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The concept of cyber-physical systems (CPSs) in electrical, civil and mechanical engi-
neering is closely related to Smart Grids and Smart Cities, based on advanced computing
technologies used for monitoring, control and communication. They help to ensure a
reliable and safe power supply, as well as the high efficiency of generators and distribu-
tion networks in order to provide a flexible choice for consumers. An overview and the
prospects for the use of cyber-physical systems in electrical engineering are presented in [1]
(see also the review provided in [2]).

Recent widespread power outages around the world have motivated the research
community to develop and improve the sustainable multi-energy CPS and increase fault
tolerance. In the event of a large-scale outage that could occur due to various extreme
events, sustainability studies ensure that electricity, heat and gas are available to consumers.
Since energy is critical for the national security and the life cycle of the national economy,
the above developments highlight the need and urgency for building a robust self-healing
Smart Grid. Governments, large companies and research scientists have also proposed
the building of highly resilient energy systems [3,4]. In order to slow down the rise
in temperature and reduce carbon emissions, China put forward the “double carbon”
objectives in September 2020.

Such a policy implies the eventual replacement of traditional energy systems to achieve
carbon neutrality by 2060. The “double carbon” policy will further promote the energy
internet, energy-to-gas conversion, hydrogen production, combined cooling, electric ve-
hicles, heating and power generation, etc. A number of scientists [4,5] also note the close
connection of the concept of “digital energy” with other concepts and approaches, such as
the Internet of energy, transactive energy, energy cloud, etc. Some scientists argue that it is
extremely necessary to adopt state programs on the digitalization of the domestic fuel and
energy complex [6]. And such a program should accompany the already adopted Program
“Digital Economy of the Russian Federation” and the Decree “On the national goals and
strategic objectives of the Federation for the period up to 2024”. Since 2016, the Russian
government has been implementing the EnergyNET National Technology Initiative in order
to develop smart energy services. The main idea of EnergyNET is to create a new image of
the Grid and the Energy Market that meets current and future challenges [6]. Russia aims to
reach net zero emissions by 2060. The U.S. Energy Department also runs several programs
and support projects to increase the Smart Grids’ efficiency and to remove carbon dioxide
from the air with the goal to achieve net zero emission by the middle of the 21st century.
India also committed to establishing a non-fossil fuel electricity generation capacity of
500 GW to achieve zero-net emissions by 2070.

Complex nonlinear dynamical systems such as multi energy microgrids or shipboard
systems require effective coordination of the functioning of a whole set of independent
spatially distributed devices and digital twins in conditions of limited access to the data
about the current state of physical systems under control.

Model predictive control (MPC) has been widely employed in chemical engineering
since 1980s. Nowadays, MPC (also called receding horizon control) is widely used in
various electrical engineering projects, microgrids stabilization, power system balancing
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models and other dynamical system control projects. The Volterra-model-based nonlinear
predictive controller design is a conventional nonlinear problem related to the identification
and control of nonlinear dynamical systems [7].

Future energy and telecom systems will become even more complex to effectively
integrate various distributed renewable energy sources. Progress in advanced cyberphysical
systems and computational intelligence requires a rethinking of the conventional methods
of dynamical system modeling and control.

For this purpose, we collected nine papers covering different problems including
power quality in transmission and distribution systems, aircraft flight control, control meth-
ods for EV charging stations and speed tracking problems for EVs, synchronous generator
control, optimal integration of distributed generators in the DC networks, adaptive fault
estimation and control methods for a reverse osmosis dynamical system.

The voltage sag exact location detection approach is proposed in [8] by Yu. Yalman, T.
Uyanık et al using real voltage and current data provided by the power quality monitoring
system in the distribution company, Enerji Yönetim Sistemi|Inavitas, in Turkey. Four fault
types, such as a single-phase ground fault, two-phase ground fault, three-phase ground
fault, and two-phase fault were successfully classified.

P. Ilyushin, A. Kulikov, K. Suslov and S. Filippov [9] also focused on the fault location.
The problem of double-ended power transmission line fault location was considered.
Various distorting factors were analysed. The influence of interharmonics and noise errors
in the double-ended transmission line fault location procedure was analysed. The authors
concluded that the error in the calculations of the power line fault location does not exceed
0.2% of the length of the power transmission line.

An MPC controller for a longitudinal motion of aircraft flight system is proposed
by M. El-S. M. Essa, M. Elsisi et al. [10]. Direct application of MPC requires locating the
optimal values of the parameters. A heuristic approach using the bat-inspired algorithm
is proposed in this article to attack this issue. The efficiency of the proposed MPC control
methodology is validated and compared with the state of the art methods. It was concluded
that method guarantees the stability of the aircraft system under system perturbation.

M. Sadiq, Carlos A. Aragon, and Y. Terriche et al. [11] developed a continuous-control-
set MPC-based control strategy of a half-bridge balancing DC-DC converter for a bipolar
EV charging station. Experiments with such an improved topological DC bus system in the
MATLAB/Simulink environment demonstrated the efficiency of the proposed MPC-based
control strategy.

Yu. Bulatov, A. Kryukov, A. Batuhtin et al. [12] proposed a new approach for build-
ing a digital twin of the distributed generation plant using hierarchical fuzzy inference
systems. In order to optimize the fuzzy model membership functions, the authors em-
ployed subtractive data clustering and neural networks to generate fuzzy rules as well as a
genetic algorithm.

L. F. Grisales-Noreña, and O. D. Montoya et al. [13] proposed a principal/agent
strategy between the population-based incremental learning optimisation method (to
minimise the power losses associated with energy transmission) and the vortex search
algorithm for the optimal integration of distributed generations into DC networks. Overall,
21 and 69 bus test systems were employed to test the proposed approach.

Y. Yuan, X. Xu and S. Dubljevic [14] proposed an efficient scheme for the state and mul-
tiplicative fault estimation of a linear hyperbolic PDE system with unknown disturbances
based on the plant observer canonical form. It is demonstrated that in sense of Lyapunov
stability, fault parameter estimation converges exponentially. In fact, the proposed scheme
ensures the existence of arbitrarily small errors in fault parameter estimation, despite the
presence of unknown external disturbances.

F. Liu, H. Li, and L. Liu et al. [15] focus on control issues for Electric Vehicles (EVs).
Namely, the authors considered the interior permanent magnet synchronous motor speed
tracking problem. The cascade speed controller and a current controller are proposed.
Accordingly, the active disturbance rejection control technique and finite control set model
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predictive control strategy were employed. Simulations based on parameters from Toyota
Prius Hybrid vehicles demonstrated the efficiency of the proposed controllers.

Finally, S. Noeiaghdam, D. Sidorov, and A. Zamyshlyaeva et al. [16] employed stochas-
tic arithmetic for dynamical control of the numerical method for the reverse osmosis system
(pre-treatment of the feed-water for combined heat-and-power plants) described by an
advection–diffusion equation. Numerical examples are included to illustrate the efficiency
of proposed approach.
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