
Citation: Fiems, D.; De Turck, K.

Analysis of Discrete-Time Queues

with Branching Arrivals. Mathematics

2023, 11, 1020. https://doi.org/

10.3390/math11041020

Academic Editor: Alexander Zeifman

Received: 13 January 2023

Revised: 10 February 2023

Accepted: 15 February 2023

Published: 16 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Analysis of Discrete-Time Queues with Branching Arrivals
Dieter Fiems *,† and Koen De Turck †

Department Telin, Ghent University, B-9000 Gent, Belgium
* Correspondence: dieter.fiems@ugent.be
† These authors contributed equally to this work.

Abstract: We consider a discrete-time single server queueing system, where arrivals stem from a
multi-type Galton–Watson branching process with migration. This branching-type arrival process
exhibits intricate correlation, and the performance of the corresponding queueing process can be
assessed analytically. We find closed-form expressions for various moments of both the queue content
and packet delay. Close inspection of the arrival process at hand, however, reveals that sample paths
consist of large independent bursts of arrivals followed by geometrically distributed periods without
arrivals. Allowing for non-geometric periods without arrivals, and correlated bursts, we apply π-
thinning on the arrival process. As no closed-form expressions can be obtained for the performance of
the corresponding queueing system, we focus on approximations of the main performance measures
in the light and heavy traffic regimes.
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1. Introduction

Input traffic at intermediate routers in packet-switched communication networks
typically exhibits considerable time correlation. Similar arrival correlation is also observed
for arrival processes of goods or customers at queues in manufacturing and logistic systems.
Correlated arrivals lead to increased variability in the arrival rate, which can make it more
difficult to predict and manage the flow of goods and customers through the system. This
results in longer queues, increased waiting times, and reduced system capacity. Moreover,
correlated arrivals can also lead to increased variability in the utilization of resources, which
in turn leads to increased maintenance costs and decreased efficiency.

Arrival correlation significantly affects queueing performance [1], and there is a con-
tinuing interest in analytically tractable queueing models with arrival correlation. Models
of interest include, in particular, Markovian arrival models. Such models may have a finite
state space, such as the discrete-time batch-Markovian arrival model [2–4], or a structured
infinite state space, such as the discrete autoregressive arrival models [5,6] and the train
and session arrival models [7,8]. For queues with an unstructured finite state space arrival
model, the performance measures of interest are typically not available in closed form.
Instead, numerically efficient algorithms are devised that yield the numerical values of the
various performance measures once all model parameters are specified. In contrast, for
some models with infinite state spaces, structural properties of the state space allow for
expressions of the performance measures of interest in closed form.

In this paper, a Markovian arrival process is proposed with an infinite state space that is
both structured and multi-dimensional: the Galton–Watson arrival process. More precisely,
we assess the performance of a discrete-time queueing system, where the arrivals during
the time slots are modeled as the size of the consecutive generations in multi-type Galton–
Watson branching processes with migration [9–12]. Galton–Watson branching processes
were originally investigated to study the extinction of family names, and constitute a
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convenient abstraction for modeling the evolution of populations over time. Some recent
applications of branching processes include pandemic spread [13], in vitro bactericidal
potency [14], antibody affinity maturation [15], the dismantling of terrorist networks [16]
and earthquake occurrence [17].

The main motivation for studying queues with Galton–Watson arrival processes stems
from a combination of the analytical tractability of the queue content and packet delay
and the observation that this arrival process exhibits intricate arrival correlation. The
arrival process at hand generalizes train arrival models [7,8] with phase-type distributed
train lengths. Moreover, there is a connection between branching processes and Hawkes
processes, which can serve as arrival processes in infinite server queues [18,19]. Not unlike
train and session arrival models, the Galton–Watson model is in a fixed state when there
are no arrivals. It is, in fact, this property which enables closed-form expressions for the
moments of the queue content and delay [20]. This also implies that periods without arrivals
are geometrically distributed, and that the single-server queue is overloaded whenever
there are arrivals. To overcome these rather stringent assumptions, we also investigate the
queueing system with branching arrivals after applying π-thinning on the arrival process.
With π-thinning, each packet arrival is discarded with a fixed probability so that the state
of the arrival process is no longer fixed in the absence of arrivals. Unfortunately, no closed-
form expressions can be obtained for the performance of the corresponding queueing
system. Therefore, we focus on the light traffic and heavy traffic regimes. Our approach
extends the results of [21], which investigated π-thinning of a queue with geometric
train arrivals.

While Galton–Watson arrival processes are new, various queueing processes can be
modeled as multi-type branching processes. First, the time till extinction in a branching
process relates to busy periods in queues [22,23]. The branching property here follows
from the observation that during a customer’s service, new customers arrive that bring
additional work. Secondly, many polling systems can be modeled as multi-type branching
processes [24–26], the branching property of polling disciplines being a key facilitator of
the analysis [27]. Finally, multi-type branching processes can also model the dynamics of
infinite server queues [28].

The remainder of the paper is organized as follows. In the next section, the assump-
tions and notation of the arrival process are introduced, as well as the queueing model
at hand. Following a probability generating the functions approach in Section 3, we find
expressions for performance measures of interest, such as the moments of the queue content
and the waiting times. Our results are then illustrated by some numerical examples in
Section 4, where we also discuss a simple arrival correlation fitting procedure. We then
consider the branching arrival model subject to π-thinning in the light traffic regime and
heavy traffic regime in Sections 5 and 6, respectively. Finally, conclusions are drawn in
Section 7.

2. Queueing Model

We consider a discrete-time queueing system; time is divided into fixed-length inter-
vals or slots. Incoming packets are stored in an unlimited buffer and serviced in the order
they arrived, with fixed service times equal to the slot length. Service is synchronized with
respect to slot boundaries, so packets cannot be serviced during their arrival slot.

Packet arrivals stem from a sub-critical multi-type Galton–Watson process with migra-
tion; the number of (arriving packet) types of this process is denoted by K, and the number
of arriving packets of type k during slot n is denoted by X(k)

n . We can then express the
number of arriving packets of type k during slot n in terms of the number of arrivals of the
different types at the previous slot as follows:

X(k)
n =

K

∑
i=1

X(i)
n−1

∑
j=1

M(i,k)
j,n + N(k)

n . (1)
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Here, M(i,k)
j,n is the type k off-spring of the jth type i packet at slot n− 1, and N(k)

n denotes
the number of new type k packets at slot n. The total number of packet arrivals An during
slot n is then simply the sum of the arrivals of the different types:

An =
K

∑
k=1

X(k)
n . (2)

In (1), the vectors
{[

M(i,1)
j,n , M(i,2)

j,n , . . . M(i,K)
j,n

]
, j, n = 1, 2, . . .

}
constitute a doubly in-

dexed sequence of independent and identically distributed (iid) random vectors for all
i ∈ {1, 2, . . . , K}. To characterize this sequence, we need to specify the joint distribution or
the joint probability generating function of the offspring of the different types for an arrival
of type i ∈ {1, 2, . . . , K}. Hence, the random vectors are completely characterized by the
vector-valued joint probability generating function:

M(x) = [Mi(x)]
K
i=1 =

[
E

[
K

∏
k=1

x
M(i,k)

j,n
k

]]
i=1,2,...,K

, (3)

with x = [x1, x2, . . . , xK]. Similarly, the vectors
{[

N(1)
n , N(2)

n , . . . , N(K)
n

]
, n = 1, 2, . . .

}
con-

stitute a sequence of iid random vectors, characterized by the common joint probability
generating function:

N(x) = E

[
K

∏
k=1

xN(k)
n

k

]
. (4)

Finally, we introduce notation for the mean offspring and migration of the different
types. Let µik = E

[
M(i,k)

1,1

]
denote the mean type k offspring of a type i packet. Similarly,

νk = E
[

N(k)
1

]
denotes the mean number of new type k arrivals in a slot. For notational

convenience, we collect these averages in a K× K matrixM = [µik] and in a column vector
V = [νk], respectively. With this notation, the mean number of arrivals in a slot equals

ρ = E[A1] = e (I −M)−1V . (5)

Here, e denotes a row vector of ones and I is the identity matrix. As we assume that the
multi-type branching process is sub-critical, the spectral radius ofM is smaller than one.
Hence, (I −M)−1 exists, and the mean arrival load is finite. This assumption will be
retained in the following sections.

3. Queueing Analysis

With the notation of the arrival process established, we now focus on the queueing
analysis. Let Un denote the queue content at the beginning of slot n. The queue contents at
the beginning of consecutive slots are then related as follows:

Un = (Un−1 − 1)+ + An . (6)

Here, (·)+ is the usual shorthand notation for max(·, 0).
The state of the queueing system at slot boundary n is completely described in the

Markovian sense by the vector of state variables (Un, X(1)
n , . . . , X(K)

n ); see
Equations (1), (2) and (6). Following a standard Loynes-type argument [29], the Markov
process exhibits a unique stationary (and limiting) distribution for ρ < 1. Recall that (5)
expresses ρ in terms of the parameters of the branching process with migration. Therefore,
let P(x, z) denote the joint probability generating function of this vector in steady state:

P(x, z) = lim
n→∞

E

[
K

∏
k=1

xX(k)
n

k zUn

]
. (7)
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In view of Equations (1), (2) and (6) and by standard z-transform techniques, it is
found that P(x, z) satisfies the following functional equation:

P(x, z) = [P(M(xz), z)− P(M(xz), 0)]
N(xz)

z
+ P(M(xz), 0)N(xz) .

Noting that Un = 0 implies An = 0 and therefore also X(k)
n = 0 for k = 1, . . . , K, we

have P(x, 0) = P(0, 0), with 0 a row vector of zeros. The functional equation therefore
simplifies to

P(x, z) = P(M(xz), z)
1
z

N(xz)− P(0, 0)
1− z

z
N(xz) . (8)

The remaining unknown constant P(0, 0) follows from the normalization condition
P(e, 1) = 1. More precisely, multiplying both sides of Equation (8) by z and evaluating
the first-order derivatives of the resulting expression in (e, 1) yields a system of linear
equations for P(0, 0) and for the derivatives ∂/∂xkP(x, 1)|x=e. For ρ < 1, this system of
equations has a unique solution. In particular, P(0, 0) equals

P(0, 0) = 1− ρ .

This is not entirely unexpected, as P(0, 0) represents the probability that the server is idle.
By recursive substitution, we can also obtain an explicit expression for the joint gener-

ating function P(x, z). To this end, recursively define the row vector Q(i)(x, z) as follows:

Q(i)(x, z) = M(Q(i−1)(x, z)z) , Q(0)(x, z) = x , (9)

for i = 1, 2, . . .. Successive application of the functional Equation (8) then yields

P(x, z) = (1− ρ)(z− 1)
∞

∑
j=0

j

∏
i=0

N(Q(i)(x, z)z)
z

. (10)

Clearly, the probability generating function of the queue content equals U(z) = P(e, z).
Additionally, the probability generating function for the queue content relates to the prob-
ability generating function for the packet delay. We can easily obtain the probability
generating function for the packet delay (i.e., the number of slots between the arrival
and departure of a packet) using the distributional form of Little’s result for discrete-time
queues with single-slot service times [30]:

D(z) =
1
ρ
(P(e, z)− (1− ρ)) . (11)

Finally, exploiting the moment-generating property of probability generating functions
immediately yields expressions for the various moments of the queue content and packet
delay. Note that expressions of the derivatives of P(x, z) in x = e and z = 1 can also be
directly obtained by evaluating the derivatives of the functional Equation (8) in x = e
and z = 1. Compared to evaluating the derivatives of (10), such an approach is more
convenient, as there is no need to evaluate the derivatives of the infinite sum.

4. Numerical Results

With the formulas at hand, we now investigate the mean delay of the queueing system
with multi-type Galton–Watson arrivals. We focus on a simplified arrival model, where the
arrivals stem from a two-type Galton–Watson model with neither migration between the
types (µ12 = µ21 = 0) nor correlation between the new arrivals of the different types. For
this arrival process, we introduce a convenient parameter estimation procedure.
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The load ρ and the autocorrelation function α(n) of this arrival process are equal to

ρ =
ν1

1− µ11
+

ν2

1− µ22
, α(n) =

φ2
1

φ2 µ11
n +

φ2
2

φ2 µ22
n , φ2

i =
θ2

i (1− µii) + νiσ
2
i

(1 + µii)(1− µii)2 . (12)

Here, φ2
i is the variance of the number of type-i arrivals in a slot, and φ2 = φ2

1 + φ2
2

is the variance of the number of arrivals in a slot. Further, σ2
i and θ2

i denote the variances

of M(i,i)
1,1 and N(i)

1 , respectively. To limit the number of parameters, assume that (i) M(i,i)
1,1 is

Bernoulli distributed such that σ2
i = µii(1− µii) and that (ii) N(1)

1,1 and N(2)
1,1 have the same

index of dispersion (or variance-to-mean ratio), β = θ2
1/ν1 = θ2

2/ν2. Figure 1 displays the
autocorrelation function of the arrival process for various parameter settings. The tangent
α0(n) in 0 and the asymptote α∞(n) are depicted as well in the logarithmic plot. These are
given by

α0(n) = exp(n(κ ln µ11 + (1− κ) ln µ22)) ,

α∞(n) = exp(n ln µ11 + ln(κ)) . (13)

with κ = φ2
1/φ2. Here, we assumed µ11 > µ22, without loss of generality.

0 500 1000 1500 2000 2500 3000
lag (in slots)

10 1

100

au
to

co
rre

la
tio

n

cor1
cor2
cor3
cor4

Figure 1. Autocorrelation function of the arrival process for different parameter settings:
(κ, µ11, µ22) = (0.4, 0.999538, 0.992660) for cor1, (0.4, 0.999538, 0.998391) for cor2, for (0.5, 0.999839,
0.990991) cor3 and (0.5, 0.999839, 0.997861) for cor4.

The selection of the tangent and asymptote can be used to find suitable parameters for
the arrival process. Modifying the decay rate of the tangent and the asymptote changes
the long- and short-time correlation in the arrival process. The selection of the tangent and
asymptote uniquely determines the parameters κ, µ11 and µ22, which, in turn, uniquely
determine the autocorrelation function; see Equations (12) and (13). It now suffices to
additionally fix the total arrival load ρ and the variance of the number of arrivals in a slot
φ2. We can then express the remaining parameters ν1, ν2 and β in terms of ρ, φ2, κ, µ11
and µ22:

ν1 = (1− µ11)(r + ρ) , ν2 = −(1− µ22)r , β = −1
r
(1 + µ22)(1− κ)φ2 − µ22 ,
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where r is the unique root in [−ρ, 0] of the quadratic equation:

(µ11 − µ22)r2 −
[
(1 + κµ11 + (1− κ)µ22)φ

2 − ρ(µ11 − µ22)
]
r− φ2ρ(1− µ22)(1− κ) = 0 .

The solution is a valid parameter set for the process at hand, provided that
β ≥ max(1 − ν1, 1 − ν2). This is possible provided that φ2 is sufficiently large, and a
simple sufficient condition for that is φ2 ≥ ρ(1− κ)−1.

Summarizing, the procedure above can be used to match the characteristics of the
multi-type branching arrival process with the corresponding characteristics of a traffic trace.
That is, parameter estimation for a given traffic trace reduces to (i) the estimation of the
mean and variance of the number of arrivals in a slot and to (ii) estimating α0(n) and α∞(n)
for the empirical autocorrelation function of the trace.

Figure 2 displays the mean delay as a function of the arrival load ρ, for an index of
dispersion φ2/ρ = 2, and for the various autocorrelation curves from Figure 1. Recall
that by using the estimation procedure described above, all arrival process parameters can
be determined given the load, index of dispersion, and autocorrelation curve. Figure 2
illustrates the impact of the arrival correlation on the performance measures, highlighting
the significant negative impact of a slow decay of the long-term correlation (cor3 and cor4)
on system performance. Short-term correlation (cor2 and cor4) also results in performance
degradation, although to a lesser extent than long-term correlation.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
arrival load

0

1000

2000

3000

4000

5000

6000

m
ea

n 
de

la
y

cor1
cor2
cor3
cor4

Figure 2. Mean packet delay vs. the arrival rate for the parameter settings of Figure 1 and for an
index of dispersion φ2/ρ = 2.

5. Light-Traffic Analysis

In the analysis of Section 3, it is key that An = 0 implies X(k)
n = 0 for k = 1, . . . , K.

More precisely, as the queue can only become empty when there are no new arrivals,
the arrival process is always in state 0, when the queue becomes empty. Hence, we
have P(x, 0) = P(0, 0), and one only needs to determine a constant P(0, 0) instead of the
unknown partial joint probability generating function P(x, 0).

While the modeling assumptions above allow for intricate correlation, the direct
mapping of the population size on the number of arrivals does impose some limitations:
whenever the total population size is larger than 1, the queue is overloaded, such that the
arrival process will be in state 0 most of the time for ρ < 1 (which is needed for stability).
Therefore, the present section considers the case where π-thinning is applied to the arrival
process. That is, each individual of the population in a slot will contribute a packet to
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the arrival process with probability q, and does not contribute to the arrival process with
probability 1− q. The number of arrivals Aq

n during slot n can therefore be expressed as

Aq
n =

An

∑
`=1

Y(`)
n , (14)

where An is defined as before, see Equations (1) and (2), and where {Y(m)
n } is a double-

indexed sequence of independent Bernoulli-distributed random variables with success
probability q. As in Section 3, let Uq

n denote the queue content at the nth slot boundary,
where the superscript makes the thinning probability q explicit. As a single packet departs
in a slot, we again have

Uq
n = (Uq

n−1 − 1)+ + Aq
n . (15)

As for the queueing model without thinning, the process (X(1)
n , . . . , X(K)

n , Uq
n) con-

stitutes a Markov process. Let Pq(x, z) denote the probability generating function of the
stationary distribution of the Markov process:

Pq(x, z) = lim
n→∞

E

[
K

∏
k=1

xX(k)
n

k zUq
n

]
. (16)

Using standard z-transform techniques, we find the following functional equation for
this generating function:

Pq(x, z) =
1
z
(

Pq(M(x(1− q + qz)), z)

+ (z− 1)Pq(M(x(1− q + qz)), 0)
)

N(x(1− q + qz)) . (17)

In contrast to the model of Section 3, there is no straightforward solution for this
functional equation. Therefore, we focus on the system’s performance in the light-traffic
regime. More precisely, we determine the terms in the series expansion of Pq(x, z) around
q = 0. To this end, we consider the following series expansion of Pq(x, z):

Pq(x, z) =
∞

∑
k=0

k

∑
`=0

Tk,`(x) qkz` . (18)

Note that there are no terms in qkz` for ` > k. This follows from the so-called n-events rule.
The nth term in the series expansion of the stationary probability of a state is zero if this
state cannot be reached by at most n q-events from a state which is reachable for the case
q = 0. In our case, q-events are arrivals, and the queue content cannot grow beyond n with
at most n arrivals.

As Pq(x, z) is a probability function for each q, the normalization condition Pq(e, 1) = 1
leads to the following normalization conditions for the terms Tk,`:

T0,0(e) = 1 ,
k

∑
`=0

Tk,`(e) = 0 . (19)

We now show that we can recursively retrieve all derivatives of the terms Tk,` in z = e.
Substituting the series expansion (18) in the functional Equation (17) yields

∞

∑
k=0

k

∑
`=0

Tk,`(x)qkz`+1 =
∞

∑
k=0

k

∑
`=0

Tk,`(M(x(1− q + qz)))qkz`N(x(1− q + qz))

+ (z− 1)
∞

∑
k=0

Tk,0(M(x(1− q + qz)))qk N(x(1− q + qz)) . (20)
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In order to compare terms in equal powers of q at both sides of the equation, we
need to introduce the Maclaurin series expansion of the terms Tk,`(M(x(1− q + qz))) and
N(x(1− q + qz)). For the latter, the expansion reads

N(x(1− q + qz)) =
∞

∑
n=0

qn(z− 1)nN̂(n)(x) ,

with,

N̂(n)(x) = ∑
|m|=n

1
m!

N(m)(x)xm .

In the expression above, the sum runs over all nth-order derivatives of N, and N(m)(x), xm,
and m! are shorthands for,

N(m)(x) =
∂m1

∂xm1
1
· · · ∂mK

∂xmK
K

N(x) , xm =
K

∏
k=1

xmk
k , m! =

K

∏
k=1

mk! ,

for m = [m1, . . . , mK]. The expansion of Tk,`(M(x(1− q+ qz))) is somewhat more involved.
First note, that

dn

dqn Mi(x(1− q + qz))
∣∣∣∣
q=0

= (z− 1)n M̂(n)
i (x) ,

with,

M̂(n)
i (x) = ∑

|m|=n

n!
m!

M(m)
i (x)xm .

Moreover, let M̂(n)(x) be the vector with entries M̂(n)
i (x), i = 1, . . . , K. We can then

use the multivariate extension of Faa di Bruno’s formula [31] to calculate the nth derivative
of q in q = 0:

dn

dqn Tk,`(M(x(1− q + qz)))
∣∣∣∣
q=0

= (z− 1)nT̂(n)
k,` (x) ,

with,

T̂(n)
k,` (x) = ∑

1≤|m|≤n
T(m)

k,` (x) ∑
θ(n,m)

n!
n

∏
j=1

(
M̂(j)(x)

)kj

kj!(j!)|kj |
,

and,

θ(n, m) =

{
(k1, . . . , kn) : kj ∈ NK,

n

∑
j=1

kj = m,
n

∑
j=1

j|kj| = n

}
.

Finally, the Maclaurin series expansion reads

Tk,`(M(x(1− q + qz))) =
∞

∑
n=0

1
n!

qn(z− 1)nT̂(n)
k,` (x) .

Substituting the expansions of Tk,`(M(x(1− q + qz))) and N(x(1− q + qz)) in (20) yields

∞

∑
k=0

k

∑
`=0

Tk,`(x)qkz`+1 =
∞

∑
k=0

k

∑
`=0

∞

∑
n=0

∞

∑
m=0

1
n!

T̂(n)
k,` (x)(z− 1)m+nz`N̂(m)(x)qk+m+n

+
∞

∑
k=0

∞

∑
n=0

∞

∑
m=0

1
n!

T̂(n)
k,0 (x)(z− 1)m+n+1N̂(m)(x)qk+m+n . (21)

The former expression now allows for identifying the coefficients of the terms qκzλ, yielding

T0,0(x) = T0,0(M(x))N(x) ,
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for κ = λ = 0 and,

Tκ,λ−1(x) = Tκ,λ(M(x))N(x) + Tκ,0(M(x))N(x)1{λ=1}

− Tκ,0(M(x))N(x)1{λ=0} + Fκ,λ(x) (22)

with

Fκ,λ(x) =
κ−1

∑
k=0

k

∑
`=0

κ−k

∑
n=0

1
n!

T̂(n)
k,` (x)

κ−k

∑
m=0

(
κ − k

m

)
(−1)κ−k−mN̂(κ−k−n)(x)1{`+m=λ}

+
κ−1

∑
k=0

κ−k

∑
n=0

1
n!

T̂(n)
k,0 (x)

κ−k+1

∑
m=0

(
κ − k + 1

m

)
(−1)κ−k+1−mN̂(κ−k−n)(x)1{λ=m} , (23)

for κ > 0 and λ ≤ κ. Close inspection of the expression above shows that Fκ,λ(x) only
depends on Tk,` for k < κ. Moreover, as M(e) = e, we can retrieve all derivatives of Tκ,` in
x = e from the system of functional Equation (22) and the normalization condition (19) in
terms of the derivatives of Tk,` for k < κ. Summarizing, we can recursively determine all

derivatives T(m)
k,` (e).

Once these terms have been found, it is now trivial to calculate the light-traffic approxi-
mation of the mean queue content. From the series expansion (18), we immediately find the
following expression for the Kth-order expansion of the nth moment of the queue content:

E[Un] ≈
K

∑
k=0

k

∑
`=0

Tk,`(e)qk`n .

Finally, note that, as for the system without π-thinning, the distributional form of
Little’s result applies. Hence, we can express moments of the delay in terms of moments
of the queue content, and our approximation of the moments of the queue content can be
used to approximate the moments of the delay.

To illustrate the light-traffic analysis, we reconsider the numerical example of Section 4,
albeit with different parameters to ensure that the system is in overload, prior to π-thinning.
More specifically, we set ρ = 2, µ11 = 0.99 and µ22 = 0.9. It then suffices to specify the
variance φ2 of the number of arrivals in a slot and the thinning probability q to fully specify
the arrival model. Figure 3 depicts the 7th-order light-traffic approximation of the mean
delay as a function of the traffic load. The load is varied by varying the thinning probability
q for fixed ρ = 2. To verify the accuracy of the light-traffic approximation, we also simulate
the queueing system. The markers on the plot show the values of the mean delay as
obtained by simulation. We rely on the deletion–replication approach (p. 241, [32]) with
100 replications of 108 slots to assess the accuracy of the simulation results but omit the
confidence intervals from the plot, as the upper and lower boundaries of the confidence
intervals are visually indistinguishable. The first 1000 slots of each run are deleted to reduce
bias, in line with the method of Welch (p. 238, [32]).

Clearly, the light traffic approach is accurate for low loads, while the approximation
deviates from the simulation results for higher loads. Additionally, more accurate results
are obtained if the arrival variance is smaller. Additional experimentation with higher-order
approximations shows that the approximation for low load further improves by increasing
the order of the approximation, but this is not necessarily the case for higher load.
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Figure 3. Light-traffic approximation of the mean delay as a function of the load for different values
of the arrival variance φ2 as indicated. The load is varied by varying the thinning probability.

6. Heavy Traffic Approximation

In line of the arguments of the preceding section, we again apply π-thinning on the
Galton–Watson arrival process. As before, let q denote the probability that an individual in
the population contributes a packet. While the preceding section considered the light-traffic
regime, we now consider the heavy-traffic regime as pioneered by Kingman in the seminal
paper [33]. To this end, we assume that the arrival rate prior to thinning exceeds 1, ρ > 1.
In this case, the queue is not stable for q = 1, and we study the limit q→ qm = ρ−1.

Following the exposition in chapter 9 of [34], the heavy traffic performance measures
are given in terms of the load ρ and the asymptotic variance V:

V = lim
k→∞

1
k
Var

[
k

∑
n=1

Aqm
n

]
,

where {Aqm
n } is the stationary arrival process with π-thinning with parameter qm. By the

stationarity of the arrival process, the former expression simplifies to

V = Var[Aqm
1 ] + lim

k→∞

2
k

k

∑
m=1

m−1

∑
n=1

Cov[Aqm
m−n+1, Aqm

1 ] .

We now express the variance V in terms of the process {An} without π-thinning. In
view of the definition of Aqm

n , see Equation (14), we have

V = Var

[
A1

∑
`=1

Y(`)
1

]
+ lim

k→∞

2
k

k

∑
m=1

m−1

∑
n=1

Cov

[
Am=1+1

∑
`=1

Y(`)
m−n+1,

A1

∑
`′=1

Y(`′)
1

]
,

where Y`
n is an independent Bernoulli random variable with success probability qm for each

index n and `. By conditioning on the unthinned arrival process {An} and by noting that
{Y(`)

n } constitutes a doubly indexed sequence of independent and identically distributed
random variables, the variance and covariances in the former expression simplify to

V = Var[A1]E[Y
(1)
1 ]2 +E[A1]Var[Y

(1)
1 ] + lim

k→∞

2E[Y(1)
m−n+1]E[Y

(1)
1 ]

k

k

∑
m=1

m−1

∑
n=1

Cov[Am−n+1, A1] .
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As Y(`)
n is a Bernoulli random variable with success probability qm for each index n

and `, we have E[Y(`)
n ] = qm and Var[Y(`)

n ] = qm(1− qm) such that

V = Var[A1]q2
m + E[A1]qm(1− qm) + lim

k→∞

2q2
m

k

k

∑
m=1

m−1

∑
n=1

Cov[Am−n+1, A1] . (24)

By conditioning on the number of arrivals of the different types in the consecutive
slots, we have

Cov[Am−n+1, A1] = eMm−nCe′ , (25)

whereM = [µik] is the matrix of the mean offspring of the different types as introduced in
Section 2 and where e′ is a column vector of ones. Moreover, C = [cik] is the covariance
matrix of the branching arrival process. We can easily express the covariance in terms of
the joint probability generating function P(x, z):

cik =
∂2

∂xi∂xk
P(x, 1)

∣∣∣∣
x=e
− ∂

∂xi
P(x, 1)

∣∣∣∣
x=e

∂

∂xk
P(x, 1)

∣∣∣∣
x=e

.

Plugging the expression for the covariance (25) in (24), we finally find

V = e C e′q2
m + ρqm(1− qm) + 2q2

meM(I −M)−1C e′ .

Having determined the asymptotic variance, we can now have the following expres-
sions for the first two moments of the buffer content under heavy traffic:

E[UHT ] =
V

2(1− qρ)
, E[U2

HT ] =
V2

2(1− qρ)2 .

To evaluate the accuracy of the heavy-traffic limit, we reconsider the numerical exam-
ple of the light-traffic approximation: we set ρ = 2, µ11 = 0.99 and µ22 = 0.9. Table 1 lists
the values of the scaled queue content E[U(1− ρq)] for different values of the load ρq up
to 98%, as well as the corresponding heavy traffic limit value V/2. The pre-limit values
are obtained by simulation, using a replication–deletion approach with 100 replications,
each replication simulating 108 slots, where the first 1000 slots of each run are discarded to
reduce the bias. Table 1 also lists the 99% confidence interval. The results show that the
scaled mean queue content indeed converges to the heavy traffic limit.

Table 1. The scaled queue content E[U(1 − ρq)] for different values of the load ρq, and the
corresponding heavy traffic limit value V/2.

ρq = 95% ρq = 96% ρq = 97% ρq = 98% ρq = 99% V /2

φ2 = 4 39.5± 0.3 40.6± 0.4 42.4± 0.5 42.8± 0.9 45.3± 1.4 45.75
φ2 = 8 80.6± 0.9 81.6± 1.0 85.3± 1.6 85.8± 2.0 88.7± 4.5 91.25

φ2 = 16 161.8± 2.8 164.7± 3.0 169.1± 4.0 174.5± 6.2 170.9± 13.18 182.25

7. Conclusions

This paper presented closed-form expressions for the probability generating functions
of the queue content and packet delay in a discrete-time queueing system, where arrivals
stem from a multi-type Galton–Watson branching process. The model is useful for analyz-
ing buffers with significant arrival correlation, which was demonstrated by a parameter
estimation procedure for a simplified Galton–Watson-type arrival process. We showed that
the parameters of this simplified Galton–Watson-type arrival process for a given empir-
ical auto-correlation function are easily estimated. Moreover, once these parameters are
known, evaluating the relevant performance measures is straightforward. We then applied
π-thinning on the Galton–Watson arrival process. In contrast to the unthinned process,
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closed-form expressions for the various performance measures of interest are no longer
available. We therefore studied the corresponding thinned queueing system in both the
light-traffic and heavy-traffic regimes. Finally, to verify the accuracy of the approximations
in these regimes, we simulated the queueing process with thinning.
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