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Abstract: Generalization is challenging in small-sample-size regimes with over-parameterized deep 
neural networks, and a better representation is generally beneficial for generalization. In this paper, 
we present a novel method for controlling the internal representation of deep neural networks from 
a topological perspective. Leveraging the power of topology data analysis (TDA), we study the 
push-forward probability measure induced by the feature extractor, and we formulate a notion of 
“separation” to characterize a property of this measure in terms of persistent homology for the first 
time. Moreover, we perform a theoretical analysis of this property and prove that enforcing this 
property leads to better generalization. To impose this property, we propose a novel weight function 
to extract topological information, and we introduce a new regularizer including three items to 
guide the representation learning in a topology-aware manner. Experimental results in the point 
cloud optimization task show that our method is effective and powerful. Furthermore, results in the 
image classification task show that our method outperforms the previous methods by a significant 
margin. 

Keywords: deep neural network; representation space; persistent homology; push-forward proba-
bility measure 
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1. Introduction 
Although over-parameterized deep neural networks generalize well in practice 

when sufficient data are provided, in small-sample-size regimes, generalization is more 
difficult and requires careful consideration. Since the ability to learn task-specific repre-
sentations is beneficial for generalization, a lot of effort has been dedicated to imposing 
structure on the latent space or representation space via additional regularizers [1,2], to 
guide the mapping from input space into internal space, or control properties of the inter-
nal representations [3]. However, internal representations are high-dimensional, discrete, 
sparse, incomplete and noisy; extraction of information from this kind of data is rather 
challenging.  

In order to explore and control internal representations, there are various ways to 
choose: (1) For the algebraic methods based on vector space [4], coordinates are not natu-
ral, the power of linear transformation is limited, and low-dimensional visualizations can-
not faithfully characterize the data. (2) For the statistical methods [5], a small sample size 
limits the power of the analysis, inference and computation; asymptotic statistics cannot 
be used; and the results may exhibit large variance. (3) For geometric methods based on 
distances [6] or manifold assumptions [7], it is difficult to capture the global picture, and 
metrics are not theoretically justified [8] (for neural networks, notions of distance are con-
structed by the feature extractor, which is hard to understand). Individual parameter 
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choices may significantly influence the results, and constraints based on geometry infor-
mation, such as pairwise distances, may be too strict to respect reality. (4) Methods based 
on calculus [9,10] can capture the local information in a small neighborhood for each point, 
but the performance is questionable while high-dimensional data are sparse and the sam-
ple size is small. 

Besides the above traditional methods, there is another fundamentally different per-
spective, an unexplored, powerful tool to employ, i.e., the topological data analysis (TDA) 
method. The advantages of TDA methods [8,11–13] are as follows: (1) TDA studies the 
global “shape” of data and explores the underlying topological and geometric structures 
of point clouds. As a complement to localized and generally more rigid geometric fea-
tures, topological features are suitable for capturing multi-scale, global and intrinsic prop-
erties of data. (2) Topology methods study geometric features in a way that is less sensitive 
to the choice of metrics, and this insensitivity is beneficial when the metric is not well 
understood or only determined in a coarse way [8], as in the neural networks. (3) Topol-
ogy methods are coordinate-free, and they only focus on the intrinsic geometric properties 
of the geometric objects. (4) Instead of determining a proper spatial scale to understand 
and control the data, persistent homology collects information over the whole domains of 
parameter values and creates a summary in which the features that persist over a wide 
range of spatial scales are considered more likely to represent true features of the under-
lying space rather than artifacts of sampling, noise or particular choice of parameters. 

1.1. Related Works 
Previous work related to our work can be divided into two categories. The first cate-

gory focuses on regularization using statistical information of internal representations. 
Cogswell et al. [1] proposed a regularizer to encourage diverse or non-redundant repre-
sentations by minimizing the cross-covariance of internal representation. Choi et al. [2] 
designed two class-wise regularizers to enforce the desired characteristic for each class; 
one focused on reducing the covariance of the representations for samples from the same 
class, and the other used variance instead of covariance to improve compactness. The sec-
ond category studies deep neural networks using tools from algebraic topology, in partic-
ular, persistent homology. Brüel-Gabrielsson et al. [14] presented a differentiable topology 
layer to extract topological features, which can be used to promote topological structure 
or incorporate a topological prior via regularization. Kim et al. [15] proposed a topological 
layer for generative deep models to feed critical topological information into subsequent 
layers and provided an adaptation for the distance-to-measure (DTM) function-based fil-
tration. Hajij et al. [16] defined and studied the classification problem in machine learning 
in a topological setting and showed when the classification problem is possible or not 
possible in the context of neural networks. Li et al. [17] proposed an active learning algo-
rithm to characterize the decision boundaries using their homology. Chen et al. [18] pro-
posed measuring the complexity of the classification boundary via persistent homology, 
and the topological complexity was used to control the decision boundary via regulariza-
tion. Vandaele et al. [19] introduced a novel set of topological losses to topologically reg-
ularize data embeddings in unsupervised feature learning, which can efficiently incorpo-
rate a topological prior. Hofer et al. [20] considered the problem of representation learn-
ing, treated each mini-batch as a point cloud, and controlled the connectivity of latent 
space via a novel topological loss. Moor et al. [3] extended this work and proposed a loss 
term to harmonize the topological features of the input space with the topological features 
of the latent space. This approach also acts on the level of mini-batches, computes persis-
tence diagrams for both input space and latent space, and encourages these two persis-
tence diagrams (PD) to be similar by the regularization item. Wu et al. [21] explored the 
rich spatial behavior of data in the latent space, proposed a topological filter to filter out 
noisy labels, and theoretically proved that the method is guaranteed to collect clean data 
with high probability. These works show empirically or theoretically that enforcing a cer-
tain topological structure on representation space can be beneficial for learning tasks. 
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Hofer et al. [22] proposed an approach to regularize the internal representation to 
control the topological properties of the internal space, and proved that this approach 
would enforce mass concentration effects which are beneficial for generalization. How-
ever, the authors based their work on the assumption that a loss function that yields a 
large margin in the representation space should be selected and,   therefore, that the 
mass concentration effect is only beneficial if the reference set is located sufficiently far 
away from the decision boundary, but this large margin assumption may be violated in 
practice. 

1.2. Contribution 
In this paper, we apply the TDA method, in particular, persistent homology from 

algebraic topology, to analyze and control the global topology of the internal representa-
tions of the training points, which reveals the intrinsic structure of the representation 
space. 

When TDA is combined with statistics, data are deemed to be generated from some 
unknown distribution instead of some underlying manifold. TDA methods are used to 
infer topological features of the underlying distribution, especially the support of the dis-
tribution. Inspired by [22], by combining statistics with topological data analysis, our 
work focuses on the probability measure induced by the feature extractor and treats the 
representation of the training points in a mini-batch as point cloud data from which the 
topological information is extracted, and then we compute persistence diagram of the per-
sistent homology. Specifically, we consider the topological properties of the samples from 
the product measure of two classes to enforce intra-class mass concentration and separa-
tion between classes simultaneously. We extend the definitions and techniques in [22] to 
formalize the separation between two classes via persistent homology. We argue that if 
this separation property is encouraged, then both mass concentration and separation will 
be enforced, and we proposed a novel weight function and constructed a novel loss to 
control the topological properties of the representation space. 

In summary, our contributions are as follows:  
(1) We characterize a separation property between two classes in representation 

space in terms of persistent homology (Section 3.2). 
(2) We prove that a topological constraint on the samples of the push-forward prob-

ability measure in the presentation space leads to mass separation (Section 3.2).  
(3) We propose a novel weight function based on DTM. Using our weight function, 

the weighted Rips filtration can be built on top of training samples from class pairs in a 
mini-batch. The stability of the persistence diagram with respect to the proposed weight 
function is presented (Section 3.4). 

(4) We propose three regularization items, including a birth loss, a margin loss and a 
length loss, which operate on a persistence diagram obtained via persistent homology 
computations on mini-batches, to encourage mass separation (Section 3.4).  

The remainder of this paper is structured as follows: In Section 2, we present some 
topological preliminaries relevant to our work. Section 3 gives our main results, including 
the separation property, the weight function and the regularization method. Section 4 
shows the experimental results on synthetic data and benchmark datasets. Finally, Section 
5 gives the conclusion. 

2. Topological Preliminaries 
Generally, in topological data analysis, the point clouds are thought to be finite sam-

ples taken from an underlying geometric object. To extract topological and geometric in-
formation, a natural way is to “connect” data points that are close to each other to build a 
global continuous shape on top of the data. This section contains a brief introduction to 
the relevant topological notions. More details can be found in several excellent introduc-
tions and surveys [8,11–13,23].  
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2.1. Simplicial Complex, Persistent Homology and Persistence Diagrams 
Simplicial complex K is a discrete structure built over a finite set of samples to pro-

vide a topological approximation of the underlying topology or geometry. The Čech com-
plex and the Vietoris-Rips complex are widely used in TDA. Below, for any ∈x   and 

0r > , let ( ; )B x r  be the open ball of radius 0r >  centered at x . 

Definition 1 (Čech complex [11]). Let X ⊂   be finite and 0r > . The Čech complex ( ; )X r  
is the simplicial complex 

0
0

{ ,..., } ( ; ) : ( ; )
k

k i
i

x x X r B x r
=

∈ ⇔ ≠ ∅  (1)

Definition 2 (Vietoris-Rips complex [11]). Let X ⊂   be finite and r > 0. The Vietoris-Rips 
complex ( ; )X r  is the simplicial complex 

{ }
{ }

0{ ,..., } ( ; ) : ( ; ) ( ; )  for any , 0,...,

                                 ( , ) 2  for any , 0,...,

∈ ⇔ ∩ ≠ ∅ ∈

⇔ ≤ ∈

k i j

i j

x x x r B x r B x r i j k

d x x r i j k
 (2)

For a simplicial complex K, the k-th homology group of K is used to characterize k-
dimensional topological features of K, denoted by ( )kH K . The k-th Betti number of K is 

the dimension ( ) dim ( )kk K H Kβ =  of the vector space ( )kH K . The k-th Betti number 

counts the number of k-dimensional features of K. For example, 0dim ( )H K  counts the 

number of connected components, 1dim ( )H K  counts the number of holes, and so on. 
For Definition 1 and Definition 2, it is difficult to choose a proper r without prior 

domain knowledge. The main insight of persistent homology is to compute topological 
features of a space at different spatial resolutions. In general, the assumption is that fea-
tures that persist for a wide range of parameters are “true” features. Features persisting 
for only a narrow range of parameters are presumed to be noise. 

A filtration of a simplicial complex K is a collection of subcomplexes approximating 
the data points at different spatial resolutions, formally defined as follows: 

Definition 3 (Filtration [11]). Let K  be a simplicial complex, and ⊆  . A family of sub-
complexes ( )

t t
K ∈  of K  is said to be a filtration of K  if it satisfies 

(1) ⊆s tK K  for ≤s t ; 

(2) ∈ = t tK K  

Given 0ε ≥ , two filtrations ( )
t t
V ∈  and ( )

t t
W ∈  of dE =   are ε -interleaved 

[24] if for every t ∈ , 
t t
V W ε+⊆  and 

t t
W V ε+⊆ . The interleaving pseudo-distance be-

tween ( )
t t
V ∈  and ( )

t t
W ∈  is defined as the infimum of such ε :  

(( ) ,( ) ) inf{ : ( ) and ( ) are -interleaved}
i t t t t t t
d V W V Wε ε∈ ∈ =

 
 (3)

Let X  be a finite point set in =  d  and ∈t . The family { ( ; )}
t

X t forms Čech 
filtration for 0≥t , and the family { ( ; )} tx t  forms Rips filtration. Since the Čech com-
plex is expensive to compute, Rips filtration is less expensive to compute than Čech filtra-
tion and is frequently used to investigate the topology of the point set X . 

In the construction of Čech filtrations, the radii of balls increase uniformly. We can 
also make radii increase non-uniformly. Let 0: ≥→ df  be a continuous function, 

[1, )∈ ∞p . For < ∞p , we define a function { }0: ≥× → ∪ −∞ fr X  by 
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( )1/

( )
( , )

( ) otherwise

−∞ <  =  
−  

pf p p

t f x
r x t

t f x
 (4)

By modifying the definition of ( ; ) X t , we define a simplicial complex ( ; ) f X t  by 

0
0

{ ,..., } ( ; ) : ( ; ( , ))
=

∈ ⇔ ≠ ∅
k

k f i f i
i

x x X t B x r x t  (5)

For each fixed t, ( ; ) f X t  is a Čech complex. The family { }( ; ) f t
X t  forms a filtra-

tion, which is called the weighted Čech filtration. We can also construct the weighted Rips 
filtration in a similar way. 

For a filtration and each non-negative k, we keep track of when k-dimensional ho-
mological features appear and disappear in the filtration. If a homological feature iα  ap-

pears at ib  and disappears at id , then we say iα  is born at ib  and dies at id . By con-

sidering these pairs ( , )i ib d  as points in the plane, we obtain the persistence diagram. 

Definition 4 (Bottleneck distance [15]). Given two persistence diagrams   and ′ , their bot-
tleneck distance (

b
d ) is defined by 

( , ) inf sup ( )
b

p
d p p

γ
γ

∞∈Γ ∈
′ = −



   (6)

where 
∞

⋅  is the usual L∞ -norm, Diag=   and Diag′ ′=   with Diag being 

the diagonal 2{( , ) : }x x x ∈ ⊂   with infinite multiplicity, and the set Γ  consists of all 
the bijections :γ ′→  . 

2.2. DTM Function 
Despite strong stability properties, distance-based methods in TDA, such as the Čech 

or Vietoris-Rips filtrations, are sensitive to outliers and noise. To address this issue,  [24] 
introduced an alternative distance function, i.e., the DTM function. Details of DTM-based 
filtrations are studied in [25]. We only list the properties of the DTM that will be used 
here. 

Let μ  be a probability measure over  d , and [0,1)∈m  a parameter. For every 
∈dx , let ,μδ m  be the function defined on  d  by , ( ) inf{ 0, ( ( , )) }μδ μ= ≥ >m x r B x r m . 

Definition 5 (Distance-to-measure [24]). The distance-to-measure function (DTM) with param-
eter [0,1)∈m  and power p  is the function , , :μ → d

m pd  defined by 

( )
1/

, , ,0

1( ) ( )μ μδ =  
 

p
m p

m p md x x dm
m

 (7)

and if not specified, 2p =  is used as a default and omitted. 

From Definition 5, it can be seen that for every x , ( )μd x  is not lower than the dis-
tance from x  to the support of μ . 

Proposition 1 ([24]). For every probability measure μ  and [0,1)∈m , ,μ md  is 1-Lipschitz. 

Proposition 2 ([24]). Let μ  and ν  be two probability measures, and (0,1)∈m . Then 

( 1/ 2)
, , 2 ( , )μ ν μ ν−

∞
− ≤m md d m W  (8)
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where 2 ( , )μ νW  is the Wasserstein distance between μ  and ν . 

In practice, the measure μ  is usually unknown, and we only have a finite set of 
samples 1{ ,..., }= nX x x ; a natural idea to estimate an approximation of the DTM from X  
is to plug the empirical measure μn  instead of μ  in Definition 5, to obtain the “distance 
to the empirical measure (DTEM)”. For /=m k n , the DTEM satisfies 

, / , ( )
1

1( )μ
=

−
n

k
pp

k n p n j
j

d x x x
k

 (9)

where ( )− n jx x  denotes the distance between x and its j-th neighbor in 1{ ,..., }nx x . This 

quantity can be easily computed in practice since it only requires the distances between x 
and the sample points. 

3. Topological Regularization 
Let   be the input space,   the label space and   the internal representation 

space before the classifier. Assuming there are C classes, we formulate the neural network 
as a compositional mapping: : [ ] {1,..., }C Cη ϕ → = =   , where :ϕ →   repre-
sents a feature extractor and :η →   represents a classifier that maps the internal rep-
resentation to the predicted label. Assume the representation space   is equipped with 
a metric d . Let P  be the probability measure on   and Q  be the push-forward prob-
ability measure induced by :ϕ →   on the Borel σ -algebra   defined by d  on 
 . 

We focus on the internal representation space; in particular, we study the push-for-
ward probability measure Q  induced by the feature extractor ϕ  on  , identify a prop-
erty of Q  that is beneficial for generalization and propose a regularization method to 
implement the property. 

3.1. Push-Forward Probability Measure and Generalization 
Let : supp( )c P →   represent the deterministic mapping from the support of P  to 

the label space, and 
1 1

{( , ),...,( , )}
m m

S x y x y=  be a training sample, where 
1

{ ,..., }
m

x x  are 

m i.i.d. draws from X P , and ( )
i i
y c x= . 

For a neural network :h →   and X P , we define the generalization error by 

~ ,
[1 ( )]

X P h c
X , where 

,

0, ( ) ( )
1 ( )

1, elseh c

h x c x
X

 == 


 (10)

To study the property of Q , we consider the class-specific probability measure as in 
[22], define the restriction of Q  (i.e., the push-forward of P  via ϕ ) to class k by 

( )
: [0,1],

( )
k

k

k

Q C
Q

Q C

σ
σ

∩
 → ∈    (11)

where 1( { })
k
C c kϕ −=  is the representation of class k in  .  

If the probability mass of class k’s decision region, measured via 
k
Q , tends towards 

one, it may lead to better generalization. Reference [22] formulated this notion by estab-
lishing a direct link between 

k
Q  and the generalization error. 
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Proposition 3 ([22]). For any class [ ]k K∈ , let 1( { })
k
C c kϕ −=  be its internal representation 

and 1({ })
k
D kη−=  be its decision region in   w.r.t. η . If, for 0ε > , : 1 ( )

k k
k Q D ε∀ − ≤ , 

then 
,~

[1 ( )]
cX P
X Kη ϕ ε≤ .  

Proposition 3 links generalization to a condition depending on Q . Intuitively, in-
creasing the probability of ϕ  mapping a sample of class k into the correct decision region 
can improve generalization. 

Based on this observation, [22] introduced the definition of a β -connected set to 
characterize connectivity via 0-dimensional (Vietoris-Rips) persistent homology and 
proved that a corresponding property for probability measure 

k
Q  would be beneficial for 

generalization. 

Definition 6 ( β -connected [22]). Let 0β > . A set M ⊆   is β -connected iff all 0-dimen-
sional death-times of its Vietoris-Rips persistent homology are in the open interval (0, )β .  

However, [22] assumed a large margin in representation space which may be vio-
lated in deep neural networks. In the following, we extend their work and identify a prop-
erty for probability measure Q  that can enhance the separation between classes.  

Note that we can also write Proposition 3 in an alternate form, because the probability 
mass of all classes’ decision region measured via 

k
Q  sums to one, we have 

1 ( ) ( )
k k k ii k
Q D Q D

≠
− =  , which means that for each class k, the sum of the probability 

mass of other classes’ decision region, measured via 
k
Q , tends towards zero. Intuitively, 

decreasing the probability of ϕ  mapping a sample of class k into other incorrect decision 
regions can improve generalization.  

Therefore, in order to decrease ( )
j i
Q D , we take class pairs 

i
Q  and 

j
Q  into consid-

eration and formulate a notion of separation in terms of persistent homology as follows. 

3.2. Probability Mass Separation 

In this section, we show that a certain topological constraint on the ( , )
i j
Q Q  pair will 

lead to probability mass separation. More precisely, given a reference set 

0 0
( ; )M B x r= ⊆  , let 

0 0
( ; )

l
M B x r lβ β⋅ = + ⋅ , our topological constraint provides a non-

trivial upper bound on ( )
j l
Q M β⋅  in terms of ( )

i
Q M . 

In order to enforce the separation between two classes, we extend Definition 6 to 
characterize the separation between two sets: 

Definition 7. Let 0β > , 2γ β> . Considering two sets, 
1 2
,M M ⊆   and

1 2
M M M= ∪ , we 

denote the death-times of M ’s 0-dimensional Vietoris-Rips persistent homology as 
0

{ }
i i
d ∈  and 

order the indexing of points by decreasing lifetimes, i.e., 
i j
d d≥  for i j< . Then, we state 

1
M  

and 
2
M  are ( , )β γ -separated, if and only if the following two conditions are satisfied: 

(1) 
1
M  and 

2
M  are both β -connected;  

(2) 
2
d  is in the open interval ( , )γ ∞ . 

Then we use this notion to capture the concentration and separation of a (b, b) sample 
from a ( , )

i j
Q Q  pair. For b-sized i.i.d. samples from Q , we denote the product measure 
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of Q  by bQ , and for (b, b)-sized samples from ( , )
i j
Q Q (b i.i.d. draws from each), we de-

note the product measure by b b

i j
Q Q . 

Define the indicator function , ( , )
( , )

: {0,1}b b

b b

β γ →c   as follows: 
,

( , ) 1,1 1, 2,1 2, 1,1 1, 2,1 2,
( ,... , ,... ) 1 { ,... },{ ,... }

b b b b b b
z z z z z z z zβ γ = ⇔c  are ( , )β γ -separated. 

Now we consider the probability of the (b, b)-sized samples from b b

i j
Q Q  being ( , )β γ

-separated. 

Definition 8. Let 0β > , 2γ β> , [0,1]cβ ∈ , and b ∈ . We call a ( , )
i j
Q Q  pair  

,
( , )b cβ γ -

separated if: 
,

( , ) ,
({ 1})b b

i j b b
Q Q cβ γ

β γ= ≥c  (12)

For two classes C1 and C2, consider the restriction of Q  to C1 and C2, i.e., 
1
Q  and 

2
Q . Assume 

1 2
( , )Q Q  is 

,
( , )b cβ γ -separated, consider reference set 

0 0
( ; )M B x r= ⊆   and 

let 
0 0

( ; )
l
M B x r lβ β⋅ = + ⋅ , together with the complement set C

l
N M β⋅= , where 

0
/ 2r l β γ+ ⋅ ≤ . Let 

1
= ( )Q Mp , 

1
( )

l
Q M β⋅=q  and 

2
( )

l
Q M β⋅=s . According to [22], when 

p  is fixed, we can lower bound q . In the following, we will provide an approach to up-
per bound s, which hints at mass separation between different classes. 

For a (b, b) sample 
1,1 1, 2,1 2, 1 2

( ,... , ,... ) ~ b b

b b
z z z z Q Q , consider the distribution of 

,i j
z  

among 
l
M β⋅  and N. Let 

1
n  and 

2
n  be the numbers of 

1,i
z ’s and 

2,i
z ’s that fall within 

l
M β⋅ , respectively; i.e., 

1 1,
{ }

i l
n z M β⋅=   and 

2 2,
{ }

i l
n z M β⋅=  . Apparently, if the 

membership assignment satisfies: 
1

1n ≥  and 
2

1n ≥ , then 
1,1 1, 2,1 2,

( ,... , ,... )
b b

z z z z  cannot 
be ( , )β γ -separated. 

Thus, we define events that 
1,1 1, 2,1 2,

( ,... , ,... )
b b

z z z z  cannot be ( , )β γ -separated as fol-
lows: 

1,1 1, 2,1 2, 1 2 1 2
{( ,... , ,... ) ~ : 1, 1}b b

b b
E z z z z Q Q n n= ≥ ≥  and then we have ,

( , )
( ) {0}

b b
Eβ γ =c . 

In the following lemma, we compute the probability of event E and derive some use-
ful properties. 

Proposition 4. Let b ∈ , , [0,1]q s ∈ , 
1
( )

l
Q M β⋅=q  and 

2
( )

l
Q M β⋅=s . Denote the following: 

1 1 2 2

1 21 1 1 1 2 2

! !
( , ; ) (1 ) (1 )

!( )! !( )!

b b
n b n n b n

n n

b b
q s b q q s s

n b n n b n
− −

= =

Φ = − −
− −   (13)

Then the probability of E can be expressed in terms of q  and s  as  follows: 
1 2

( ) ( , ; )b bQ Q E b= Φ q s
, and for ( , ; )q s bΦ , it holds that 

(1) 
0

( , ; )q bΦ ⋅  is monotonically increasing on [0,1] , 

(2) 
0

(, ; )s bΦ ⋅  is monotonically increasing on [0,1] . 

Proof.  
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1 1 2 2

1 2

1 1 2 2

1 2

1 1 1 1 2 2

1 11 1 2 2

! !
( , ; ) (1 ) (1 )

!( )! !( )!
! !

(1 ) (1 )
!( )! !( )!

b b
n b n n b n

n n

b b
n b n n b n

n n

b b
q s b q q s s

n b n n b n
b b

q q s s
n b n n b n

− −

= =

− −

= =

Φ = − −
− −

= − −
− −



 
 (14)

For argument (1), we fix 
0

q q=  and write 

1 1 2 2

1 2

0 0 0
1 11 1 2 2

( )

! !
( , ; ) (1 ) (1 )

!( )! !( )!

b b
n b n n b n

n n

A s

b b
q s b q q s s

n b n n b n
− −

= =

Φ = − −
− − 


 

(15)

To study the monotonicity properties of 
0

( , ; )q bΦ ⋅ , it is sufficient to consider ( )A s . 
We define two auxiliary functions: 

2 2

2
2 2

!
( ) (1 )

!( )!
n b n

n

b
a s s s

n b n
−= −

−
 (16)

2 2

2

1

2
2 2

!
( ) ( )(1 )

!( )!
n b n

n

b
c s s b n s

n b n
− −= − −

−
 (17)

Then we have 
2

2 1

( ) ( )
b

n
n

A s a s
=

=  , and that 

2 2

2

1

2
2 2

2

!
(1 ) , 0

( ) !( 1)!
0,

n b n

n

b
s s n b

c s n b n
n b

− −
− ≤ <= − −

 =

 (18)

2 2 2 2 2

2 2

1 1

2 2
2 2 2 2

1

( ) ! !
(1 ) ( )(1 )

!( )! !( )!
( ) ( )

n n b n n b n

n n

a s b b
n s s s b n s

s n b n n b n
c s c s

− − − −

−

∂
= − − − −

∂ − −
= −

 (19)

Hence, 

2 2

2

1 0 0
1

( )
( ) ( ) ( ) ( ) ( ) 0

b

n n b
n

A s
c s c s c s c s c s

s −
=

∂ = − = − = ≥
∂   (20)

Consequently, ( )A s  is monotonically increasing, and thus, so is 
0

( , ; )q bΦ ⋅ . 
For argument (2), the proof is similar and omitted. □ 
Now we can derive the main theorem: 

Theorem 1. Let b ∈ , , [0,1]q s ∈ , 
1
( )

l
Q M β⋅=q  and 

2
( )

l
Q M β⋅=s . Then it holds that 

,
1 ( , ; )c bβ γ− ≥ Φ q s  (21)

Proof. The left side includes all the events that violate the separation assumption, and the 
right side is only a special case among them. Therefore, by combining Definition 8 and 
Proposition 4, we complete the proof. □ 

3.3. Ramifications of Theorem 1 
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According to Theorem 1 and Proposition 4, if 
l
M β⋅  covers a certain mass of 

1
Q , we 

can upper bound the mass it covers of 
2
Q , i.e., because ( , ; )bΦ q s  is bounded by 

,
1 cβ γ−  

and is monotonically increasing in q  and s , if 
1
( )

l
Q M β⋅=q  is greater than some 

0
q , 

then 
2
( )

l
Q M β⋅=s  should be less than some 

0
s . This is beneficial for generalization if 

l
M β⋅  is constructed from the representations of the correctly classified training instances 
to include some minimal mass of C1. 

Assuming that the mass of the reference set 
1
( )Q M=p  is fixed, noting that our Def-

inition 7 is stronger than the mass concentration condition in [22] and then letting 

( , , ) ( , )

!
( , ; , ) (1 ) ( )

! ! !
u v w

u v w I b l

b
p q b l p q q p

u v w∈

Ψ = − − , we have 

, 1
{ [ ,1] : 1 ( , ; , )}q c b l Aβ γ∈ ∈ − ≥ Ψ =q p p q  (22)

Let 
,, 1
( , ) min

b c
l A

β γ
=p  be the smallest mass in the l β⋅  extension, and then 

,,
( , )

b c
l

β γ
≥ ≥q p p . 

By Theorem 1, we have 

{ }
,, , 2

[0,1] : 1 ( , ; ) ( ( , ), ; )
b c

s c b l b A
β γβ γ∈ ∈ − ≥ Φ ≥ Φ =s q s p s  (23)

and thus 
2
A  is non-empty. Now let 

,, 2
( ) max

b c
A

β γ
=q  identify the largest mass in the 

l β⋅  extension for which the inequality holds. As q  increases, 
,,
( )

b cβ γ
q  decreases; 

therefore, 
, , ,, , ,
( ) ( ( , ))

b c b c b c
l

β γ β γ β γ
≤ ≤s q p   . 

Let 
, , ,, , ,
( , ) ( ( , ))

b c b c b c
l l

β γ β γ β γ
p p   , then 

,,
( , )

b c
l

β γ
≤s p . 

As Ψ  is monotonically decreasing in q , 
,,
( )

b cβ γ
p  is monotonically increasing in 

,
cβ γ ; furthermore, as Φ  is monotonically increasing in s, 

,,
( )

b cβ γ
q  is monotonically de-

creasing in 
,
cβ γ . These facts motivate our regularization goal of increasing 

,
cβ γ . In other 

words, increasing 
,
cβ γ  would both boost mass concentration within a class and enforce 

mass separation between two classes. 
Suppose M is constructed mainly by training samples from C1, i.e., we choose 

0
x  

and 
0
r  to include many training samples from C1; then we can ask the following: how 

much mass of C1 should M contain at least to boost the separation? 
We plot ( , ; )bΦ q q  in Figure 1, and we can see that =q s  at point (0.049, 0.049), i.e., 

,
( , ; )=1b cβ γΦ −q q . At this point, the mass separation effect starts to occur. To satisfy Ine-

quality (21), when q  increases, s  should decrease, which means that as 
l
M β⋅  covers 

more mass of 
1
Q , it covers less mass of 

2
Q . In addition, as the batch size b increases, the 

least mass of 
1
Q  that 

l
M β⋅  should cover decreases. 
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Figure 1. Illustration of when ,
( , ; )=1b cβ γΦ −q q  holds, i.e., when the mass separation effect starts 

to occur. When q  increases, s  should decrease, which means that as 
l
M β⋅  covers more mass of 

1
Q , it covers less mass of 2

Q . As the batch size b increases, the least mass of 1
Q  that 

l
M β⋅  should 

cover decreases. 

In Figure 2, we fix the batch size to 8 and visualize ( , ; )bΦ q s  as a function of s  (for 
different values of q ), and we can see that when q  increases, 

,,
( )

b cβ γ
q  moves towards 

zero, which indicates a smaller s , i.e., 
l
M β⋅  covers less mass of 

2
Q , and therefore, it 

leads to a better separation. 

 
Figure 2. Illustration of ( , ; )bΦ q s  for b = 8 and different values of q . Points at which 

,
1 ( ; )c bβ γ− = Φ q, s  holds are marked by dots. When q  increases, 

,,
( )

b cβ γ
q  moves towards zero, 

which indicates a smaller s , i.e., 
l
M β⋅  covers less mass of 2

Q . 

In Figure 3, we plot 
,,
( )

b cβ γ
q  as a function of q  for different values of 

,
cβ γ , where 

1
( )

l
Q M β⋅=q . As 

,
cβ γ  is increased, the maximal mass of 

2
Q  contained in 

l
M β⋅ , character-

ized by 
,,
( )

b cβ γ
q , shifts towards a smaller value, which indicates that a better separation 

between classes C1 and C2 is achieved. 
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Figure 3. Illustration of 
,,
( )

b cβ γ
q , i.e., the upper bound on 2

( )
l

Q M β⋅=s , plotted as a function of the 

mass 1
( )

l
Q M β⋅=q (for b = 8 and different values of ,

cβ γ ). For a fixed q , as ,
cβ γ  is increased, the 

maximal mass of 2
Q  contained in 

l
M β⋅  decreases, i.e., better separation is achieved. 

Figure 4 visualizes 
,,
( , )

b c
l

β γ
p  as a function of p  for different values of 

,
cβ γ , where 

1
( )Q M=p . It can be seen that as 

,
cβ γ  is increased, the maximal mass of 

2
Q  contained in 

l
M β⋅ , characterized by 

,,
( , )

b c
l

β γ
p , also shifts towards a smaller value, which indicates a 

better separation. 

 

Figure 4. Illustration of 
,,
( , )

b c
l

β γ
p , i.e., the upper bound on 2

( )
l

Q M β⋅=s , plotted as a function of 

the mass 
1
( )Q M=p  (for b = 8, and different values of ,

cβ γ ). For a fixed p , as ,
cβ γ  is increased, the 

maximal mass of 2
Q  contained in 

l
M β⋅  decreases. 
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Figure 5 plots 
,,
( , )

b c
l

β γ
p  as a function of p  for different values of batch size b, 

where 
1
( )Q M=p . As b is increased, the maximal mass of 

2
Q  contained in 

l
M β⋅ , charac-

terized by 
,,
( , )

b c
l

β γ
p , also shifts towards a smaller value, which indicates a better separa-

tion, and in order to achieve separation, M only needs to cover a small mass of 
1
Q . 

 

Figure 5. Illustration of 
,,
( , )

b c
l

β γ
p , i.e., the upper bound on 2

( )
l

Q M β⋅=s , plotted as a function of 

the mass 
1
( )Q M=p  (for ,

0.95cβ γ = , and different values of b). For a fixed p , as the batch size is 

increased, the maximal mass of 2
Q  contained in 

l
M β⋅  decreases. 

3.4. Weighted Rips Filtration and Regularization 

In Section 3.2, we show that a topological constraint on a ( , )
i j
Q Q  pair would lead to 

probability mass concentration and separation. To impose this constraint, we propose a 
function that is used to construct the filtration, and then we compute the 0-dimensional 
persistent diagram and construct the loss item to regularize the internal representation. 

Our method acts on the level of mini-batches; we construct each mini-batch B as a 
collection of n sub-batches, i.e., B = (B1,…, Bn), as in [22]. Each sub-batch consists of b sam-
ples from the same class, and thus the resulting mini-batch B contains n*b samples. Our 
regularizer consists of three items and penalizes deviations from a ( , )β γ -separated ar-
rangement of 

1,1 1, 2,1 2,
( ,... , ,... )

b b
z z z z  for all sub-batch pairs (Bi, Bj).  

3.4.1. A Weight Function for Weighted Rips Filtration 
To construct a proper filtration to deal with samples from two different classes, we 

define a function f : 

, , , , ,
( ) ln(1 exp(( ( ) ( )) / ))

mT m m
f x d x d x Tμ ν μ ν= + −  (24)

where T is the temperature that controls the magnitude and 
,

( )
m

d xμ  is the DTM function 
defined in Equation (7).  

Considering the mass separation for two classes, we denote the data instances of class 
k  by 

k
S , and then for a class pair ( , )

i j
C C , the training samples can be written as follows: 

,i j i j
S S S=  . Let 

i
Q  and 

j
Q  be the restriction of Q  (i.e., the push-forward of P  via 

ϕ ) to classes i and j, respectively. In order to construct filtration with Equation (24), firstly, 
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we need to compute 
, , ,

( )
i jQ Q m T
f x  for 

,i j
x S∈ . Note that ,iQ m

d  and ,jQ m
d  can be computed 

with Equation (9), the DTEM, where 
i
Q  is approximated by ( )

i
Sϕ  and 

j
Q  is approxi-

mated by ( )
j
Sϕ . According to Equation (24), for a good classifier, points from class i 

should have smaller function values than points from class j. Then we plug 
, , ,

( )
i jQ Q m T
f x  

into Equation (4) to compute the weighted Rips filtration (we set p = 1 for Equation (4) in 
this research), and obtain the 0-dimensional persistence diagram, i.e., the multi-set of in-
tervals for homology in dimension 0, 

00 ,
PD ( ) {( , )}

i j k k k I
b d ∈= . After that, we order the 

indexing of points by decreasing lifetimes as done in Definition 7; we will use them later 
to construct the loss item in Section 3.4.3. 

3.4.2. Stability 
In this section, we establish the stability results for our weight function in Equation 

(24). In Theorem 2, the stability of the weight function is given, which will later be used 
in Theorem 3 to ensure the stability of the filtration [ , ]V X f  with respect to the weight 
function f . Proposition 5 is used to ensure the stability of the filtration [ , ]V X f  with 
respect to X . According to persistent homology theory, the stability results for the filtra-
tion translate as stability results for the persistence diagrams. We present our main stabil-
ity results in Theorem 3. 

Theorem 2. Let
1

μ ,
2

μ ,
1

ν  and 
2

ν  be four probability measures, and (0,1)m ∈ . Then 

1 2 1 2

(1/2)
, , , , , , 2 1 1 2 2 2

(1 / ) ( ( , ) ( , ))
m T m T

f f T m W Wμ μ ν ν μ ν μ ν−

∞
− ≤ +  (25)

Proof.  
Let 

1 2 1 2, , , , ,
( ) ( ( ) ( ))/

mT m m
h x d x d x Tμ μ μ μ= −  and ( ) ln(1 exp( ))g x x= + . Then f g h=  . 

Because ( )g x  is 1-Lipschitz, i.e., for all x  and y , ( ) ( )g x g y x y− ≤ − ,  
we have 

1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 1 2 2

, , , , , , , , , , , , , , , , , ,

, , , , , , , ,

(1/2)
2 1 1 2 2 2

(1 / ) ( ) ( ) (1 / )( )

(1/ ) ( ( , ) ( , ))

mT mT m T m T m T m T

m m m m m m m m

f f g h g h h h

T d d d d T d d d d

T m W W

μ μ ν ν μ μ ν ν μ μ ν ν

μ μ ν ν μ ν μ ν

μ ν μ ν

∞ ∞ ∞

∞ ∞ ∞
−

− = − ≤ − =

− − − ≤ − + −

≤ +

 

 (26)

The last inequality is obtained according to Proposition 2. □ 
In Proposition 5, we consider the stability of the filtration with respect to X . For 

brevity, the subscripts of f  are omitted. 

Proposition 5. Suppose that X  and Y  are compact and that the Hausdorff distance 
( , )

H
d X Y ε≤ . Then the filtrations [ , ]V X f  and [ , ]V Y f  are k-interleaved with 

(1 2 / )k Tε= + . 

Proof. 
It suffices to show that for every 0t ≥ , [ , ] [ , ]

t t
V X f V Y f⊆ . 

For [ , ]
t

z V X f∈ , there exists x X∈  such that ( , )fz B x t∈ , i.e., ( )
x

x z r t− ≤ . From 

the hypothesis ( , )
H
d X Y ε≤ , there exists y Y∈  such that x y ε− ≤ . Then we need to 

prove that ( , )fz B y t k∈ + , i.e., ( )
y

z y r t k− ≤ + . 
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According to triangle inequality, ( )
x

z y z x x y r t ε− ≤ − + − ≤ + . Then it suffices 

to show that ( ) ( )
x y
r t r t kε+ ≤ + . 

Using Equation (4), we have  

( )
1 2 1 2, , , ,

( ) ( ) (( ) ( )) ( ( )) ( ( ) ( ))

( ( ( )) ( ( ))) ( ) ( )

(1/ ) ( ( ) ( )) ( ( ) ( ))

y x

m m m m

r t k r t t k f y t f x k f x f y

k g h x g h y k h x h y

k T d x d x d y d yμ μ μ μ

+ − = + − − − = + −
= + − ≥ − −

= − − − −

 (27)

According to Proposition 1, the DTM function is 1-Lipschitz, and then 

1 2 1 2 1 1 2 2, , , , , , , ,
( ( ) ( )) ( ( ) ( )) ( ) ( ) ( ) ( )

2 2
m m m m m m m m

d x d x d y d y d x d y d x d y

x y
μ μ μ μ μ μ μ μ

ε
− − − ≤ − + −

≤ − ≤
 (28)

Therefore, 

( ) ( ) (2 / ) (1 2 / ) (2 / )
y x
r t k r t k T T Tε ε ε ε+ − ≥ − = + − = . □ 

In the following theorem, we combine the above results to establish the stability of 
the persistence diagram with respect to X  and f . 

Theorem 3. Consider four measures
1

μ ,
2

μ ,
1

ν  and 
2

ν  on d  with compact supports 
1
X ,

2
X ,

1
Y  and 

2
Y , respectively. Let 

1 2
X X X=  , 

1 2
Y Y Y=  , 

1 21 , , ,
[ , ]

mT
V V X fμ μ=  and 

1 22 , , ,
[ , ]

mT
V V Y fν ν= , 

b
d  denotes the bottleneck distance between persistence diagrams. Then 

(1/2)
1 2 2 1 1 2 2 2

( ( ), ( )) (1/ ) ( ( , ) ( , )) (1 2 / ) ( , )
b H
d DV DV T m W W T d X Yμ ν μ ν−≤ + + +  (29)

Proof.  
Under some regularity conditions, 

1 2 1 2
( ( ), ( )) ( , )
b i
d DV DV d V V= , where 

i
d  denotes 

the interleaving pseudo-distance between two filtrations as defined in Equation (3).  
We use the triangle inequality for the interleaving distance: 

1 2 1 2 1 2 1 21 2 , , , , , , , , , , , ,

(1) (2)

( , ) ( [ , ], [ , ]) ( [ , ], [ , ])
i i m T m T i m T m T
d V V d V X f V Y f d V Y f V Y fμ μ μ μ μ μ ν ν≤ +

 
 

(30)

For the first part (1) on the right side of Equation (30), it can be seen that from Prop-
osition 5, we have 

1 2 1 2, , , , , ,
( [ , ], [ , ]) (1 2 / ) ( , )
i m T mT H
d V X f VY f T d X Yμ μ μ μ ≤ +  

For the second part (2) on the right side of Equation (30), according to Proposition 3.2 
in [25], we have 

1 2 1 2 1 2 1 2, , , , , , , , , , , ,
( [ , ], [ , ])
i m T m T m T m T
d V Y f V Y f f fμ μ ν ν μ μ ν ν ∞

≤ −  (31)

Using Theorem 2, we have 

1 2 1 2

(1/2)
, , , , , , 2 1 1 2 2 2

(1 / ) ( ( , ) ( , ))
m T m T

f f T m W Wμ μ ν ν μ ν μ ν−

∞
− ≤ +  

By combining part (1) and part (2), we complete the proof. □ 

3.4.3. Regularization via Persistent Homology 
We split the persistence intervals obtained in Section 3.4.1 into two subsets: 
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0 0, 0,0 , , , , ,
PD ( ) {( , )} {( , )} {( , )}

i ji j k k k I i k i k k I j k j k k I
b d b d b d∈ ∈ ∈= =    

where 
0,, ,

{( , )}
ii k i k k I

b d ∈  consists of the intervals in which the birth time belongs to class i 

and 
0,, ,

{( , )}
jj k j k k I

b d ∈  consists of the intervals in which the birth time belongs to class j. 

Now we define three loss items: 
• Birth loss 

Birth loss is designed to measure intra-class distance, in order to meet the first re-
quirement of Definition 6, to enforce intra-class mass concentration: 

0, 0,

birth , 0 , 1
( , )

i j

i j i k j k
k I k I

B B b b b b
∈ ∈

= − + −   (32)

where 
0
b  and 

1
b  are super parameters used to control the birth time for each class. 

• Margin loss 
Margin loss is designed to measure the “distance” between two classes. There may 

be connected components that appear due to points from class i but disappear due to 
points from class j, these cases should be penalized. In addition, for class j, the longest 
interval in 

0,, ,
{( , )}

jj k j k k I
b d ∈  would finally merge into class i’s intervals.  

Let 
,min , 0,

min{ : }
j j k j
b b k I= ∈ ; we define 

( )
0,

margin , ,min
( , ) max ( ), 0

i

i j i k j
k I

B B d bγ
∈

= + −  (33)

which means that we penalize the margins 
,min ,j i k
b d−  smaller than γ , where γ  is also 

a super parameter used to control inter-class separation. 
• Length loss 

Weighted Rips filtration is not as direct as the Rips filtration in controlling distances. 
Therefore, the length loss can be used in combination with the birth loss to penalize large 
intra-class distances. In addition, we hope that the two classes correspond to two con-
nected components, which will persist for a wide range of parameters until these two 
components finally merge when the parameter reaches a sufficiently large value. We also 
want to prevent 

k
Q  from becoming overly dense. To formulate this intuition, we define 

0, 0,

length , , , ,
( , )

i j

i j i k i k j k j k
k I k I

B B d b d bβ β
∈ ∈

= − − + − −   (34)

where β  is a super parameter. 
Finally, our regularization item can be written as follows: 

1 birth 2 margin 3 length
( , ) ( , ) ( , ) ( , )
i j i j i j i j
B B B B B B B Bλ λ λ= + +     (35)

where the weightings 
1

λ , 
2

λ  and 
3

λ  can be set such that the range of the loss is com-
parable, in range, to the cross-entropy loss, or can be selected via cross-validation. 

4. Experiments 
In this section, we test our idea with some experiments. We first consider point cloud 

optimization to obtain some intuition on the behavior of (35), and then we evaluate our 
approach on the image classification task. 
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4.1. Point Cloud Optimization 
To validate our approach, as an illustrative example, we perform point cloud optimi-

zation with only the proposed loss in Equation (35), without other loss items. Point clouds 
are generated from Gaussian mixture distribution, and we assume that these points are 
from two different classes: C1 and C2. In the following figures, purple points represent 
samples from C1, and red points represent samples from C2. 

4.1.1. Gaussian Mixture with Two Components 
To test the separation effect, we set the centers of the two components to (−0.6, 0) and 

(0.6, 0), and the covariance matrix is set to the identity matrix. For parameters in the weight 
function of Equation (24), we set 0.1m =  and 1/ 0.05T = . For super parameters in the 

three loss items, we set 
0

0b = , 
1

1.0b = , 0β =  and 0.6γ = . To encourage clustering 
and speed up optimization, we adopt a dynamic m update scheme, i.e., gradually increas-
ing m during training. The weightings of the three loss functions are set to 9, 1 and 0.3, 
respectively, and are chosen by gradient information in the first epoch. 

Figure 6a shows the initial position of the points; the purple points are sampled from 
C1, and the red points are sampled from C2. Figure 6b shows the final position after 5000 
epochs; the mass concentration and separation effects are obvious, and the points from 
the two classes are well separated. 

Since the weight function ( )f x  may lead to imbalanced point configurations for the 
two classes, we can address this issue by changing the order of the two sets of points 
alternatively when feeding data to the computation of persistent homology during train-
ing. For vision datasets, because our regularization is used together with cross-entropy 
loss and a stochastic mini-batch sampling scheme, the imbalance will be compensated au-
tomatically. 

  
(a) (b) 

Figure 6. (a) The original points are sampled from a Gaussian mixture with two components; the 
purple points are sampled from class 1, and the red points are sampled from class 2. (b) Optimized 
configuration after 5000 epochs; the points from the two classes are well separated. 

Figure 7 compares the persistence diagrams before and after training; each green 
point represents a (bi, di) pair, the green point with y = inf represents the final merged 
single component left when the filtration value is sufficiently large, and the green point 
with y > 6 tells us that at this value, the two components merge, i.e., one component dis-
appears and merges into the other component which is generated at an earlier time. In 
Figure 7, we can see that after 5000 epochs, the two subsets mentioned in Section 3.4.3 that 
correspond to the two classes are well separated, i.e., two connected components can be 
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identified in the persistence diagram. We can also see that the points from the same class 
are concentrated. 

  
(a) (b) 

Figure 7. (a) Persistence diagram obtained via persistent homology at epoch 0; (b) Persistence dia-
gram after 5000 epochs. Two connected components can be identified, the points with x ≈ 0.5 corre-
spond to the first connected component (class 1), and the points with x ≈ 1.0 correspond to the sec-
ond connected component (class 2). 

4.1.2. Gaussian Mixture with Four Components 
As a more challenging example, we consider a Gaussian mixture with four compo-

nents. We suppose that they represent samples from two different classes, i.e., each class 
corresponds to two components. For each class, we hope the corresponding two compo-
nents can merge. To achieve this goal, samples from one class have to travel across sam-
ples from the other class, which may cause the loss to increase. Therefore, to obtain opti-
mal results, the optimizer needs to climb the mountain in the loss landscape before it ar-
rives at a valley. 

Figure 8 visualizes the points before and after training. Figure 8a shows the initial 
position of the points. The purple points are sampled from C1, and the red points are sam-
pled from C2. We can see that after 1800 epochs, for each class, the two components merge 
into a single connected component, as shown in Figure 8b.  

  
(a) (b) 

Figure 8. (a) The original points are sampled from a Gaussian mixture with four components, and 
each class corresponds to two components; the purple points are sampled from class 1, and the red 
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points are sampled from class 2; (b) Optimized configuration after 1800 epochs; the points from the 
two classes are well separated. 

Figure 9 visualizes the function values calculated by our weight function (24); these 
values are used to construct the weighted Rips filtration using Equation (4) to extract top-
ological information, and finally, the topological information is used by the regularizer to 
guide the optimization. Figure 9a visualizes the function values and the contour lines at 
epoch 0; it can be seen that larger values are assigned for points from C2. Figure 9b visu-
alizes the function values and the contour lines after 1800 epochs. 

 
(a) (b) 

Figure 9. (a) Weight function values and contour lines evaluated on the mesh at epoch 0; the points 
from class 2 correspond to larger values. (b) Weight function values and contour lines evaluated on 
the mesh after 1800 epochs. 

Similar to Figure 7, Figure 10 compares the persistence diagrams before and after 
training. Figure 10b shows that after 1800 epochs, two connected components can be iden-
tified, and the mass concentration and separation effect is obvious. 

  
(a) (b) 

Figure 10. (a) Persistence diagram obtained via persistent homology at epoch 0. (b) Persistence dia-
gram after 1800 epochs. Two connected components can be identified; the points with x ≈ 0.5 corre-
spond to the first connected component (class 1), and the points with x ≈ 1.0 correspond to the sec-
ond connected component (class 2). 
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4.1.3. Gaussian Mixture with Nine Components 
In Figures 11 and 12, we present the results for a Gaussian mixture with nine compo-

nents. Figure 11a shows the initial position of the points sampled from two classes, while 
Figure 11b shows the results after 12,500 epochs. Figure 12 compares the persistence dia-
grams before and after training; it can be seen that our method achieves an effective per-
formance in separating samples from two different classes. 

  
(a) (b) 

Figure 11. (a) The original points are sampled from a Gaussian mixture with nine components; the 
purple points are sampled from class 1, and the red points are sampled from class 2. (b) Optimized 
configuration after 12,500 epochs; the points from the two classes are well separated. 

  
(a) (b) 

Figure 12. (a) Persistence diagram obtained via persistent homology at epoch 0. (b) Persistence dia-
gram after 12,500 epochs. Two connected components can be identified; the points with x ≈ 0.5 cor-
respond to the first connected component (class 1), and the points with x ≈ 1.0 correspond to the 
second connected component (class 2). 

4.2. Datasets 
In this part, we use the same models and settings as [22], and we evaluate our method 

on three vision benchmark datasets: MNIST [26], SVHN [27] and CIFAR10 [28]. For 
MNIST and SVHN, 250 instances are used for training the model, for CIFAR10, 500 and 
1000 instances are used. 

CNN-13 [29] architecture is employed for CIFAR10 and SVHN. For MNIST, a simpler 
CNN architecture is employed. We use a stochastic gradient descent (SGD) optimizer with 
a momentum of 0.9, and the cosine annealing learning rate scheduler [30] is employed. 
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With the cross-entropy loss, the weighting of our regularization term is set such that 
the loss in Equation (35) is comparable to the cross-entropy loss. In our experiments, each 
batch contains n = 8 sub-batches, and the sub-batch size is set to b = 16; thus, the total batch 
size is 128. 

During training, for each epoch, we select the 10 most significant channels dynami-
cally for each class to perform topological computation; the criterion for channel selection 
is similar to that in [31]. To compensate for the imbalance between two classes induced by 
the weight function, we use the ratio of the derivative to weight the two items in the birth 
loss (Equation (32)). In order to meet the stability requirements of topological computa-
tion, we use 0.001 as the minimal differentiable distance between points. The weighting 
of our regularization term is set to 0.001. For parameters in the weight function (24), we 
set 0.2m =  and 1/ 0.15T = . For super parameters in the three loss items, we set 

0
0.1b = , 

1
2.5b = , 0.3β = , and 1.8γ = ; weight decay on ϕ  is fixed to 1 × 10−3, and 

weight decay on η  is fixed to 0.001, except for CIFAR10-1k, for which we set it to 5 × 10−4. 
On MNIST, the initial learning rate is fixed to 0.1. On SVHN and CIFAR10, it is fixed to 
0.5.  

Table 1 compares our method to Vanilla (including batch normalization, dropout and 
weight decay) and the regularizers proposed in relevant works, in particular, the regular-
izers based on statistics of representations [1,2] and the topological regularizer as pro-
posed in [22]. In addition, we also provide results given by the Jacobian regularizer [9]. 
We report the average test error (%) and the standard deviation over 10 cross-validation 
runs. The number attached to the dataset names indicates the number of training instances 
used. It can be seen that our method achieves the lowest average error for MNIST-250, 
CIFAR10-500, and CIFAR10-1k. For SVHN, the mean error is a little higher than the result 
presented in [22], but our method achieves a lower variance. Especially, our method out-
performs all the regularization methods based on statistical constraints by a significant 
margin, which demonstrates the advantage of the proposed topology-aware regularizer, 
and this also supports our claim that mass separation is beneficial. 

Table 1. Comparison to previous regularizers. “Vanilla” includes batch normalization, dropout and 
weight decay. The average test error and the standard deviation are reported. 

Regularization MNIST-250 SVHN-250 CIFAR10-500 CIFAR10-1k 
Vanilla 7.1 ± 1.0 30.1 ± 2.9 39.4 ± 1.5 29.5 ± 0.8 

+Jac.-Reg [9] 6.2 ± 0.8 33.1 ± 2.8 39.7 ± 2.0 29.8 ± 1.2 
+DeCov [1] 6.5 ± 1.1 28.9 ± 2.2 38.2 ± 1.5 29.0 ± 0.6 

+VR [2] 6.1 ± 0.5 28.2 ± 2.4 38.6 ± 1.4 29.3 ± 0.7 
+cw-CR [2] 7.0 ± 0.6 28.8 ± 2.9 39.0 ± 1.9 29.1 ± 0.7 
+cw-VR [2] 6.2 ± 0.8 28.4 ± 2.5 38.5 ± 1.6 29.0 ± 0.7 

+Sub-batches 7.1 ± 0.5 27.5 ± 2.6 38.3 ± 3.0 28.9 ± 0.4 
+Sub-batches + Top.-Reg [22] 5.6 ± 0.7 22.5 ± 2.0 36.5 ± 1.2 28.5 ± 0.6 
+Sub-batches + Top.-Reg [22] 5.9 ± 0.3 23.3 ± 1.1 36.8 ± 0.3 28.8 ± 0.3 

+Sub-batches + Top.-Reg(Ours) 4.3 ± 0.3 22.9 ± 1.3 35.2 ± 0.6 27.4 ± 0.6 

5. Conclusions 
Traditionally, statistical methods are employed to impose constraints on the internal 

representation space for deep neural networks, while topological methods are generally 
underexploited. In this paper, we took a fundamentally different perspective to control 
internal representation with tools from TDA. By utilizing persistent homology, we con-
strained the push-forward probability measure and enhanced mass separation in the in-
ternal representation space. Specifically, we formulated a property of this measure that is 
beneficial for generalization for the first time, and we proved that a topological constraint 
in the representation space leads to mass separation. Moreover, we proposed a novel 



Mathematics 2023, 11, 1008 22 of 23 
 

 

weight function for weighted Rips filtration, proved its stability and introduced a regu-
larizer that operates on the persistence diagram obtained via persistent homology to con-
trol the distribution of the internal representations. 

We evaluated our approach in the point cloud optimization task and the image clas-
sification task. For the point cloud optimization task, experiments showed that our 
method can separate points from different classes effectively. For the image classification 
task, experiments showed that our method significantly outperformed the previous rele-
vant regularization methods, especially those methods based on statistical constraints. 

In summary, both theoretical analysis and experimental results showed that our 
method can provide an effective learning signal utilizing topological information to guide 
internal representation learning. Our work demonstrated that persistent homology may 
serve as a novel and powerful tool for promoting topological structure in the internal rep-
resentation space. Areas for future research are the exploration of the potential of 1-di-
mensional persistent homology and the development of other topology-aware methods 
for deep neural networks. 
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