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Abstract: This paper addresses the problem of spatiotemporal wind velocity field estimation for air
traffic management applications. Using data obtained from aircraft, the eastward and northward
components of the wind velocity field inside a specific air space are calculated as functions of time.
Both short-term wind velocity field forecasting and wind velocity field reconstruction are performed.
Wind velocity data are indirectly obtained from the states of the aircraft flying in the relevant airspace,
which are broadcast by the ADS-B and Mode-S aircraft surveillance systems. The wind velocity field
is estimated by combining two data-driven techniques: the polynomial chaos expansion and the
Gaussian process regression. The former approximates the global behavior of the wind velocity field,
whereas the latter approximates the local behavior. The eastward and northward wind components
of the wind velocity field must be estimated, which causes the problem to be a multiple-output
problem. This method enables the estimation of the wind velocity field at any spatiotemporal location
using wind velocity observations from any spatiotemporal location, eliminating the need for spatial
and temporal grids. Moreover, since the method proposed in this article allows for the probability
distributions of the estimates to be computed, it causes the computation of the confidence intervals to
be possible. Furthermore, since the method presented in this paper allows for data assimilation, it
can be used online to continuously update the wind velocity field estimation. The method is tested
on different wind scenarios and different training-test data configurations, by means of which the
consistency between the results of the wind velocity field forecasting and the wind velocity field
reconstruction is checked. Finally, the ERA5 meteorological reanalysis data of the European Centre
for Medium-Range Weather Forecasts are used to validate the proposed technique. The results show
that the method is able to reliably estimate the wind velocity field from aircraft-derived data.

Keywords: polynomial chaos expansion; Gaussian process regression; air traffic management; wind
velocity field estimation; ADS-B; Mode S

MSC: 62M20

1. Introduction
1.1. Motivation

Uncertainty is pervasive in the Air Traffic Management (ATM) system, and weather is
one of the most significant sources of uncertainty. Four-Dimensional (4D) trajectories will
be central elements in the future ATM paradigm; it relies on Trajectory-Based Operations
(TBO) because aircraft will be allowed to fly 4D trajectories based on the preferences of
the airlines, with the obligation to precisely follow them for traffic synchronization. This
means that aircraft trajectories must be predicted with great precision based on reliable me-
teorological forecasts. Therefore, precise wind information is required to increase trajectory
predictability, i.e., the correspondence between planned and actual trajectories [1,2].
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Currently, most wind predictions used in aircraft trajectory planning come from
Numerical Weather Prediction (NWP) models. NWP meteorological forecasts have a low
update rate, typically once every 6 h, and have a coarse spatial resolution. Moreover,
observations are mainly gathered from radiosondes, which are launched at specific times,
no more than four times per day. All these factors cause using NWP to be inadequate for
TBO [3,4]. Therefore, using aircraft-derived data could improve the spatial and temporal
resolution of wind forecasts [5].

This paper studies the problem of the spatiotemporal estimation of the wind velocity
field within a given air space, in which the eastward and northward components of the
wind velocity field are estimated as functions of time using aircraft-derived data. Both
short-term wind velocity field forecasting and wind velocity field reconstruction are carried
out within a specific air space, in this case, the Terminal Maneuvering Area of the Adolfo
Suarez Madrid-Barajas (LEMD) airport, which is located at an altitude of 610 m above
sea level. More precisely, the considered airspace is a cuboidal region with a base size of
500× 500 km centered at the LEMD airport, with heights ranging from 0.61 km to 14 km.
In particular, Mode-S and ADS-B surveillance systems [6,7] will be used in this article
to derive the wind velocity, which is indirectly obtained using the relation among the
following vectors: the ground speed, the air speed, and the wind velocity itself. A detailed
description of the ADS-B and Mode-S technologies can be found in [7].

Several atmospheric data assimilation techniques, which are intended to combine
different information sources to estimate the state of the atmosphere, were developed [8].
However, most methods for assimilating these non-conventional aircraft-derived meteoro-
logical data are designed to assimilate them into NWP models [9–11].

In this article, a different approach to the problem of estimating the state of the
atmosphere using aircraft-derived meteorological data is followed. Specifically, the problem
of wind velocity field estimation using aircraft-derived wind observations is solved based
on a combination of the Polynomial Chaos Expansion (PCE) and the Gaussian Process
Regression (GPR) methods, which will be referred to as PCE-GPR. The wind is modeled
as a random field with the spatiotemporal position as the input and the wind velocity as
the output. The combination of these two techniques is suitable for representing random
fields since the PCE models the mean function of the random field and approximates the
global behavior of the wind velocity field, whereas the GPR represents the auto-covariance
function and approximates the local behavior of such a wind velocity field.

1.2. State of the Art

In [12], a Kalman Filter (KF) was used to estimate the wind speed profile along descent
paths using aircraft-derived data. The KF was adapted to account for the uncertainty due
to the distance at which observations are collected. This uncertainty was added to the
measurement covariance matrix of the KF as a function of the horizontal distance between
the observation and estimation locations.

In [13], a novel algorithm for inferring the wind velocity vector from ADS-B data,
capable of working in both small and large turning angle situations, is studied. A circle
fitting problem is considered, and a sequential least squares optimization algorithm is used.

In [14], the Kriging technique was employed to estimate the wind velocity and temper-
ature fields in the airspace surrounding an airport using aircraft-derived data. Moreover,
the same technique was used to predict wind velocity and temperature profiles along
descending paths.

In [15], a novel technique that combines particle filtering and Lagrangian transporta-
tion was used to partially reconstruct the wind velocity and temperature fields in those
regions of the airspace surrounding an airport where a sufficient amount of aircraft-derived
data are available. In [16], the technique was further studied, where meteo-particle pa-
rameters were optimized and an extrapolation method, based on Delaunay triangulation,
to construct a complete wind velocity field was presented.
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In [2], the B-splines method was employed to estimate the wind speed profile along
descent paths using aircraft-derived data to update the optimal descent trajectory in real-
time.

In [17], two approaches to improve the wind velocity data to support TBO are ex-
plored: by providing interpolated inter-forecast wind velocity and temperature data and by
using aircraft-derived atmospheric observations, such as wind velocity and temperature,
to update the forecasted conditions.

In [18], a comparison between several techniques based on the KF and the GPR for
wind speed profile estimation from aircraft-derived data in the vertical direction of a
given geographical location was conducted, showing that the technique based on the GPR
outperforms the methods based on the KF.

In [19], the techniques based on the KF and the GPR for wind speed profile estimation
from aircraft-derived data presented in [18] were generalized to wind velocity profile
estimation in the vertical direction of a given geographical location, showing that the
technique based on the GPR outperforms the methods based on the KF in this case as well.

Finally, in [20], the GPR technique presented in [19] for wind velocity profile estimation
in the vertical direction of a given geographical location was extended to the reconstruction
and the short-term prediction of the wind velocity field within a given air space. The results
showed that the reconstruction has a performance comparable to that of the method
proposed in [15] with the advantage of providing an estimate of the entire wind velocity
field within a given air space.

In this paper, the PCE is used to enhance the GPR technique. In [21], Wiener first
introduced the term PCE for representing the Gaussian distributions using Hermite poly-
nomials.

In [22], the Wiener PCE was extended to other canonical distributions. In [23], the PCE
was further extended to arbitrary distributions, which can be specified either analytically,
numerically as histograms, or as raw data sets with the introduction of the arbitrary
Polynomial Chaos Expansion (aPCE). The aPCE only requires the existence of a finite
number of statistical moments and does not rely on the complete knowledge or even on the
existence of a probability density function. The aPCE is especially suitable for data-driven
applications where no other information is known about the probability distribution of the
data, as it eliminates the need to assign parametric probability distributions not sufficiently
supported by the available data.

The main contribution of this paper is an innovative method, the PCE-GPR technique,
for the reconstruction and short-term prediction of the wind velocity field. The method
is iterative and fast, ensuring real-time assimilation of aircraft-derived data is possible.
Additionally, the PCE-GPR approach, which previously only allowed for the estimation
of scalar output variables, is extended in this study to estimate two output variables: the
wind velocity components.

In this paper, the GPR technique employed in [20] is combined with PCE to solve
the same problem, generalizing and improving the previous methodology. The PCE-GPR
technique was recently introduced in [24] for uncertainty quantification and in [25] for
rare event estimation. In both articles, it is referred to as Polynomial Chaos Kriging (PCK).
To the best of the authors’ knowledge, the PCE-GPR method has not yet been used for
wind velocity field reconstruction and wind velocity field short-term forecasting using
aircraft-derived data.

Notice that the terms Kriging and GPR are used interchangeably in the literature.
Indeed, GPR and Kriging are essentially the same method, with differences in notation,
conceptualization, and in the computation of the confidence intervals of the estimations [26].

The capability of the PCE-GPR method to reconstruct the wind velocity field and to
provide short-term predictions within a certain air space was tested using historical aircraft-
derived data. Wind velocity observations from two different days characterized by different
wind behaviors were chosen. In particular, on the first day, the wind was weaker with a
higher degree of directional dispersion, whereas, on the second day, it was stronger with a
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lower degree of directional dispersion. The data sets were split into training and test sets
in two different ways, namely by randomly selecting sets of individual observations and
by randomly selecting sets of flights. Moreover, the wind velocity field estimates obtained
through the PCE-GPR method were validated using the meteorological reanalysis data
retrieved from the ERA5 repository of the European Centre for Medium-Range Weather
Forecasts (ECMWF). The results of the validation show that the estimates are consistent
with the reanalysis data, demonstrating the capability of the method presented in this
article to estimate the wind velocity even in those regions of the air space in which a
reduced number of observations are available.

The paper is structured as follows. The procedure for obtaining the aircraft-derived
data and the results of the exploratory analysis of the obtained data sets are described
in Section 2.1. The GPR technique is introduced in Section 2.2, and the mathematical
development of the PCE method is described in Section 2.3. The combination of both
methods is explained in Section 2.4, and the extension of the PCE-GPR method to multi-
output processes is presented in Section 2.5. The results of the numerical experiments are
described in Section 3 and discussed in Section 4. Finally, Section 5 contains the conclusions.

2. Methods
2.1. Data Derivation and Exploratory Analysis

This section presents the procedure through which the wind velocity information is
derived from the ADS-B and Mode S data. In addition, the main results of the exploratory
analysis of these aircraft-derived data are also summarized.

2.1.1. Data Source

The data employed in this work were supplied by the Spanish Air Navigation Service
Provider (ENAIRE). Specifically, the data were extracted from the All-Purpose Structured
EUROCONTROL Surveillance Information Exchange (ASTERIX) database, which contains
a great amount of flight information, as described in the technical reports of EUROCON-
TROL [27], from which the ADS-B [28] and Mode-S [29] data were obtained. More precisely,
two data sets were extracted from this database. The observations of the first data set,
which contains data with lower wind speeds and higher dispersion in the wind direction,
correspond to 23 February 2020. It will be referred to as the Day 1 data set. The observations
of the second data set, which contains data with higher wind speeds and lower dispersion
in the wind direction, correspond to 21 December 2019. It will be referred to as the Day 2
data set. The observations in both data sets were obtained from 08:00 to 14:00 UTC, which
corresponds to the time period with the maximum level of traffic at the LEMD airport.

2.1.2. ADS-B and Mode S Systems

The ADS-B system automatically transmits the position and ground speed of the
aircraft approximately every 0.5 s. Mode S is a selective interrogation system used to
transmit additional flight information. Aircraft are interrogated by surveillance radars
and reply through a transponder by means of the so-called Mode S Enhanced Surveillance
communication protocol. In fact, the Mode S extended squitter transponder is the most
common implementation of ADS-B. In particular, as described in [29], binary data store
registers 50 and 60 contain the information necessary for deriving the wind velocity, as it
will be explained in Section 2.1.3. For further details on surveillance technologies, the reader
is referred to [7].

2.1.3. Wind Velocity Derivation from ADS-B and Mode S Data

The vector that represents the wind velocity can be obtained as the difference between
the vectors that represent the ground speed and the actual airspeed using the true airspeed,
the ground speed, and the heading and track angles. The relationship between the ground
speed, true airspeed, and wind velocity vectors, denoted as Vgs, Vtas, and Vw, respectively,
is shown in Figure 1, where χg, χa, and χw represent the track angle, the heading angle,
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and the wind direction angle, respectively. Thus, the wind velocity data sets employed in
this work were built from the wind velocity observations derived from different aircraft
states, which were obtained through the ADS-B and Mode-S surveillance technologies.

χw

χa

χg

Vgs

Vw

Vtas

Figure 1. Relationship among the true airspeed, ground speed, and wind velocity vectors.

2.1.4. Exploratory Data Analysis

Table 1 shows the main statistics of the wind velocity of the Day 1 and Day 2 data sets.
Circular statistics were used to compute the mean and dispersion of angles [30]. It can be
seen that the average wind speed in the Day 2 data set is around 3 times larger than in
the Day 1 data set, whereas the dispersion of the wind direction is about 10 times lower.
The dispersion of the wind direction, in circular statistics, is measured by a percentage.
A 100% dispersion means that the direction of the wind velocity observations is uniformly
distributed in all directions, whereas a 0% dispersion means that all the wind velocity
observations have the same direction.

Table 1. Main statistics of the wind velocity.

Wind Speed (m/s) Wind Direction (Deg)

Day 1 Day 2 Day 1 Day 2

Min. 0 0.013 0.01 163.79
Max. 56.04 100.75 359.99 351.55
Mean 17.80 60.56 307.16 166.66
Dispersion 11.30 16.67 19.40 (%) 2.11 (%)

The spatial configuration of the Day 1 data set is represented in Figure 2, in which the
coverage region over the Iberian Peninsula, together with the flight routes, can be observed.
Using this kind of data set to estimate wind velocity fields is a challenging task, since they
are non-uniformly distributed in the air space.

For a detailed exploratory analysis of these two data sets, the reader is referred to [20].

2.2. Gaussian Process Regression

Gaussian Processes (GP) are stochastic processes that allow for a wide variety of
properties to be modeled, including linearity, continuity, smoothness, differentiability,
symmetry, and periodicity. GP can be completely determined by their mean and covariance
functions. The deterministic trends of the GP are represented by the mean functions,
whereas their stochastic properties are described by the covariance functions, which are
usually referred to as kernel functions.
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Figure 2. Aircraft flight routes for the Day 1 data set.

GPR may be thought of as a general regression model, which can be employed in
many research areas, such as machine learning [31] or functional data analysis [32]. Given
some predictor variables x = (x1, x2, . . . , xd), a GPR model provides a predictionM(x) of
the value of a scalar output variable y, assuming the mapping y =M(x) to be a realization
of a Gaussian random process, and generalizing the linear regression model

y = xT β + ε, (1)

in which ε ∼ N(0, σ2), β = (β1, β2, . . . , βd) represent the parameters of the regression
model, and σ2 denotes the error variance.

GPR introduces a new term f (x) in the linear model (1), which is assumed to be a Gaussian
process, i.e., it is assumed that, jointly, the random variables { f (x1), f (x2), f (x3), . . . , f (xn)}
have zero-mean Gaussian distribution with covariance function K(x, x′), for any collection
of observations {x1, x2, ..., xn}. Additionally, the linear term in (1) is replaced by a basis
function h(·), which projects the predictor variable x into a p-dimensional feature space.
Thus, the GPR model can be formulated as:

y =M(x) = h(x)T
1×pβp×1 + f (x) + ε. (2)

Given a set of observations (X ,Y) =
{
(xj, yj), j = 1, 2, . . . , n

}
that relate the input

variables x with the output variable y through the GPR model (2), it can be shown that
ŷ, the predicted output variable at point x̂, is also Gaussian distributed [31]. As a conse-
quence, GPR is able to provide both an estimation of the output variable and its associated
probability distribution.

2.3. Polynomial Chaos Expansion

Following [33], this section presents the PCE method, which allows for the compu-
tation of an analytical model that maps an input random vector onto an output random
variable under certain hypotheses.

Let (Ω,F ,P) be a probability space, with Ω the space of events, F a σ-algebra, and P
a probability measure. Assume that there exists an unknown deterministic mappingM
from a d-dimensional input parameter space to a one-dimensional output space, namely
M : Rd → R, such that y =M(x), with x = (x1, x2, . . . , xd).
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If the input vector x is assumed to be affected by uncertainties, it can be represented
by a random vector X = (X1, X2, . . . , Xd) with a joint Probability Density Function (PDF)
fX = ( fX1 , fX2 , . . . , fXd), and then Y =M(X) is an output random variable, which is
obtained by propagating the input vector uncertainties through the mappingM.

PCE is a spectral decomposition method that provides a computationally efficient
way to calculate an analytical representation that maps the input random vector X onto
the output random variable Y, under two hypotheses. The output random variable Y is
assumed to be a second-order variable, namely:

E[Y2] =
∫
Rd
M2(x) fX(x)dx < +∞.

Additionally, each component Xi, i = 1, 2, . . . , d, of the input random vector X is
assumed to have finite moments of all orders.

Provided that these two assumptions are fulfilled, the output random variable Y can
be represented by the following PCE

Y(X) =M(X) = ∑
α∈Nd

cαΨα(X), (3)

where {cα, α ∈ Nd} are the coefficients of the expansion and {Ψα(·), α ∈ Nd} is a basis of
polynomials orthonormal with respect to the probability measure P represented by the
joint PDF fX, namely ∫

Rd
Ψα(x)Ψβ(x) fX(x) dx = δαβ, (4)

with δαβ denoting the Kronecker delta and α, β ∈ Nd representing multi-indexes.
Assuming that the input random vector X has statistically independent components,

each multivariate polynomial Ψα of the PCE basis {Ψα(·), α ∈ Nd} can be computed as the
tensor product of d univariate orthogonal polynomials as follows

Ψα(x) =
d

∏
i=1

ψ
(i)
αi (xi), (5)

where each univariate polynomial ψ
(i)
αi (·), i = 1, 2, . . . , d, is the component of degree αi

of a basis of univariate polynomials orthonormal with respect to the marginal PDF fXi
of X, namely the PDF of the random variable Xi. The component αi of the multi-index
α = (α1, α2 . . . , αd) ∈ Nd designates the degree of the multivariate polynomial Ψα in the
i-variable, for i = 1, 2, ..., d. The total degree of Ψα is calculated as |α| = ∑d

i=1 αi.
In practice, the infinite terms of the PCE (3) must be truncated to a finite sum. There

are different ways to choose a truncation scheme, in which a set of multi-indexes is selected.
The most commonly used truncation scheme consists of setting an upper bound p on the
total degree |α| of the multivariate polynomials Ψα, namely the set of multi-indexes:

Ad,p = {α ∈ Nd : |α| ≤ p}. (6)

Thus, the truncated PCE that approximates the infinite series (3) can be formulated as

YPC(X) =MPC(X) =
|Ad,p |

∑
k=1

ckΨk(X), (7)

where

|Ad,p| = (d + p)!
d!p!

.

There are different ways to construct the basis of orthonormal polynomials {Ψα(·), α ∈
Nd}. In general, the computation of each Ψα requires the availability of the marginal dis-
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tributions of Xi, i = 1, 2, . . . , d, which are employed in the tensor product (5). However,
a wide variety of univariate distributions is associated with a specific family of orthonormal
polynomials [22]. In this case, it is straightforward to compute the basis of orthonormal
polynomials. For instance, the Hermite polynomials are associated with the Gaussian dis-
tribution.

When the distributions of the input random variables Xi, i = 1, 2, . . . , d, have no
family of orthonormal polynomials associated, a common approach consists of directly
constructing the basis of orthonormal polynomials using Stiltjes or Gram–Schmidt orthogo-
nalization [34].

As mentioned in the Introduction, a more general approach is the aPCE [23], which
consists of constructing the basis of orthonormal polynomials from the statistical moments
of the input random variables Xi, i = 1, 2, . . . , d. Thus, this approach does not require
the availability or even the existence of a functional representation of the marginal PDFs
fXi , i = 1, 2, . . . , d. However, in the aPCE approach a large number of input samples is
necessary for an accurate estimation of higher order moments [35].

In this paper, the Kernel Density Estimation (KDE) [36] was employed to estimate
the marginal PDFs fXi , i = 1, 2, . . . , d, and then the Stiltjes orthogonalization was used to
build the corresponding basis of the orthonormal polynomials. More specifically, given
a set Xi =

{
x1

i , x2
i , . . . , xn

i
}

of n observations of the input random variable Xi, the kernel
density estimate of the marginal PDF fXi was calculated as

f̂Xi (x) =
1

nη

n

∑
j=1

K

(
x− xj

i
η

)
, (8)

where K(·) represents the kernel function and η denotes an appropriate kernel bandwidth.
In particular, a Gaussian kernel was used, and the corresponding kernel bandwidth was
learned from the set of observations Xi by means of the Silverman’s rule [37].

Once the truncation scheme (6) was selected, the coefficients ck, k = 1, 2, . . . , |Ad,p|, of
the truncated expansion (7) can be calculated using different approaches, such as Galerkin
projection, collocation, numerical integration, or regression [22].

In this paper, given a set of observations of the input random vector and the corre-
sponding output random variable, namely (X ,Y) =

{
(xj, yj), j = 1, 2, . . . , n

}
the expan-

sion coefficients have been estimated using regression. More specifically, the vector of
expansion coefficients c = (c1, c2, . . . , c|Ad,p |) was estimated by solving the least squares
minimization problem:

ĉ = arg min
c∈R|Ad,p |

n

∑
j=1

(
yj −YPC(xj)

)2
= arg min

c∈R|Ad,p |

n

∑
j=1

yj −
|Ad,p |

∑
k=1

ckΨk(x
j)

2

. (9)

In particular, the vector of expansion coefficients ĉ estimated in (9) was calculated as

ĉ = (ATA)−1AT


y1

y2

...
yn

,

where ajk = Ψk(xj), j = 1, 2, . . . , n, k = 1, 2, . . . , |Ad,p|, are the entries of matrix A.

2.4. Polynomial Chaos Expansion-Based Enhanced Gaussian Process Regression

As explained in Section 2.2, the GPR model (2) interpolates local variations of the
output variable y as a function of experimental observations of the predictor variables x,
whereas the PCE model (3) approximates the global behavior of the mapping y =M(x)
by means of a set of orthonormal polynomials, as described in Section 2.3. Therefore,
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as pointed out in [24], the aim of combining PCE and GPR is to capture at the same
time both the global behavior and the local variability of the mapping that relates the
output variable y to the predictor variables x. To this end, the trend of the GPR model (2),
represented by the term h(x)T

1×pβp×1, is replaced by the truncated PCE (7), so that the
PCE-GPR model can be formulated as follows:

y =M(x) =
|Ad,p |

∑
k=1

ckΨk(x) + f (x) + ε. (10)

The ability of capturing local and global properties through the PCE-GPR model (10)
is analyzed in [24] through several benchmark analytical functions, such as the Rastrigin
function [38], which is a two-dimensional function that combines a quadratic term and a
high-frequency trigonometric term. The contour plot of the Rastrigin function is illustrated
in Figure 3a–d to show the approximations of the Rastrigin function by the GPR, PCE,
and PCE-GPR models, which were generated using 128 sample points from a standard
normal bivariate distribution, respectively.

It can be seen in Figure 3b that the GPR model properly approximates the local extrema
of the Rastrigin function, whereas the global feature of the function is barely learned by this
model. Conversely, Figure 3b shows how the PCE model reproduces the global behaviour
of the Rastrigin function while missing out on the local extrema. Finally, the capability of
the PCE-GPR model to combine both characteristics of the Rastrigin function is illustrated
in Figure 3d.

(a) Rastrigin function (b) GPR model

(c) PCE model (d) PCE-GPR model

Figure 3. The Rastrigin function and its approximation by the GPR, PCE, and PCE-GPR models.

2.5. Adaptation of PCE-GPR to the Wind Velocity Output

As mentioned before, this paper addresses the problem of spatiotemporal wind veloc-
ity field estimation. More specifically, the eastward and northward components of the wind
velocity, which will be referred to as u and v components, respectively, are inferred at dif-
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ferent altitudes as functions of time from aircraft-derived data. Therefore, the single output
PCE-GPR model described in Section 2.4 must be extended to this multiple-output setting.

The GPR method cannot be directly generalized to multi-output processes in a unique
and effective way. The ability of the GPR model to estimate multiple-outputs, seeking
to take advantage of the knowledge about the relation between them, is still a field of
active research. Usually, a covariance function describing both the auto-correlation of the
output variables as well as the correlation among them is included in the formulation of
the model [39]. However, the formulation of a covariance function for multiple correlated
output variables is a difficult task. Besides, the estimation efficiency of a GPR model can
be significantly reduced if the covariance structure among outputs is mis-specified [40].
Therefore, the common approach in practice is to address these estimation problems by
means of independent single-output GPR models.

In this paper, the following approach was followed to adapt the PCE-GPR method
to the wind velocity output. First, the wind speed and wind direction were predicted
using three outputs, namely (y1, y2, y3) = (r, cos γ, sin γ), with r being the wind speed
and γ the wind velocity direction. Then, the u and v components were retrieved as
(u, v) = (r cos γ, r sin γ).

The motivation behind this approach is threefold. The estimation of the wind velocity
using independent single-output GPR models has already been proven to be effective
in [20]. Moreover, since they are two different physical magnitudes, the separation between
the wind speed and the wind direction predictions benefits the training process of the
PCE-GPR model. Finally, because each of the three output variables (y1, y2, y3) are trained
independently, parallel computing can be used.

3. Results
3.1. Model Set Up

In this section, the PCE-GPR model layout is presented, namely the selection of
the model parameters, which include the total degree of the truncated PCE expansion,
the hyperparameter vector of the kernel function, and the error standard deviation.

The total degree p of the truncated PCE expansion included in (10) was selected
between 1 and 10. More specifically, the value of p that provides the least leave-one-out
error, εLOO, was chosen, where

εLOO =
1
n

n

∑
j=1

(
yj −YPC(xj)

1− νj

)2

,

with νj, j = 1, 2, . . . , n, being the jth diagonal term of the matrix A(ATA)−1AT [24].
The covariance function in (10) was computed using the squared exponential ker-

nel [31], namely
K(x, x′|θ) = σ2

f e−R2
, (11)

with

R =

√√√√ d

∑
i=1

(xi − x′i)
2

σ2
i

,

where θ = (σf , σ1, σ2, σ3, σ4) is the hyperparameter vector and d = 4, since the components
of the input vector x are the coordinates of the spatiotemporal position of the aircraft. The
kernel function (11) produces continuous and smooth GP samples, thus providing a smooth
regression capable of uniformly approximating any continuous function on a compact
subset contained in the input space [41].

Moreover, the correlation between two spatiotemporal input points decreases as a
function of the weighted Euclidean distance. Since, in the wind velocity estimation the
input variables have different length scales, each input variable xi, i = 1, 2, 3, 4, in the
kernel function (11) was scaled by a factor σ2

i . The hyperparameter σf , referred to as the
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signal standard deviation, allows the auto-covariance to be adapted to the output scale. To
achieve a fast and accurate estimation of the hyperparameter vector θ, the subset of the
data method [31], together with the block coordinate descent approximation [42], were
used during the training phase of the model.

Finally, according to [12], the standard deviation σ of the model error ε in (10) was set
to 3 m/s, which is the typical wind instrumental error.

3.2. Wind Velocity Field Reconstruction

The capability of the PCE-GPR method to reconstruct the wind velocity fields within a
particular air space using historical aircraft-derived data is studied in this section. More
specifically, the wind velocity field was reconstructed around the LEMD airport employ-
ing the wind velocity data sets introduced in Section 2.1.1 using data collected over a
one-hour period. In particular, a cuboidal region centered at the LEMD airport with base
size 500× 500 km and altitude ranging between 0.6 km and 14 km was used. Moreover,
both aircraft-derived data sets were split into training and test sets using two different ap-
proaches:

• By randomly choosing sets of individual observations, which will be referred to as
data set randomly split by observation.

• By randomly selecting sets of flights, employing the individual observations gathered
from them, which will be referred to as a data set randomly split by flight.

Specifically, in both cases, 20% of the data were kept for testing to assess the accuracy
of the wind velocity field reconstruction. Thus, four different PCE-GPR models were
trained. The computational time of the training phase for each of these models was less
than 5 min.

Three different measurements of the estimation error were computed for each of the
four models, namely the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE),
and the Median Absolute Deviation (MAD), which are reported in Table 2.

Table 2. Wind velocity field reconstruction: Estimation errors for the u and v components of the
wind velocity.

Data Set Split by Observation Data Set Split by Flight
Measure of Error Component Day 1 Day 2 Day 1 Day 2

RMSE (m/s) u 2.26 (18%) 1.50 (21%) 5.84 (1%) 6.06 (−4%)
v 1.46 (44%) 1.45 (22%) 4.79 (14%) 4.84 (1%)

MAE (m/s) u 1.17 (22%) 0.99 (22%) 4.46 (−1%) 4.37 (−2%)
v 0.83 (43%) 1.05 (19%) 3.45 (13%) 3.59 (3%)

MAD (m/s) u 0.53 (23%) 0.64 (22%) 3.60 (−6%) 3.03 (−2%)
v 0.49 (31%) 0.80 (15%) 2.44 (9%) 2.70 (5%)

It can be seen that the values of the estimation errors of the wind velocity components
for both the Day 1 and Day 2 data sets are similar. Conversely, the values of the estimation
errors significantly differ depending on the data splitting procedure chosen. This is due
to the fact that the spatiotemporal distance between the training and test observations is
higher when the data sets are randomly split by flight, which causes the estimation to be
more challenging.

Table 2 also reports, between parentheses, the relative improvement obtained in com-
parison with the values of the estimation errors reported in [20], in which the wind velocity
field reconstruction was carried out using the GPR method without the enhancement
provided by the PCE. It can be seen that the PCE-GPR method considerably outperforms
the GPR method when the data sets are randomly split by observation, whereas the incor-
poration of the PCE into the GPR model does not statistically improve the estimation errors
already achieved when the data sets are randomly split by flight.
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Figure 4 shows the rose diagrams of the wind velocity estimation errors for each of
the four models, which can be thought of as circular histograms. The values in the inner
circumferences represent percentages of the total data set, whereas the quantities in the
outer circumference denote angles representing the wind velocity direction errors that are
expressed in degrees. Moreover, a color scale is used to indicate the wind speed. It can be
seen that the estimation errors of the wind velocity direction are symmetrically distributed
around 0 degrees, showing a low dispersion. Moreover, the dispersion is particularly low
when the data sets are randomly split by observation. Likewise, the estimation errors of
the wind speed adopt low values, ranging between 0 and 5 m/s.

The wind velocity fields reconstructed using the PCE-GPR method from the Day 1
data set, at a given instant in time and for different altitudes ranging from 2 to 12 km,
are shown in Figure 5, together with the value of the associated mean wind speed sw. A
selection of members of the corresponding training and test data sets are also depicted.
It can be observed that the reconstructed wind velocity fields properly fit the data and
behave smoothly.

(a) Day 1 data set split by observation. (b) Day 1 data set split by flight.

(c) Day 2 data set split by observation. (d) Day 2 data set split by flight.

Figure 4. Rose diagrams of the wind velocity estimation errors.

In addition, to complement Figure 5, the rose diagrams that represent the wind
velocity estimation errors segmented by height are shown in Figure 6. It can be seen
that, at altitudes below 10 km, the wind speed is low, ranging from 0 km/h to 36 km/h,
and the wind direction variability is high. This effect can be observed in the first three
rose diagrams.
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Figure 5. Wind velocity field reconstruction: Reconstructed wind velocity field obtained using the
Day 1 data set and the PCE-GPR method for different altitudes (A). A selection of members of the
training and test data sets, along with the mean wind speed (sw), are also included.

Figure 6. Rose diagrams of the wind velocity estimation errors, segmented by altitude, for the Day 1
data set split by flight.

The reconstruction of the wind speed dynamics from 14:10 to 15:00 UTC at cruise
altitude (10.3 km) for the Day 2 data set is illustrated in Figure 7 by means of an isotach
map. It can be seen how the contour bars gradually change over the considered space and
time period.
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Figure 7. Wind speed reconstruction from 14:10 to 15:00 UTC at cruise altitude for the Day 2 data set.

3.3. Wind Velocity Field Short-Term Prediction

The capability of the PCE-GPR method to provide the short-term wind velocity field
predictions is studied in this section. In particular, several wind velocity fields were
predicted around the LEMD airport using the two data sets introduced in Section 2.1.1.
Each of these short time horizon predictions consists of a 15 min ahead forecast, in which
the PCE-GPR model was trained using data from the previous hour and the corresponding
prediction was compared to the test data available at this short time horizon. The estimation
errors of these predictions were collected and aggregated. More specifically, the RMSE,
the MAE, and the MAD were computed and are summarized in Table 3.

Table 3. Wind velocity field prediction: Estimation errors for the u and v components of the wind
velocity field.

Measure of Error Component Day 1 Day 2

RMSE (m/s) u 5.28 (6%) 6.37 (13%)
v 5.16 (6%) 5.80 (8%)

MAE (m/s) u 4.00 (12%) 4.19 (29%)
v 3.93 (12%) 4.40 (15%)

MAD (m/s) u 3.00 (4%) 3.25 (12%)
v 3.07 (3%) 3.52 (4%)

It can be observed that the magnitude of the estimation errors shown in Table 3 for the
wind velocity field prediction is similar to the magnitude of the estimation errors reported
in Table 2 for the wind velocity field reconstruction using the data sets randomly split by
flight. This higher value of the estimation uncertainty with respect to the wind velocity
field reconstruction using the data sets randomly split by observation is due to the fact that,
unlike the PCE-GPR reconstruction model, the PCE-GPR prediction model solely relies on
past observations of the wind velocity.
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Table 3 also reports, between parentheses, the relative improvement obtained in
comparison with the values of the estimation errors reported in [20], in which the wind
velocity field prediction was carried out using the GPR method without the improvement
provided by the PCE. It can be seen that, for all error measures, the PCE-GPR method
outperforms the GPR method. Therefore, the PCE-GPR model yields better short-term
forecasts than those provided by the GPR model, which already provided short-term
predictions with reasonable estimation errors.

Figure 8 presents the wind velocity field prediction at cruise altitude obtained using
the Day 2 data set and the PCE-GPR method for different instants in time. In addition,
some of the members of the test data sets along with the mean wind speed at each instant
in time are also shown. It can be seen that the predicted wind velocity fields largely agree
with the observations.

Figure 8. Wind velocity field prediction: Predicted wind velocity field at cruise altitude obtained
using the Day 2 data set and the PCE-GPR method for different instants in time. A selection of
members of the test data sets, along with the mean wind speed (sw), are also included.

3.4. Validation of the PCE-GPR Model

This section presents the validation of the PCE-GPR model. More specifically, the ob-
tained estimates are compared with the observations available in the ECMWF ERA5
reanalysis database, which contains global atmospheric reanalysis data for each altitude
level with a resolution of 0.25 degrees in the latitude and longitude.

In order to assess whether the aircraft-derived data agree with the reanalysis data,
a comparison between the aircraft-derived data and the ECMWF ERA5 data was carried
out in [20]. The differences between the aircraft-derived data and the reanalysis data
were calculated for each hour ranging between 09:00 and 15:00 UTC, with a time gap of
15 min and an altitude difference of 1000 ft. Since the ECMWF ERA5 data are provided
at the grid points, a linear interpolation was used to compute the reanalysis observations
corresponding to the locations at which aircraft-derived observations were available. It
can be seen in ([20], Table 4) that, for both the Day 1 and Day 2 data sets, the wind speed
bias is less than 3 m/s, whereas the wind direction bias is less than 4 degrees. Moreover,
the MAE of the wind speed is similar for both data sets, whereas the dispersion in the wind
direction is significantly higher for the Day 1 data set. However, despite the difference, it is
expected that the estimates provided by the PCE-GPR model agree on average with the
reanalysis data.

The following steps were performed to compare the estimates of the PCE-GPR method
with the ECMWF ERA5 reanalysis data. First, the reanalysis data corresponding to the Day
1 and Day 2 data sets were extracted from the ECMWF ERA5 database. Various instants in
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time and altitudes were considered for each data set. More precisely, the ECMWF ERA5
reanalysis data for altitudes of 5.6, 9.3, 10.5, 11.2, 12, and 12.9 km, corresponding to times
09:00, 12:00, and 15:00 UTC were considered. A cuboidal space centered at the LEMD
airport with base size 500× 500 km was used to represent the relevant airspace. Then,
the PCE-GPR model was trained on the aircraft-derived data observed in the relevant
airspace and an estimation was performed at every grid point of the ECMWF ERA5 data
set. The obtained estimates were compared with the ECMWF ERA5 reanalysis observations.
Finally, several measures of error were calculated.

The comparison between the estimates of the wind speed and the wind direction
computed using the PCE-GPR technique and the ECMWF ERA5 observations, for both the
Day 1 and Day 2 data sets, are shown in Table 4. It can be seen that all the measures are
even smaller than those reported in ([20], Table 4), except for the MAE of the wind speed
for the Day 2 data set, which is almost the same. This is because the wind velocity field
estimates provided by using the PCE-GPR method are smoother than the aircraft-derived
data, which contain noise. Since the measurement noise ε is incorporated into the model
(2), the PCE-GPR acts as a noise filter.

Table 4. Validation of the PCE-GPR model: Comparison between the estimates obtained using the
PCE-GPR method and the ECMWF ERA5 reanalysis data.

Measure Variable Day 1 Day 2

Bias (m/s) Wind speed −2.75 −0.24
MAE (m/s) Wind speed 4.5 5.79

Bias (deg) Wind direction 2.06 −1.36
Dispersion (%) Wind direction 8.5 0.33

Notice that most of the aircraft-derived observations are located at cruise altitudes
close to the LEMD airport. Nevertheless, the estimates provided by using the PCE-GPR
model are also similar to the reanalysis data when the aircraft-derived observations near
the ECMWF ERA5 grid points are not available, which shows the ability of the PCE-GPR
method to yield reasonable wind velocity field estimations.

4. Discussion

Aircraft-derived wind velocity data employed in this article were supplied by ENAIRE.
Specifically, they were extracted from the ASTERIX database. The wind velocity was
indirectly obtained from the state of the aircraft. An exploratory analysis of the data can
be found in [20], where it was observed that the noise in the wind speed increases in
the data collected during aircraft turning maneuvers. The data availability and quality
are expected to increase after the deployment of the European System-Wide Information
Management (SWIM), an ongoing European project [43,44], which consists of a unified
infrastructure to exchange the flight information, including the wind velocity directly
measured by the aircraft.

The method proposed in this article was tested in different wind scenarios and different
training-test data configurations. Specifically, two sets of data collected on two different
days with different wind intensities and directions were selected. Each data set was
randomly split in two different ways, namely by observation and by flight.

The method was tested first in the wind vector field reconstruction using both data
sets. The performance of the method in terms of errors is similar. In particular, as expected,
the data set configuration obtained by randomly splitting the data set by flight led to the
worst wind vector field reconstruction errors in comparison to the data set configuration
obtained by randomly splitting the data set by observation because, in the first case, the
observations are less evenly distributed in space. However, in all training-test data configu-
rations, these errors are unbiased and have little dispersion. Therefore, it can be concluded
that the method is not affected by the wind scenario in wind vector field reconstruction.
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The proposed method has also been tested in wind vector field short-term prediction
using both data sets. The performance of the method, in terms of errors, is again similar.
The prediction errors are higher than the reconstruction errors using the data set config-
uration obtained by randomly splitting the data set by observation but are similar to the
reconstruction errors using the data set configuration obtained by randomly splitting the
data set by flight. Therefore, it can be concluded that the errors in the short-term wind
velocity field prediction are reasonably small, given that wind velocity information is only
based on the past observations and therefore carries a higher level of uncertainty compared
to wind velocity field reconstruction.

The performance in terms of the estimation errors of the method proposed in this paper
was compared with that of the Gaussian process regression method presented by the same
authors in [20]. The results demonstrate that the good performance of the previous method
was further improved. Moreover, the obtained estimates were validated using an external
data set, namely the ECMWF ERA5 reanalysis data, which are a reliable collection of
historical atmospheric data. This comparison has shown that there is consistency between
the obtained estimates and the ECMWF ERA5 reanalysis data, including the regions in
which the aircraft-derived data broadcasting is low or nonexistent.

5. Conclusions

In this paper, a technique for short-term wind velocity field forecasting and wind veloc-
ity field reconstruction using aircraft-derived wind velocity data was presented. The wind
velocity data were obtained in an indirect way from the states of the aircraft transmitted by
the ADS-B and Mode-S aircraft surveillance systems. The amount of wind velocity data
derived from aircraft states continuously transmitted airborne is large, causing these aircraft
surveillance systems to be a suitable source for data assimilation algorithms. The proposed
technique combines the Gaussian process regression method with the arbitrary polynomial
chaos expansion, which causes the Gaussian process regression to be more precise since
it models the mean spatiotemporal behavior of the wind through polynomial functions
rather than linear functions.

The main advantages of the method are that it does not rely on spatial and temporal
grids and that new observations can be assimilated in less than 5 min, causing it to be
suitable for short-term forecasting. The ultimate goal of the method presented in this article
is to increase aircraft trajectory predictability in TBO, which is an operational concept that
is expected to be implemented soon [45].

Future research will concentrate on showing the advantages of the improved wind
velocity information obtained through the method described in this paper on the pre-
dictability of aircraft trajectories in the TBO framework. These advantages have already
been demonstrated in some articles, such as [2], where the optimal descent trajectory is
updated in real-time using wind velocity profiles, and [12], where KF-based wind velocity
profiles are used for reducing the temporal spacing error between aircraft.
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