx.doi.org/10.1016/j.measurement.2022.112398
http://dx.doi.org/10.3390/app122110820
http://dx.doi.org/10.3390/electronics11213618
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1080/10798587.2017.1290328


Mathematics 2023, 11, 1032 16 of 17

7. Mala, D.J. Integrating the Internet of Things into Software Engineering Practices; IGI Global: Hershey, PA, USA, 2019.
8. Zannou, A.; Boulaalam, A.; Nfaoui, E.H. SIoT: A new strategy to improve the network lifetime with an efficient search process.

Future Internet 2020, 13, 4. [CrossRef]
9. SD, M.; Prakash, S.S.; Krinkin, K. Service Oriented R-ANN Knowledge Model for Social Internet of Things. Big Data Cogn.

Comput. 2022, 6, 32.
10. Rad, M.M.; Rahmani, A.M.; Sahafi, A.; Qader, N.N. Social Internet of Things: Vision, challenges, and trends. Hum.-Centric

Comput. Inf. Sci. 2020, 10, 1–40.
11. Thangavel, G.; Memedi, M.; Hedström, K. A systematic review of Social Internet of Things: Concepts and application areas. In

Proceeding of the 2019 Americas Conference on Information Systems, Cancún, Mexico, 15–17 August 2019.
12. Marche, C.; Atzori, L.; Nitti, M. A dataset for performance analysis of the social internet of things. In Proceedings of the 2018

IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy,
9–12 September 2018; pp. 1–5.

13. Fang, Q.; Wang, G.; Du, J.; Liu, Y.; Zhou, M. Prediction of tunnelling induced ground movement in clay using principle of
minimum total potential energy. Tunn. Undergr. Space Technol. 2023, 131, 104854. [CrossRef]

14. Huang, Z.; Zhang, D.; Pitilakis, K.; Tsinidis, G.; Huang, H.; Zhang, D.; Argyroudis, S. Resilience assessment of tunnels: Framework
and application for tunnels in alluvial deposits exposed to seismic hazard. Soil Dyn. Earthq. Eng. 2022, 162, 107456. [CrossRef]

15. Lakshmanaprabu, S.; Shankar, K.; Khanna, A.; Gupta, D.; Rodrigues, J.J.; Pinheiro, P.R.; De Albuquerque, V.H.C. Effective features
to classify big data using social internet of things. IEEE Access 2018, 6, 24196–24204. [CrossRef]

16. Lye, G.X.; Cheng, W.K.; Tan, T.B.; Hung, C.W.; Chen, Y.L. Creating personalized recommendations in a smart community by
performing user trajectory analysis through social internet of things deployment. Sensors 2020, 20, 2098. [CrossRef]

17. Ali, W.; Yang, Y.; Qiu, X.; Ke, Y.; Wang, Y. Aspect-level sentiment analysis based on bidirectional-GRU in SIoT. IEEE Access 2021,
9, 69938–69950. [CrossRef]

18. Talatahari, S.; Azizi, M. Chaos Game Optimization: A novel metaheuristic algorithm. Artif. Intell. Rev. 2021, 54, 917–1004.
[CrossRef]

19. Zhao, Y.; Li, R.; Wang, H.; Liang, H. Distributional chaos in a sequence and topologically weak mixing for nonautonomous
discrete dynamical systems. J. Math. Comput. SCI-JM 2020, 20, 14–20. [CrossRef]

20. Talatahari, S.; Azizi, M. Optimization of constrained mathematical and engineering design problems using chaos game
optimization. Comput. Ind. Eng. 2020, 145, 106560. [CrossRef]

21. Ramadan, A.; Kamel, S.; Hussein, M.M.; Hassan, M.H. A new application of chaos game optimization algorithm for parameters
extraction of three diode photovoltaic model. IEEE Access 2021, 9, 51582–51594. [CrossRef]

22. Jiang, P.; Liu, Z.; Wang, J.; Zhang, L. Decomposition-selection-ensemble forecasting system for energy futures price forecasting
based on multi-objective version of chaos game optimization algorithm. Resour. Policy 2021, 73, 102234. [CrossRef]

23. Alsaidan, I.; Shaheen, M.A.; Hasanien, H.M.; Alaraj, M.; Alnafisah, A.S. Proton exchange membrane fuel cells modeling using
chaos game optimization technique. Sustainability 2021, 13, 7911. [CrossRef]

24. Meena Kowshalya, A.; Valarmathi, M. Evaluating twitter data to discover user’s perception about social Internet of Things. Wirel.
Pers. Commun. 2018, 101, 649–659. [CrossRef]

25. Kumar, A. Contextual semantics using hierarchical attention network for sentiment classification in social internet-of-things.
Multimed. Tools Appl. 2022, 81, 36967–36982. [CrossRef]

26. Li, Z.; Guo, Q.; Feng, C.; Deng, L.; Zhang, Q.; Zhang, J.; Wang, F.; Sun, Q. Multimodal Sentiment Analysis Based on Interactive
Transformer and Soft Mapping. Wirel. Commun. Mob. Comput. 2022, 2022. [CrossRef]

27. Sun, J.; Yin, H.; Tian, Y.; Wu, J.; Shen, L.; Chen, L. Two-Level Multimodal Fusion for Sentiment Analysis in Public Security. Secur.
Commun. Netw. 2021, 2021, 1–10. [CrossRef]

28. He, J.; Yanga, H.; Zhang, C.; Chen, H.; Xua, Y. Dynamic Invariant-Specific Representation Fusion Network for Multimodal
Sentiment Analysis. Comput. Intell. Neurosci. 2022, 2022. [CrossRef]

29. Qi, Q.; Lin, L.; Zhang, R. Feature extraction network with attention mechanism for data enhancement and recombination fusion
for multimodal sentiment analysis. Information 2021, 12, 342. [CrossRef]

30. Li, X.; Ma, X.; Xiao, F.; Wang, F.; Zhang, S. Application of gated recurrent unit (GRU) neural network for smart batch production
prediction. Energies 2020, 13, 6121. [CrossRef]

31. Qi, Q.; Lin, L.; Zhang, R.; Xue, C. MEDT: Using Multimodal Encoding-Decoding Network as in Transformer for Multimodal
Sentiment Analysis. IEEE Access 2022, 10, 28750–28759. [CrossRef]

32. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional Transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

33. Zeyer, A.; Bahar, P.; Irie, K.; Schlüter, R.; Ney, H. A comparison of Transformer and lstm encoder decoder models for asr. In
Proceedings of the 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Sentosa, Singapore, 14–18
December 2019; pp. 8–15.

34. Zhang, Q.; Shi, L.; Liu, P.; Zhu, Z.; Xu, L. ICDN: Integrating consistency and difference networks by Transformer for multimodal
sentiment analysis. Appl. Intell. 2022, 1–14. [CrossRef]

35. Lai, H.; Yan, X. Multimodal sentiment analysis with asymmetric window multi-attentions. Multimed. Tools Appl. 2022,
81, 19415–19428. [CrossRef]

http://dx.doi.org/10.3390/fi13010004
http://dx.doi.org/10.1016/j.tust.2022.104854
http://dx.doi.org/10.1016/j.soildyn.2022.107456
http://dx.doi.org/10.1109/ACCESS.2018.2830651
http://dx.doi.org/10.3390/s20072098
http://dx.doi.org/10.1109/ACCESS.2021.3078114
http://dx.doi.org/10.1007/s10462-020-09867-w
http://dx.doi.org/10.22436/jmcs.020.01.02
http://dx.doi.org/10.1016/j.cie.2020.106560
http://dx.doi.org/10.1109/ACCESS.2021.3069939
http://dx.doi.org/10.1016/j.resourpol.2021.102234
http://dx.doi.org/10.3390/su13147911
http://dx.doi.org/10.1007/s11277-018-5709-2
http://dx.doi.org/10.1007/s11042-021-11262-8
http://dx.doi.org/10.1155/2022/6243347
http://dx.doi.org/10.1155/2021/6662337
http://dx.doi.org/10.1155/2022/2105593
http://dx.doi.org/10.3390/info12090342
http://dx.doi.org/10.3390/en13226121
http://dx.doi.org/10.1109/ACCESS.2022.3157712
http://dx.doi.org/10.1007/s10489-022-03343-4
http://dx.doi.org/10.1007/s11042-021-11234-y


Mathematics 2023, 11, 1032 17 of 17

36. Xiao, G.; Tu, G.; Zheng, L.; Zhou, T.; Li, X.; Ahmed, S.H.; Jiang, D. Multimodality sentiment analysis in social Internet of things
based on hierarchical attentions and CSAT-TCN with MBM network. IEEE Internet Things J. 2020, 8, 12748–12757. [CrossRef]

37. Hekmatmanesh, A.; Wu, H.; Handroos, H. Largest Lyapunov Exponent Optimization for Control of a Bionic-Hand: A Brain
Computer Interface Study. Front. Rehabil. Sci. 2022, 2, 802070. [CrossRef]

38. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2017; Volume 30.

39. Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient Transformer for long sequence
time-series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35,
pp. 11106–11115.

40. Adel, H.; Dahou, A.; Mabrouk, A.; Abd Elaziz, M.; Kayed, M.; El-Henawy, I.M.; Alshathri, S.; Amin Ali, A. Improving crisis
events detection using distilbert with hunger games search algorithm. Mathematics 2022, 10, 447. [CrossRef]

41. Aldjanabi, W.; Dahou, A.; Al-qaness, M.A.; Elaziz, M.A.; Helmi, A.M.; Damaševičius, R. Arabic Offensive and Hate Speech
Detection Using a Cross-Corpora Multi-Task Learning Model. Proc. Inform. 2021, 8, 69. [CrossRef]
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