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1. Introduction

The problem of classification of n-dimensional associative algebras was posed by
Latyshev in Dniester Notebook, some achievements were made by Pikhtilkov, and it has
also been discussed in the paper of Belov [1]. One of the classical problems in the theory
of non-associative algebras is to classify (up to isomorphism) the algebras of dimension n
from a certain variety defined by some family of polynomial identities. It is typical to focus
on small dimensions, and there are two main directions for the classification: algebraic
and geometric. Varieties such as Jordan, Lie, Leibniz or Zinbiel algebras have been studied
from these two approaches ([2-8] and [5,7,9], respectively). In the present paper, we give
the algebraic classification of five-dimensional nilpotent bicommutative algebras.

One-sided commutative algebras first appeared in the paper by Cayley [10] in 1857.
The variety of bicommutative algebras is defined by the following identities of right- and
left-commutativity:
x(yz) = y(xz).

(w)z = (x2)y,

It contains the commutative associative algebras as a subvariety; the square of each
bicommutative algebra gives a structure of a commutative associative algebra [11]; and each
bicommutative algebra is Lie admissible (in [11,12]. It was shown that any bicommutative
algebra under commutator multiplication gives a metabelian Lie algebra). The variety
of two-dimensional bicommutative algebras is described by Kaygorodov and Volkov;
algebraic and geometric classification of four-dimensional nilpotent bicommutative alge-
bras is given by Kaygorodov, Pdez-Guillan and Voronin in [13]; algebraic classification of
one-generated six-dimensional nilpotent bicommutative algebras is given by Kaygorodov,
Péez-Guillan and Voronin in [14]. Bicommutative central extensions of n-dimensional
restricted polynomial algebras are studied by Kaygorodov, Lopes and Pdez-Guilldn in [8].
The structure of the free bicommutative algebra of countable rank and its main numerical
invariants were described by Dzhumadildaev, Ismailov and Tulenbaev [15]; see also the
announcement [11]. They also proved that the bicommutative operad is not Koszul [15].
Shestakov and Zhang described automorphisms of finitely generated relatively free bicom-
mutative algebras [16]. Drensky and Zhakhayev proved that every free bicommutative
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algebra generated by one element is not noetherian, in the sense that it does not have
finitely generated one-sided ideals, and they also obtained a positive solution of the Specht
problem for any variety of bicommutative algebras over an arbitrary field of any character-
istic [17]. Identities of two-dimensional bicommutative algebras and the invariant theory
of free bicommutative algebras are studied by Drensky in [18,19]. Dzhumadildaev and
Ismailov prove that every identity satisfied by the commutator multiplication in all bicom-
mutative algebras is a consequence of anti-commutativity, the Jacobi and the metabelian
identities [20]. They also proved that, in the anti-commutator case, every identity satisfied
by the anti-commutator product in all bicommutative algebras is a consequence of com-
mutativity and the two identities obtained in [20]. Bai, Chen and Zhang proved that the
Gelfand-Kirillov dimension of a finitely generated bicommutative algebra is a nonnegative
integer [21]. Bicommutative algebras are also known under the name of LR-algebras in a
series of papers by Burde, Dekimpe and their co-authors [12,22,23]. The studied structures
of LR-algebras on a certain Lie algebra. Burde, Dekimpe and Deschamps proved the exis-
tence of an LR-complete structure on a nilpotent Lie algebra of dimension  is equivalent
to the existence of an n-dimensional abelian subgroup of the affine group Aff(N), which
acts simply and transitively on N, where N is the connected and simply connected Lie
group associated with n [12]. Burde, Dekimpe and Vercammen show that if a nilpotent Lie
algebra admits an LR-structure, then it admits a complete LR-structure, i.e., the right multi-
plication for the LR-structure is always nilpotent. Extending this result, it is proven that a
meta-solvable Lie algebra with two generators also admits a complete LR-structure [23].
Our method for classifying nilpotent bicommutative algebras is based on the cal-
culation of central extensions of nilpotent algebras of smaller dimensions from the same
variety. The algebraic study of central extensions of algebras has been an important topic for
years [8,24,25]. First, Skjelbred and Sund used central extensions of Lie algebras to obtain a
classification of nilpotent Lie algebras [25]. Note that the Skjelbred-Sund method of central
extensions is an important tool in the classification of nilpotent algebras. Using the same
method, small dimensional nilpotent (associative, terminal, Jordan, Lie, anticommutative)
algebras, and some others have been described. Our main results related to the algebraic
classification of the variety of bicommutative algebras are summarized below.

Theorem 1. Up to isomorphism, there are infinitely many isomorphism classes of complex non-
split non-one-generated five-dimensional nilpotent (non-two-step nilpotent) non-commutative
bicommutative algebras, described explicitly in Section 3 in terms of 77 one-parameter families, 20
two-parameter families, 3 three-parameter families and 107 additional isomorphism classes.

2. The Algebraic Classification of Nilpotent Bicommutative Algebras
2.1. Method of Classification of Nilpotent Algebras

The objective of this section is to give an analogue of the Skjelbred—Sund method for
classifying nilpotent bicommutative algebras. As other analogues of this method were
carefully explained in, for example, [13,24], we give only some important definitions, and
refer the interested reader to the previous sources.

Let (A, -) be a bicommutative algebra of dimension n over C and V a vector space of
dimension s over C. We define the C-linear space Z?(A, V) as the set of all bilinear maps
6: A x A — V such that

0(xy,z) = 0(xz,y) and 0(x,yz) = 0(y, xz2).

These maps are called cocycles. Consider a linear map f from A to V, and set
5f: A x A — Vwithdf(x,y) = f(xy). Then, §f is a cocycle, and we define B%(A,V) =
{6 =6f : f € Hom(A,V)}, which is a linear subspace of Z?(A, V). Its elements are called
coboundaries. The second cohomology space H?(A, V) is defined to be the quotient space
Z?(A,V)/B%(A,V).

Let Aut(A) be the automorphism group of the bicommutative algebra A and let
¢ € Aut(A). Every 0 € Z2(A, V) defines ¢p8(x,y) = 0(¢(x), ¢(y)), with p0 € Z>(A, V). Tt
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is easily checked that Aut(A) acts on the right on Z?(A, V), and that B2(A, V) is invariant
under the action of Aut(A). So, we have that Aut(A) acts on H?(A, V).

Let 6 be a cocycle, and consider the direct sum Ay = A @ V with the bilinear product
“ = —]a,” defined by [x +x,y +y']5, = xy+0(x,y) forall x,y € A x",y' € V. Itis
straightforward that Ay is a bicommutative algebra if and only if € Z?(A,V); it is then a
s-dimensional central extension of A by V.

We also call the set Ann(0) = {x € A: 0(x,A) + 0(A, x) = 0} the annihilator of 6. We re-
call that the annihilator of an algebra A is defined as the ideal Ann(A) = {x € A : xA + Ax = 0}.
Observe that Ann(Ag) = (Ann(6) NAnn(A)) & V.

Definition 1. Let A be an algebra and I be a subspace of Ann(A). If A = Ag @ I as a direct sum
of ideals, then I is called an annihilator component of A.

Definition 2. A central extension of an algebra A without annihilator component is called a
non-split central extension.

The following result is fundamental for the classification method.

Lemma 1. Let A be an n-dimensional bicommutative algebra such that dim(Ann(A)) =s # 0.
Then there exists, up to isomorphism, a unique (n — s)-dimensional bicommutative algebra A’ and
a bilinear map 0 € Z2(A, V) with Ann(A) N Ann(#) = 0, where V is a vector space of dimension
s, such that A = A’gand A/Ann(A) = A’

For the proof, we refer the reader to Lemma 5 in [24].

Then, in order to decide when two bicommutative algebras with nonzero annihilator
are isomorphic, it suffices to find conditions in terms of the cocycles.

Let us fix a basis {e1,...,e;} of V,and 6 € Z?>(A, V). Then, 6 can be uniquely written

S
as 0(x,y) = ) _ 0;(x,y)e;, where 6; € Z*(A,C). It holds that § € B*(A, V) if and only if all
i=1
6; € B%2(A,C), and it also holds that Ann(#) = Ann(6;) N...N Ann(6;). Furthermore, if
Ann(f) N Ann(A) = 0, then Ay has an annihilator component if and only if [6],. .., [0s]
are linearly dependent in H?(A, C) (see Lemma 13 in [24]).

Recall that, given a finite-dimensional vector space V over C, the Grassmannian Gy(V)
is the set of all k-dimensional linear subspaces of V. Let G; (H?(A, C)) be the Grassmannian
of subspaces of dimension s in HZ(A,(C). For W = ([01],...,[0s]) € Gs (HZ(A,(C)) and
¢ € Aut(A), define W = ([¢01],...,[¢05]). It holds that W € Gs(H?*(A,C)), and this
induces an action of Aut(A) on G;(H?(A, C)). We denote the orbit of W € Gs(H?*(A, C))
under this action by Orb(W). Let

Wi = ([01],...,[8s]), Wo = ([81],...,[0]) € GS(HZ(A,C)).
Similarly to Lemma 15 in [24], in case that W = W), it holds that
S S
() Ann(6;) N Ann(A) = (] Ann(8;) N Ann(A),
i=1 i=1
and therefore the set

T.(A) = {w = ([B1],-..,[0s]) € G (HZ(A,(C)) : m Ann(6;) N Ann(A) = 0}
i=1

is well defined, and it is also stable under the action of Aut(A) (see Lemma 16 in [24]).



Mathematics 2023, 11, 777

4 of 49

Now, let V be an s-dimensional linear space and let us denote by E(A, V) the set of all
non-split s-dimensional central extensions of A by V. We can write

1

E(A,V) = {Ag (0(x,y) = é()i(x,y)ei and ([61],...,[6s]) € TS(A)}.

Having established these results, we can determine whether two s-dimensional non-
split central extensions Ag, Ay are isomorphic or not. For the proof, see Lemma 17 in [24].

S
Lemma 2. Let Ag,Ay € E(A,V). Suppose that 6(x,y) = Y_0;(x,y)e; and 8(x,y) =

i=1
s

Z 8;(x,y)e;. Then the bicommutative algebras Ag and Ay are isomorphic if and only if
i=1

Orb([01], ..., [6s]) = Orb([81],..., [65]).

Then, it exists a bijective correspondence between the set of Aut(A )-orbits on Ts(A)
and the set of isomorphism classes of E(A, V). Consequently, we have a procedure that
allows us, given a bicommutative algebra A’ of dimension 1 — s, to construct all its non-split
central extensions.

Procedure
Let A’ be a bicommutative algebra of dimension n — s.

1.  Determine H?(A/,C), Ann(A’) and Aut(A’).

Determine the set of Aut(A’)-orbits on T;(A’).

3. For each orbit, construct the bicommutative algebra associated with a representative
of it.

N

It follows that, thanks to this procedure and to Lemma 1, we can classify all the nilpo-
tent bicommutative algebras of dimension 7, provided that the nilpotent bicommutative
algebras of dimension n — 1 are known.

2.2. Notations

Let A be a bicommutative algebra and fix a basis {ej, ..., e, }. We define the bilinear
form A;j: A x A — Cby Ajj(ej,em) = 6;8j,. Then, the set {Ai]- :1<1i,j<n}is abasis
for the linear space of the bilinear forms on A, and in particular, every 8 € Z>(A, V) can be
uniquely writtenas 6 = ) cijAjj, where ¢;; € C. H2,,,(M) is the subspace of commuta-

1<i,j<n
tive cocycles of HZ, (M), where H2, (M) is the cohomology space for bicommutative

bicom bicom
cocycles of algebra 9. Let us fix the following notations:

B}* — jthi-dimensional nilpotent bicommutative algebra with identity xyz = 0

B;- — jthi-dimensional nilpotent “pure” bicommutative algebra (without identity
xyz =0)

N;  — ith four-dimensional two-step nilpotent algebra

B; — ithnon-split non-one-generated five-dimensional nilpotent

(non-two-step nilpotent) non-commutative bicommutative algebra

2.3. One-Dimensional Central Extensions of Four-Dimensional Two-Step Nilpotent
Bicommutative Algebras

2.3.1. The Description of Second Cohomology Spaces

In the following Table 1, we give the description of the second cohomology space of
four-dimensional two-step nilpotent bicommutative algebras (see, [26]).
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Table 1. The list of two-step nilpotent four-dimensional bicommutative algebras.

fﬂm .e1e1 =e6p
HZ,,,(No1) = <[A12 + Mo1], [M3 + As1], [A1a + Asr], [As3], [Asa + Aus), [A44]>
H, . (No1) = HZ,,, (No1) @ < [An1], [Az1], [Ag1], [A43]>

Nop : e1e1 =63 exer = ey
H2,, (M2) = <[A12 + Anl, [A13 + Az, [Axs + A42]>
thcom (moz) H%om (mOZ) 53] <[A21], [ABl]/ [A42}>

Nz : erex =e3 eger = —e3
H2(93) = ([An), [1a], [821], (8], [Bad], [Ba], [Bs2], [Baa])

‘3104 1 e1ep =e3 ejep =e3  exep = aes
H2(570) = <[A12], [A14], [An1], [D2], [B2a], [Aa], [Da2], [A44]> =P,
H2(NY,) = Py & <[A13], [As1 + A32]>

9105 . e1e1 =e3 e1ep =e3 exe1 = e3
HZ,,,(Mgs) = <[A11]/ [A1a], [An1], [A22], [Aoal, [Asa], [As2), [A44]>

‘ﬁ% I e16p — €4 €31 — ey
H?(Mgs) = <[A11]: [A12], [D13], [Ba1], [D22], [A2s], [As2], [A33]>

No7 : erex =e3 exe; =eq €00 = —€3
H2(Nyy) = <[A11]/ [Ax], [A13 — Ags), [Anl, [A32), [A41]>
m08 16181 =€3 e1€p =€4  €0] = —QXE€3 €26 = —€4

H2(7 ) = <[A12]/ [A21], [A13 — ada3), [A1g — Dag], [A31], [A42]> =®,
H?(MNfg) = ©1 @ <[A32 + A41]>

‘)16‘9 P €161 = €4 €16p = ey €pe] = —Rey €26 = €4 €363 — €4
H2 (M%) = <[A12]/ [A13], [A21], [A22], [A23], [Az1], [A32], [A33]>

Mo : erex=e4 ere3=e¢ey €8] = —€4 €26) =64 €361 = €4
H?(Myg) = <[A11]/ [A13], [An1], [A22], [An3], [Az1], [As), [A33]>

M1 @ e1e1 =eq ejep =64 epe] = —€4 €363 = €4

H?(0y) = <[A12]/ [A13], [D21], [A2], [A23], [As1], [As2], [A33]>

My : e1ex =e3 ege; =ey
H?(Myp) = <[A1l]/ [A13], [A22], [A24], [Az2], [A41]>

sﬁ13 .oe1e1 —e4 e1ep = e3 exe1 = —e3 €267 = 263 +ey
H?(My3) = <[A21], [Ax], [A1a + Ags], [A13 — 2814 — Ayl [Azp — Aga], [Az1 — 203, + A42]>

N, : erex =eq exe) = ey eper = €3
H2(MY,) = <[A11] [An1], [An3], [A13 + Apsl, [As2], [aAz1 + A42]> =,

H2(MY,) = o @ <[A14]>

sn15 I @16p — €4 €261 — —€4 €363 — €4
H2(My5) = <[A11], [Aa], [A21], [A22], [A23], [As1], [As2], [A33]>
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2.3.2. Central Extensions of 91y,

Let us use the following notations:

Vi=[An+Axn], Va=[A3+A3], Vi=[Au+Au], Vi=[Az], Vs5=[Azs+ Agl,
Ve = [As4], V7 = [An), Vg = [Az1], Vo =[An], Vi = [Ag].

10
Take 8 = Y a;V; € H?>(Mp1). The automorphism group of My; consists of invertible
i=1
matrices of the form

x 0 0 O

g 22 rou

P=lw o t &

z 0 y |

Since
0 o o a3 a* oy oy oy
o7 x1+a7 0 0 0 o — af +a; 0 0 0
a+ag 0 Ky w5 |7 |ai+af O oy ws |

a3 +a9 0 as+ap ae ay+ay 0 af +ajy ag

10 10
we have that the action of Aut(My;) on the subspace () «;V;) is given by (Y a;V;),
i=1 i=1

where
a] = 3y,
ay = rxag+y(xaz + was + zae) + H(xay + way + z(as + aqp)),
ay = uxaq +I(xaz 4+ was + zae) + k(xan + way + z(as + aqp)),
w; = tag+y(2tas + yae + tagg),
ar = ktay + (It + ky)as + y(lag + kaqp)
a; = KkPag+1(2kas+ lag+ kagp),
a; = Xy,
zx§ = rxwy + txag + xyag + wymqg — tzaqg,
ay = uxay+kxag + Ixag + lwayg — kzaq,
ajy = (It —=ky)agp.

We are interested only in the cases with
(a1, a7) # (0,0), (az, a4, a5, a8, 210) # (0,0,0,0,0),
(a3, &5, 06, 09, 210) 7 (0,0,0,0,0), (a7, a8, 9, 419) # (0,0,0,0).

_ kxag+1xag+(lw—kz)aqg
xXuoy 4

_ txagtxyag+(wy—tz)agg
7

Xy u=

1. a3 =0, ay # 0, then choosing r =
we have ag = a§ = 0.
The family of orbits (as V4 + a5V5 + a6V + 19 V19) gives us a characterized struc-
ture of the three-dimensional ideal that has a one-dimensional extension of two

dimensional subalgebra with basis {e3, e4}. Let us remember the classification of

algebras of this type.
Bgf D oeep=e
BO; .o e1e1 =e3 exep = €3
ng‘ I ejep =e3 epe] = —e3
BSZ(/\) : eje1 = Aes eqe = e3 erer = e3

Using the classification of three dimensional nilpotent algebras, we may consider the

following cases.

(a) ag = a5 = ag = a9 = 0, i.e., three dimensional ideal is abelian. Then we may
suppose &y # 0 and choosing y = 0, | = &y, k = —a3, we obtain that a3 = 0,
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which implies (a3, a%, af, a5, a5;) = (0,0,0,0,0). Thus, in this case we do not
have new algebras.

(b) ag =1, 05 = ag = 19 = 0, i.e., three-dimensional ideal is isomorphic to Bgf.
Then, a3 # 0and choosingx =1,t =1, k=0,y =0, w = —ap, [ = z—;and
t = \/az, we have the representative (Vs + V4 + V7).

(c) ag =g =1, a5 = w19 = 0, i.e., three-dimensional ideal is isomorphic to Bgi‘.
Then, choosing x = 3%/077,]( =y=0Il=t=1w= —;“—\/577,2 = —%,wehave
the representative (V4 + Vg + V7).

(d) ag = ag =0,a5 = 1,079 = —2, i.e., three-dimensional ideal is isomorphic to
BS’;‘. Then, choosing x = %,k:y:o,l:t: 1, w= 7;‘7\/377,22 %,we
have the representative (Vs + V; —2Vqg).

(e) g = A, a5 = 0,06 = 1,199 = 1, i.e., three-dimensional ideal is isomorphic to
B3 (A).

i If A # 0, then choosing x = %,k: O,y=0,l=t=1z= %,and
w= ”32?;%” , we have the family of representatives (AV4 + Vg + V7 +
V10) A+0-
il. If A = 0 and ay = a3, then choosing x = %ﬁ,k =0,y=0Il=t=1
and z = ;377, we have the representative (V¢ + V7 + V).
_ 2
iii. If A = 0 and ap # a3, then choosing x = %, k=0y=0,
—a)? RY
I =t = % and z = —“3@‘@%“3), we have the representative
(Vz +Ve¢+ Vy+ V10>.
r _ _ txaptxyag+tway +wyas+tzas+yzag+tzagg
. X 7
a1 # 0, then Ch0051ng U = — kxaz+lxzx3+kwuc4+lw:xl5+kzoc5+lzuc6+kzacm we have "‘3 =
xXoq 4

ay =0.

(a) ag = a5 = ag = a9 = 0, i.e., three-dimensional ideal is abelian. Then, we may
suppose ag # 0 and choosing y = 0, = ag, k = —a9, we obtain that aj = 0,
which implies (a3, a%, af, a5, a5;) = (0,0,0,0,0). Thus, in this case we do not
have new algebras.

(b) ag =1, a5 = ag = 19 = 0, i.e., three-dimensional ideal is isomorphic to Bgi‘.
Then, ag # 0, and choosingx = 1,k =0, = \/ag, y = —\/gag,l = % and
w = 0, we have the family of representatives (V1 + V4 4+ aVy7 + Vo).

(c) ag = 0p =1, a5 = a19g = 0, i.e., three-dimensional ideal is isomorphic to Bg;.

2 2 2 2
i a7 = 0, then D(% + zx% # 0, then choosing x = 'xg;l%, t = “8(“§1+“9),
2 2 2 2 2 2
y= “9(“0%:“9),1 = “8(0(5?“9), k= —%ﬁ“g), we have the representative
<V1 +Vi+ Vg + Vg).
ii. ay =0, oc% + tx% = 0,ie., a9 = ting # 0, then choosing x = |/ag, t = “71,
y= :t%,l = +ixag, k = xag, have the representative (V1 + V5 + Vg).
iii. ay # 0, then choosingx = 1,y =k =0,t =1= /a7, z = "%‘9,
w = %, we have the family of representatives (aV; + V4 + Vg +
v7>a7é0-
(d) g =0 =0,a5 = 1,070 = —2, i.e., three-dimensional ideal is isomorphic to
3

By.

1. 201 +ay # 0, then choosingx =1,y =k =0,t = /aq, ]l =1,
z— it%- and w = 51, we have the family of representatives
<V1 4+ Vs +aVy — 2V10>a7g_2.

ii. 201 + a7 = 0, then in case of (xg, a9) = (0,0), we have the representa-

tive (V1 4+ V5 —2V7 — 2V1g) and in case of (ag, ag) # (0,0), without
loss of generality we may assume ag # 0 and choosing x =1,y =0,
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l=ag, k= —ag, t= %, we have the representative (V1 + V5 —2V; +

Vg — 2V10>.
(e) g = A5 = 0,06 = 1,479 = 1, i.e., three-dimensional ideal is isomorphic to
B (A).
i a2 + aja7 + Aa2 # 0, then choosing x = 1,y = k = 0 and
— 7 — oo, — m(magtagagag) o o (ay(as—ag)tajag)
t=l=u7z= o +ajagtagal w= 0 +ajaytagnd 7
we have the representative (¢V1 + AVy + Ve + V7 + Vyg).
ii. zx% + a7 + )ux% = 0, then choosingy =k =0, w = %7 — Xag, we have
a5 =0,af = % (a8 — Aayag). Thus, in this case we have the represen-

tatives <@V1 + AVy+ Ve + V7 4+ Vq) and <@V1 +
AV4+ Ve + V7 + Vg + Vy) depending on ajag = Aazag or not.

Summarizing all cases, we have the following distinct orbits
(V34 V4 +V7), (V5 + V7 =2Vi), (V2 + Ve + V7 + Vig) (Vi + Vi +aVy; + V),
<V1 +V4+ Vg + V8>, <V1 + Vs + V8>, <£¥V1 +V4+ Vg + V7>,

<V1 + V5 + IXV7 — 2V10>,
(V1+ V5 —2V;+ Vg —2V), (aV1+ AV + Ve + V7 + Vi),

<L '2174AV1 +AV4+ Ve+ V74 Vg + Vi),
which gives the following new algebras (see Section 3):

A£1
Bo1, Boa, Bos, BYy, Bos, Bos, BS;, Bis, Boo, BJy', B, 1312#4
2.3.3. Central Extensions of 91y,

Let us use the following notations:

Vi=[An+An], Va=[Az+Az], Vi=[Au+Ap,
V4 = [An], Vs = [As1], Ve = [Ag].

6
Take 6 = Y a;V; € H?(MNgy). The automorphism group of g consists of invertible
i=1
matrices of the form

x 0 0 O 0O x 0 O

oy 0 0 |y 0 0 o0

=, u 2 o 25|z 4 0 2

t v 0 y? R V|

Since
0 o1 xy 0 o* ay ay 0
7| &+ ay 0 0 a3 | Al +ag a*t* 0 af
Plagtas 0 0 0" T |graz 0 0 0]

0 a3 +asg 0 0 0 ay+ag 0 0

10 10
we have that the action of Aut(91y,) on the subspace () «;V;) is given by ( }_ a’V;),
i=1 i=1
where

af = xyaq +uxay +ty(az +ag), oy = By, ay = y30¢3/
ay = Xxyay+uxas — tyae, ar = as, Xg y3046-

We are interested only in the cases with

(a3,6) # (0,0), (a2, a5) # (0,0), (g, a5,a6) # (0,0,0).
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1. (as,06) = (0,0), then apazay # 0 and by choosing x = - ‘Z‘zas, y = 5 ";42“2 and
2 3

P x(yaq +uay)
yas
2. (as,a6) # (0,0), then without loss of generality (maybe with an action of a suitable
tyas —xyoy
X5

, we have the representative (V, + V3 + V4);

¢2), we can suppose a5 7% 0 and choosing u = , we have ay = 0.

(a) azes + (ap + as)ag = 0, then ag # 0.

i if a1 # 0, then choosing x = M ,Y = \/tzr we have the family of
representatives (Vi +aVy — (1+a)V3+ Vs + Vi);
ii. if &y = 0, then choosing x = } “6 , ¥ = 1, we have the family of

representatives (¢Vy — (14 a)V3 + Vs + V).

(b)  agas + (ap + as)ag # 0, then choosing t = —%, we have af = 0.
i. if ag = 0, then choosing x = }?/ z—g, y = 1, we have the family of

representatives (¢Vy + V3 + Vs);
ii. if a5 # 0, then choosing x = {’/"7’ , ¥ = 1, we have the family of
representatives («V2 + V3 + V5 4+ Vo) g (144)-
Summarizing all cases, we have the following distinct orbits

<V2 + V3 + V4>, <V1 +aVy — (1 + DC)V3 + Vs + V6>,
(€V2 + V3 + Vs), (aV3 + pV3 + Vs + V) O@B)=0Fa),

which gives the following new algebras (see Section 3):
By3, By, BYs, B,
13, P14, P15/

2.3.4. Central Extensions of 9,
Let us use the following notations:

Vi=[A1n], Va=[A1i3], Vi=[Au], Vi=[An], Vs5=[An],
Ve =[Mu], V7=[An], Vs=[An], Vo=[Au], Vio=[Az+ Az

Take 0 = ): 2;V; € H2(NY,). The automorphism group of N, consists of invertible
i=1
matrices of the form

X 0 0 0
y x+vy 0 0
¢:
z t x(x+y) w
u v 0 r
Since
0 a7 ar a3 af ol ot oy ag
Tl 24 a5 0 ag o= ay as 0 ag
(P X190 Q10 0 0 (XTO DCTO 0 0|’
a7 ag 0 w9 ay ag 0 &

10 10
we have that the action of Aut(91);) on the subspace ( ) &;V;) is given by ( }_ aV;),
i=1 i=1

where
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I
w
I

R R R
N* OV G
I

x%aq + x(t — z)ap — x(u — v)az — XYy + xXyas
—y(u —v)ag — uxay + uxag — u(u — v)ag,
X2 (x + y)ag,
wxay + r(xas + yag + ung),
u((x +y)ag + vag) + x((x + y)ag + vazy + tagg) + y((x + y)as + vag + tayg),
o((x +y)ag +oa9) + (x +y) ((x + y)as + vag + tayg),
r((x + y)ag + vag),
r(xaz +yas +uag) + w(x + y)aio,
roag + (x + y) (rag + waqg),
1’20é9,
X(X +y)20610.

Since we are interested only in the cases with

(“2/ 0‘10) # (0/0)r (“3/ Ko, X7, X8, “9) 7& (0/0/0/0/0)’

consider the following subcases:

(a)

_ r(xaztyastuag)

1. a0 =0, then ay # 0 and choosing w = iy and
b= —xzoq+xz¢xz+uxzx3—vxtxg+xya4—xyzxs-i-uytx(,—vya6+uxa7—ux:xg+u2a9—uvtx9
- Xy ’
we have a] = a3 = 0.
ng # 0, then choosing u = —m%y“g, v = —%, we have a7 = ag = 0.
i. a5 = a4 = g = 0, then choosingx =1, y =0, r = %, we have the
representative (V, + Vy);
a2
ii. a5 = ag = 0, ag # 0, then choosing x =1, y = “2“22 % = Z—z, we
6
have the representative (V, + Vg + Vy);
/3
iii. a5 =0, ag # 0, a6 = 0 then choosing x = %, y=0,r= ﬁ, we

(b)

(©

have the representative (V, + V4 + Vog);

oy (064069—1)6%)

iv. a5 = 0, ag # 0, ag # 0, then choosing x = %, y = Fovr e
6
2

r= &, we have the representative (V, + V4 + Vg + Vo);

V. a5 # 0, ag = as, then choosingx =1, y = “2;5“5, r= \/ngg' we have
the representative (V, + V4 + Vs +aVg + Vo);

; ; _oas—ay o ag(m—as) L (m—as)?

Vi. a5 # 0, ag # as, then choosing x = mo YT e T s
we have the representative (Vy + V5 +aVg + Vy);

ng =0, ag # 0, a7 = g, then choosing v = —W, we have aj = 0.

i. xg = —ug, a5 = 0, then choosingx =1, y =0, r = g—;, we have the
representative (V, — V¢ + V7 + Vyg);

ii. ag = —ag, a5 # 0, then choosing x =1, y = %, r = %/ we have
the representative (V, + Vs — Vg + V7 + Vs);

iii. ag # —ag, &g = 0, a5 = 0, then choosingx =1, y =0, r = %, we
have the representative (V, + V7 + Vs);

2

iv. wg # —uog, kg =0, a5 # 0, then choosing x = i—i, r= ajis, we have the
representative (V, + V5 + Vy + Vg);

V. ng # —ag, kg # 0, then choosingx =1, y =0, r = Z—;, we have the
family of representatives (V, +aVg + V7 + V8>1x7£0,71-

ng =0, g # 0, ay # ag, then choosing y = —%7, we have a5 = 0. Hence,

i ag = —ag, a5 = 0, then choosingx =1, u = z—g, r= z—;, we have the

representative (V, — Vg + Vg);
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.. _ o _ &
ii. ng = —ug, a5 # 0, then choosing x = —2 U= aiag, r= azis’ we have
the representative (V, + V5 — Vg + Vs);
iii. ng # —ag, ag = g = 0, then choosing x =1, v = —z—z, r = Z—;, we
have the representative (Vj, + Vs);
2
H _ . _ o _ Lo 5
iv. ag # —ag, &g =0, ag # 0, then choosing x = i, V= —agag, lxz;g
we have the representative (V;, + V4 + Vg);
: _ _ _ o o«
V. wg # —ug, g # 0, then choosingx =1, u = —é, V= —%fas, = é,
we have the representative (Va2 +aVe + Vg), .o 1.
(d) a9 =ag =0, ay # 0, then choosing v = — (x+y)(x“§;y“5+”%), we have aj = 0.
Hence,
1. xg = a5 = 0, then choosing x =1, y =0, r = Z%, we have the
representative (V, + V7);
.o o . . e . .
ii. ag = 0, a5 # 0, then choosing x = i, y=0,r= 5 ,X , we have the
representative (V, + V5 + V7);
iii. a6 # 0, thenchoosingx =1, y = %, u = 2, r = 2, we have the
representative (V, + Vg + V7).
(e) ng = ag = a7 =0, ag # 0, then choosingx =1, y =0, u = -4, v = z—z,
r = 32, we have the representative (V5 + V).
. __ r((x+y)agtovag)
a1 # 0, then choosing w = o and
= x(x+y)oc4+y(x+y)a5+uxa6+uyuc6+vxvc7+vya8+uvtx9
(x+y)ag
we have a) = a5 = 0. Now, we consider following subcases:
(@) a9 # 0, then choosing u = _W v = —%ﬂ, we have af = a7 = 0.

Hence, we can suppose &g = ag = a7 = ag = 0 and consider following cases:

i.

ii.

iii.

iv.

Vi.

Vii.

Viii.

iX.

ay = a5 = a1 = a3 = 0, then choosingx =1, y =0, r = “10 , we
have the representative (Vg + Vyg);
ap = a5 = a1 =0, a3 # 0, then choosingx =1, y = \/Df‘;Tm —1,r= z—g,

we have the representative (V3 + Vg + Vyg);

ap = a5 =0, a1 # 0, then choosingx =1, y = wm 1r—,/%,we

have the family of representatives (V1 4+ aV3 + Vg + V10> (“):O(f‘x),
2 =0, a5 # 0, a1 = as, a3 = 0, then choosing x = 22, y = 0,

0(10

r= 5150‘\;, we have the representative (V1 + V5 + Vg + Vyg);

. 06 4
ap = 0, a5 # 0, a1 = as, a3 # 0, then choosing x = afag,y =
3410
w5 (03 -nsn0) . |
-, r = , we have the family of representatives

a3aqg a3
(V14 V34 Vs + Vg + Vi),
ay =0, a5 # 0, a1 # as, then choosing
= — o y= X145 — o
(a1 —as5)arp” (a1 —as5)arp” v/ (as—aq)agarg”
we have the family of representatives (V3 + V5 + Vo + V10>O(“):O(7“);
ay # 0, as = ag = 0, then choosing x = 1, y = %, z =3,

r= \/:;2710' we have the representative (V, + Vg + Vyg);
ay #0, a5 =0, az # 0, then choosing

2 2 2 3

a5aqg a5 (ax—aqg) Q103010 aza10
X=——, Y= 2 ;2= T3 —, V= 57,

asag a3ag 30 a5

we have the representative (Vy + V3 + Vg + Vyp);
ay # 0, as # 0, then choosing
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(b)

(©

(d)

- (ap—ay)as s (adas—2apasar9— (w1 —as)ag ) p— M5/
ap’ aayy a3a, ’ V/xoagag’
we have the family of representatives

<V2 +aV3+Vs5+ Vg + V10>O(D‘):O(7O‘).

x(x+y)as+ov((x+y)ag—xaz)
(x+y)ae

Hence, we have oy = a5 = ag = a9 = 0 and consider following cases:

ag = 0, ag # 0, then choosing u = , we have af = 0.

i ) =0, a3 = ag, a7 = 0, a1 = 0, then choosingx =1, y =0, r = 0;—160,
we have the representative (V3 + Vg + Vy);

.. B B B . _ _ [
ii. ay =0, a3 =g, a7 =0, a7 # 0, then choosing x =1,y = o ,
r=Y “1“1 , we have the representative (V1 + V3 + Vg + V1);

iii. Xy = O, a3 = g, a7 # 0, then choosing x =1, y = "‘7%"‘6, u = %,
r= ”‘7:310, we have the representative (V3 + Vg + V7 + Vy);
6
iv. ap =0, a3 # ag, a7 = a1 = 0, then choosing x = 1, y = —";‘—Z,
r=— (“31%, we have the representative (V¢ + Vyo);
6
V. ay =0, az # wg, a7 =0, a1 # 0, then choosing
— a0 _ __ X43@6 — agag
(ws—a3)2ar” ¥ (g —a3)2a10” (g —a3)3a10”
we have the representative (V1 + Vg + Vyg);
Vi. ay =0, ag # ag, a7 # 0,a3 + a7y = ag, 21 = 0, then choosing x =1,
y=—ar= (“6:& we have the representative (Vg + V7 + Vyg);
6
Vii. ay = 0, a3 # g, a7 # 0, a3+ a7 = wg, 07 # 0, then choosing
2 2.2
_ X% _ X10306 — 1%
X=—"5%5%5—,y=— LT = , we have the represen-
(g —at3)*a1g Y (wg—a3) a1 (wg—a3) arg P

tative <V1 + Ve¢+ Vy+ V10>}

vili.  ap =0, az # ag, ay # 0,3 + a7 # ag, then choosingx =1,y = —'X—Z,
roo= w, we have the family of representatives
<V6 +aVy+ V10>a7é0 17
ix. ap # 0, then choosing z = 7, v = 0, we have a] = 0.
A. a3 = g, then choosmg x=1,y= %, r = %' we have the
family of representatives (V, + V3 + V6 +aVy+ Vi),
B. a3 # ag, thenchoosingx =1, y = = (“6_:‘% we have

the family of representatives (8V; + V6 +aVy+ Vi) B#0"

ng = ag = 0, a7 # 0, then choosing v = %ﬂ, we have 045 = 0. Hence, we

have a4 = a5 = ag = a3 = g = 0 and consider following cases:

i =0, a3 +a7 = 0, a1 = 0, then choosing x =1, y = 0, r = I¢, we
have the representative (—V3 + V7 + Vyg);

ii. ay =0, a3 +ay =0, a; # 0, then choosing x = aw, y=0, a:ﬁm’
we have the representative (V1 — V3 + V7 + Vyg);

iii. ap =0, a3+ ay # 0, then choosingx =1, y =0, u = ocsoj:aﬂ r= ”;—170,
we have the family of representatives (V3 + V7 + Vig), . _4;

iv. ap # 0, then choosing x =1, y = "‘2%1’;10, z= %, r= a;‘;g u=0,we

have the family of representatives (V, + aV3 + V7 + V).

ag = a7 = wg = 0, then a3 # 0, and choosing u = (31 03+ “502:;(1’0 NZ(WSHMO)

we obtain a7 = 0. Hence, we have a1 = a4 = a = ay = ag = 9 = 0 and
consider following cases:

i. &y = a5 = 0, then choosing x =1, y =0, r = “10 , we have the
representative (V3 + Vyg);
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o *
where 1

ii. ay =0, a5 # 0, then choosing x = D‘Z‘TSO, y=01r= N:Em, we have the
representative (V3 + Vs + Vy);

iii. ap # 0, as = 0, then choosing x = 1, y = %, r= 0‘:510’ we have
the representative (Vy + V3 + Vyg);

iv. ay # 0, a5 # 0, then choosing x = Z—i, y = (“2;22‘611([’))“5, r = a;f)lo’ we

have the representative (V, + V3 + V5 + V).

Summarizing all cases, we have the following distinct orbits

<V2 + V9>, <V2 + Ve + Vg), (Vz 4+ V4+ Vg}, <V2 +Vi+ Ve + Vg),
<V2 4+ V4i+ V5+aVe+ Vg), <V2 4+ Vs5+4+aVg+ V9>, <V2 +V5+ Vs + Vg>,
<V2 + V5 —-Vg+ Vy+ V8>, <V2 +aVg+ Vy+ Vg>, <V2 + V4 + V3>,
<V2 + V5 —Vg+ V3>, <V2 +aVg+ Vg), <V2 + V7>, <V2 + Vs + V7>, <V2 + Ve + V7>,
(Va+ V), (Vo + Vio), (V3 + Vo + Vig), (V1 +aV3 + Vo + V1g) 0=,
<V1 + V54 Vg + V10>, <V1 4+ V3+ V54 Vg + V10>, <1XV3 + V54 Vg + Vl())o(a)zo(ﬂx)
(Vo 4+ Vo+ Vi), (Va+V3+Vo+ Vi), (Vo +aV3+Vs+ Vg + Vm}o(“)zo(ﬂX),
(Va+ Ve + Vi), (V1+ V3 + Ve + Vi), (Vs + Ve + V7 + Vi), (Vi + Ve + Vo),
<V1 4+ Vg+ Vy+ V10>, <V2 +V3+Vg+aVy+ V]()), <ﬁV2 + Ve +aVy+ Vm),
(V1= V3+ V74 Vi), (V3 + V7 + Vig), (V2 +aV3 + V7 + Vi), (V3 + Vi),
(V3 + V5 + Vi), (V2 + V3 + Vi), (V2 + V3 + V5 + Vyp),

7

which gives the following new algebras (see Section 3):

B17, Bis, B19, B2o, B3, B3y, B2, Bas, BYs, Bas, B2z, BSg, B2, Bao, B3, Bz, B3z, Baa, B35, Bas, Bsz,
a,
ngr B39/ B40/ BZ]/ B42/ B43/ B44/ B45/ B46/ Bié7/ B48‘BI B49/ Bg()/ Bglr B52/ B53/ B54/ B55'

2.3.5. Central Extensions of 91y

Let us use the following notations:

Vi=[Anl, Va=I[An], Vi=[A13—Ax]
Vi=[Aul, Vs=[Az], Ve¢=[Ay]

6
Take 6 = Y o;V; € Hz(‘ﬁm). The automorphism group of 91y7 consists of invertible
i=1
matrices of the form

x 0 0 O
0 x 0 O
P=12 u 22 0
t v 0 x2
Since
0 0 a3 O ay o* ay 0
o7 0 ary —a3 ay o= A C )
0 a5 O 0 0 ag 0 0
ag O 0 0 g 0 0 0

6 6
we have that the action of Aut(91y;) on the subspace () «;V;) is given by ( }_ a’V;),
i=1 i=1

= x(xaq + zas + tag), ay = x3as, ar = x3as,
wy = x(xap+oag+ (u+z)as), af = xag, af = xag.
We are interested only in the cases with (a3, a5) # (0,0), (ag, a6) # (0,0).

1. a5 # 0, then choosing u = — %, we have # = 0. Now we consider following
subcases:
(a) ag # 0, then choosingx =1, z=0, t = —z—;, we have the family of represen-

tatives (BV3 +aVy + Vs +7Ve), 4
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(b) ag = 0,a3 # 0, then choosingx =1, z = — %, we have the family of represen-
tatives (V3 + aVy + Vs),5.20;

(c) ag =0,a3 =0, a1 # 0, then choosing x = %, we have the family of represen-
tatives (V1 +aVy + V5>“7&0;

(d) x = 0,043 = 0, a1 = 0, then we have the family of representatives
2. a5 =0, az # 0, then choosing z = —m%t“f’, we have a] = 0.
(a) ag # 0, then choosingx =1, v = — i‘—i, we have the family of representatives
(V3 +BVy+ aV6>ﬁ7Ao;
(b) a4 =0,ap # O, then choosing x = %' we have the family of representatives
<V2 + V3 + av6>a7é0;

(c) ag = 0, = 0, then we have the family of representatives (V3 + a V) 0"
Summarizing all cases, we have the following distinct orbits

(Vi+aVa+ Vs)uzo, (V3 +aVa+ Vs + BVe)(ap)£00) (Va+aVa+ BVe)(ap)£(00)
<V2 + V3 + sz6>a¢0,

which gives the following new algebras (see Section 3):

0 g@pr)#007) plap)#(00) 0
ngé » Bsz g » Bsg f ’ ngé :
2.3.6. Central Extensions of ‘ﬁggg !
Let us use the following notations:

Vi = [A], Vo= [An], Viz=[A13—aly],
Vi=[Au—Ayl, Vs=I[As31], Ve=[Ag]

6
Take 6 = Y a;V,; € Hz(mggé 1). The automorphism group of ‘ﬁggé ! consists of invert-
i=1
ible matrices of the form

x 0 0 O 0 ax O 0
0 x 0 O x 0 0 0
=1y o 2 0l P2(a #0) = t v 0 —a®x?
u w 0 x? u w —x? 0
Since
0 a7 a3 Ky ot o] ot g o
rlay 0 —aas —oy |4y —aa® —a* —any  —oy
Has 0 0 o |77 "a 0 o o |’
0 ag O 0 0 a; 0 0

6 6
we have that the action of Au’c(‘ﬂ(ﬂ]‘gé 1) on the subspace () «;V;) is given by (L aV;),
i= i=1

o = x(xag+ (v—ova)az+ (ut+wag), af = xaz al = xas,
where o = x(xap+ 1 " ¥ _ .3 ¥ 43
S ptu(e —Nag+ (v+ta)as), af = x°ag, af = X ag.
We are interested only in the cases with (a3, a5) # (0,0), (x4, a6) 7 (0,0).
1. a5 =as =0, then azay # 0, and choosing x =1, u = (17“%, v = _(1*’1%’ we have

aj = a3 = 0 and obtain the family of representatives (V3 4+ pV4) 4 (.

2. (as,a6) # (0,0), « # 0, then with an action of a suitable ¢,, we can suppose a5 # 0
_ xaptu(a—1)as+tans

and choosing v = 5

following subcases:

, we can suppose &; = 0. Now we consider
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(a) a3 = ag = a1 = 0, then we have the family of representatives (V4 + Vs)g.0;
(b) a3 = wg =0, a1 # 0, then choosing x = %' we have the family of representa-
tives (V1 + V4 + Vs)g2o;

(c) a3 =0, ag # 0, then choosing x =1, u = f%, w = 0, we have the family of
representatives (YVy + Vs + BVs)p0;
(d) a3 #0, then choosingx =1, t = —%#, u =0, w=0,we have the

family of representatives (yV3 +6Va + Vs + BVe) 20, (8,5)£(00)-

3. (as,a6) # (0,0), « = 0. If a5 # O, then we obtain the previous cases. Thus, we

_xeq+(utw)ag

consider the case of a5 = 0. Then, azag # 0 and choosing v = 5

suppose a; = 0. Now, we consider following subcases:

, We can

(a) ag = 0, ap = 0, then we have the family of representatives (V3 + V) BH0s

(b)  ag =0,y # 0, then choosing x = z—é, we have the family of representatives
(V24 BV3+ V) g0,

(c) ag # 0, then choosing x =1, u = %, we obtain a3 = 0 and obtain the family
of representatives (V3 + YV + Vi)a—0,5-£0,7£0-

2.3.7. Central Extensions of 9t}
Let us use the following notations:

Vi=[A1n], Va=I[An], Vz=[A13—Axn], Vi=[A1g— Ayl
Vs =[As1], Ve=[Ap], V7=[Azn+ Ayl

7
Take 0 = ¥ a;V; € H?(M}g). The automorphism group of Mg consists of invertible
i=1
matrices of the form

X y 0 0
o= X+y—z z 0 0
t v x(z—y) y(z—y)
u w (x+y—z)(z—y) z(z—y)
Since
0 a1 a3 0y ot af + ot ag g
ez 0 —a3 —ag|, |a;—a* —a* a3 —ag
(P X5 Ky 0 0 ¢ o o 06; 0 0 !
ay wag O 0 oy ag 0 0
7 7
we have that the action of Aut(9}g) on the subspace <Zl a;V;) is given by (Zl wVi),
1= 1=
where
af = (x+y)zar +y(x +y)az +y(t+0)as + z(u + w)ae + (y(u + w) + z(t +0))az,
vy = (x+y)(x+y—z)ag +x(x+y)ar +x(t+v)as+ (x +y—z)(u+w)ag
+H((x+y—2)(t+0) +x(u+w))az,

0y = (y—z)(xaz+ (x +y—z)as),
a = (y—2)*(yas +zag),
ai = (z—y)(xX?as+ (x+y—z)((x +y — 2)ae + 2xaz)),
af = (z—y)(y*as + z(zas + 2yaz)),
a; = (z—y)(xyas+ (x+y —z)zae + (y(y — 2) + x(y + 2))az).

We are interested only in the cases with

(0(3,0(5,0(7) 7& (0,0,0), (LK4,CK6,DC7) 7é (0,0,0).
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1. (as,a6,a7) = (0,0,0), then az # 0, g # 0. If a3 # —ay, then choosing z = —U we

oy 4
obtain that aj = 0, which implies (a}, af,a3) = (0,0,0). Thus, we have that a3 = —ay.
(a) (a1, 22) = (0,0), then we have the representative (V3 — Vy);

(b)  (ag,a2) # (0,0), without loss of generality, we can suppose a1 # 0.

i. «1 = —ap, then choosing x = %' y =0,z = 1, we have the representa-
tive (V1 — Vo + V3 — V4>;
2
il. a1 # —ay, then choosing x = mﬁlﬁ’ y=0z= (’lerxi;zm, we have

the representative (V1 + V3 — Vy).

2. (as,a6,a7) # (0,0,0), then without loss of generality we can assume a5 # 0 and
consider following subcases:

(a) Nl = oc%,rx7 = —uas5, &g = —a3, &p = —aq, thentakingx =1, y=u=0v =
w = 0, t = Z—;, we have the family of representatives
(BV3 —BV4+Vs5+ Ve —V7);
(b) N5 = oc%, &7 = —a5, 0g = —03, &1 7~ —p, then taking
e (mte) _ ag(wtan)
xfsz,yfufvfwa,th,

we have the family of representatives (V, + V3 — fV4 + Vs + Vg — V7);

(c) Kol = rx%, ay = —a5, &3 # —uoy, then we can suppose a3 # 0 and choos-
; — . _ _ _zay oy (xez—zey)(agaz—apay)
ingu =v=w=0y=-341t= e , We can suppose
Nl = 0y = 0.
i. if #p = 0, then choosing x = 1, z = % we have the representative
s
(V34 V54 Ve —V7);
2
ii. if ap # 0, then choosing x = %, z= “i—gS, we have the representative

(Vz 4+ V3+ V54 Vg — V7>.
(d) Ngls = tx%, «5 # —wy, then choosing

D e
we can suppose ay = g = &y = 0. Since (a4, a6, 07) # (0,0,0), we have that
Ny # 0.
i a1 = 0, then choosing x = \/%, z = 1, we have the family of represen-
tatives (BV3 + V4 + Vs);
ii. a1 # 0, then choosing x = %' z = \/%, we have the family of

representatives (V1 + V3 + V4 + Vs).
(e) els F# zx%, then choosing suitable value of z and y such that y # z, we can

: Xo
suppose #¢ = 0 and a7 # 0. Then, choosing t = =}, vy = u = v =0,
w = w,wehaveai‘ =a5 =0.
7
i. if a5 # —2a7, then choosing x =1,z = %, we have the family of
representatives (BV3 + V4 + Vs + Vy);
ii. if a5 = —2ay, then then we have the family of representatives

(BV3 —2V5+ Vy)and (BV3 + V4 — 2V5 + V7) depending on whether
ag = 0 or not.

Summarizing all cases of the central extension of the algebra 91js, we have the follow-
ing distinct orbits,
in case of o # 1:

(V3 + ,BV4>‘B7&O, (V14 BVy+ V5>ﬁ#g, (0V3+yVy+ Vs + ﬁv6>(5’7)¢(0’0),

in case of &« = 0:

(V2 +BVs+Ve)pro (BVs+7Va+ Ve)pro
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in case of « = 1:

<V3 — V4>, <V1 4+ V3 — V4>, <V1 —Vy+ V3 — V4>, <ﬁV3 —BVy+ V54 Ve — V7>,
(Vo +BV3 = BVs+ V5+Ve—V7), (V3 +V5+Ve—V7), (Vo4 V3 + V5 + Ve — V),
<,3V3 +V4+ V5>, <V1 +BV3+Vy+ V5>, <‘BV3 + V44 Vs + V7>, <ﬂV3 —2Vs5 + V7>,
(BV3+ V4 —2V5+V7),

which gives the following new algebras (see Section 3):

a#LB#0 HaAlBA0 na#l(B,7)#(00)0 RB#0 B#0y
Bso ’B61 fBez rBss ’B64 s Bes,

B, Be7, ng, ng, B7o, B71, Bng 553, Bﬁf, 1355, ng

2.3.8. Central Extensions of 911,

. - Vi=[An], Va=[A3], Vz=[Axn],
Let us use the following notations:
5 Vi=1[8y], Vs=I[A], Ve=I[Ay]

6
Take 6 = Y. a;V; € H?(9y,). The automorphism group of 1y, consists of invertible
i=1
matrices of the form

x 0 0 O 0 x 0 O
10y 0 O ~ly 0 0 O
n=1y o xy 0 |’ 2=12 0 0 xy
u t 0 xy u t xy O
Since
o 0 ap O af af a; 0
I 0 a3 0 ay e a3 0w
P1lo s 0 0|7 | o0 i 0 0|
% 0 0 O ag 0 0 O

6 6
we have that the action of Aut(91;,) on the subspace (¥ «;V;) is givenby ( ¥ a;V;), where
i=1 1

1=

x £ . )

forgy : 1 xéml +zaz + tae) “o = y(%as + vay + uas), a5 = xyus,
= Yym ay = XYy, af = x’yag,

for ¢, : o = ylyaz+tuag+zas) o = x(xag+oap +tag), ai = x*yag,
L =yt 0y = xyay, a; = xy’as,

We are interested only in the cases with
(az,a5) # (0,0), (a4, a6) # (0,0).
&, A3lg

1. (ag,a4) = (0,0), thenas # 0, ag # 0and choosingx =1, y = é,t = _%/” = —=%,
5

we have the representative (Vs + V);
2. (ap,ag) # (0,0), then without loss of generality, we can suppose a4 # 0 and choosing

o
— VBT we have af = 0.
4

v =

(a) ag = ap = a7 = 0, then we have the family of representatives (V4 + aV5) Y

(b) ag = ap = 0, a7 # 0, then choosing x = %, y = 1, we have the family of
representatives (V1 + Vg 4+ aVs),

(c) ag =0, ap # 0, then choosing x =1, y = ‘;‘—i, z = f%, we have the family of
representatives (V, + V4 +aVs);

(d)  ag #0, thenchoosingx =1, y = %’ z=0,t= —%, we have the family of
representatives (BV + Vi + aVs + Vo), 5)2(0,0)-

Summarizing all cases, we have the following distinct orbits

(V54 V), (V4 + 0(V5>“¢0, (Vi+Vi+ IXV5>D¢#0, (Vo 4+ Vy+aVs),

O(a,p)~0(p~1a™)
(BV2+VataVs+Velagizoo ~
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which gives the following new algebras (see Section 3):

, 0,0
Br7, B3 ", B3, Bao, B P70,

2.3.9. Central Extensions of 9113
Let us use the following notations:

Vi = [An], Va = [Ax), V3 = [A1g + A,
Vi=[A3—2014 — Ayy], Vs =[An —A41], Ve=[Az1 —203 + Ag].

6
Take 6 = ¥ a;V; € H?(93). The automorphism group of 143 consists of invertible
i=1
matrices of the form

x 0 0 O 0 x O 0
0 x 0 O x 0 0 0

1= z u x> 0] $2 = z u —x% 2x?
t v 0 «x? t v 0 x?

Since
0 0 g a3 — 20y ot ot oy ay— 20
‘PT q &y a3 —0y - a — o™y +at 20 g -
oag as—ag 0 0 1= o} ok — o) 0 0 ’
—us Ke 0 0 -z oy 0 0

1

6 6
we have that the action of Aut(9113) on the subspace () «;V;) is given by ( }_ a’V;),
=1 i=1

where
wf = x(xa;+ (v+z)az— (t—u+20)ay — (v —z)as+ (t+u —z)agp),
wy = x(xag+ (—t+u—2v)ag+ (2t —2u +3v — z)ag+
(t+u—2z)as — (2t+u—v—2)ag),
forp1: a; = x3az,
wy = ay,
Déé: = xiocg,,
af = xae.
af = x(xaq+ (t+u)ag — (2t +v—z)ag — (t—u)as — (u—v—z)ag),
ay = —x§2xzx1 +xap+ Qu—v+z)ag — (t+u)ay — (2t —v —2)as + (t —u +z)ag),
At = —xay,
for ¢,: "‘z _ —x3a§
ai = —x°(2a5 — ag),
wp = —x3(as—2a).

We are interested only in the cases with

(a3, 04, 05, 06) # (0,0,0,0).

1. (as,a6) = (0,0), then without loss of generality, we can suppose a3 # 0. Let us
consider the following subcases:
(a) a3 = g, 01 = —ap, thenchoosingx =1, u =v=2z=0,t = %r we have the
representative (V3 + Vy);
(b) a3 =ay, a1 # —ay, then choosing x = %, U=pv=2z=0,t= G0
have the representative (V1 + V3 + Vy);
(c) a3 # a4, then choosingx =1, u =v =0,z =

, we
a3

(20 —03)toony 4 mpastmay
(a3—ag)? 7 (a3—ag)? 7
we have the family of representatives (V3 +aVy), y;
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(as,06) # (0,0), then without loss of generality, we can suppose g # 0. Let us
consider the following subcases:

(a) x4 = 0, &3 = a5, then choosing

o] (063 720{6) —Nolg v = o7 (21)(3730(6) 720{20{6
7

x=1,z=0,u= p 202

we have the family of representatives (¢V3 + V4 +aVs5 + Vi),

x(a (a3+a5—3a6) —2a286)
2(az—as)wg

u= _W' we have the family of representatives (¢V3 + V4 + Vs + V6>ﬁ#a,

xaq +(v+z)ag+uny —2vay —vas+zas+ung—zag

(b) zx4:oc6, a3 # as, then choosingx =1, z=v=0, t = —

(c) ag — g # 0, then choosing t = e , we can
suppose a] = 0, and consider following subcases:
i. ag (203 + ag) = g (205 + ).
A. ag = 2us5, then choosingx =1,z =0, v = —2‘%, we have the

family of representatives <(1x — %)Vg +aVy+ %Vg, + V6>a;£1;

B.  a #2a5, ay =0, 402 — dasag + 542 = 0,ap = 0, then we have
the representative <—%V3 + (% +i)Vs+ V6>;

C. wg 7 205, 64 =0, 40% —daswg + 50% =0, ay # 0, then choosing
X = Z—g,wehavetherepresentative <V2 — %Vg + (% +i)Vs5+ V6>;

D.  ag # 2as, ag(ng —2a5)% = wg(dasng — 40(% — 50%), 40{% # dosng +

2
% - we have the

2 ; _ - _ _
5az, then choosing x = 1, v = 7 dnone 1502

family of representatives
< (3+a+4a’ )V3 _ (5—4a+4a? )V4 +aVs + V6>

(1—20)2 (1—24)7 11s
E. ng # 2as, ng(wg — 205)% + ag (402 — dasae + 5a2) # 0, then
2
choosing x = 1,z = Azt v =0, we

ay (205 —ag)2+ag (40(% —dasn+502 )’
have the family of representatives

<%(/3(1 +2a) +a)V3 + BVy +aVs + V6>

atl, /37517 (5—4a+4a2) *

(1-2a)2

a4 (&4 —0)
a6 (2a3+ug) g (205+06)
x =1,z = v = 0, we have the family of representatives

<'Yv3 +BVy+aVs+ v6>’¥75 ﬁ(2zx4£1)—1

ii. ag (203 + ag) # ag(2a5 + ag), then choosing u =

, BFL

Summarizing all cases, we have the following distinct orbits

(Va), (V3 +aVy)0W=00") (V) 4 V34 Vy), (V,
(YV3+aVy+ pVs + V) P10 (!H’ =552,

which gives the following new algebras (see Section 3):

o,p,
Bgo, Bgs, Bss, Bgs, Bss, 1387’5 T,

2.3.10. Central Extensions of ‘ﬂ(l)4

Let us use the following notations:

Vi=[An), Va=I[An], Vz=[Ap], Vi=[A13+ Ayl
Vs =[An], Ve=[Ap], V7=I[Ay]
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7
Take 6 = Y- a;V; € H?(9,). The automorphism group of N, consists of invertible
i=1
matrices of the form

x z 0 O
oy 0o o
P= 1w u ¥ 0
t v yz xy
Since
0 0 wy ay af &t oay ay
‘PT ay 0 w3 oy o= ay g Ay
0 as 0 O 0 at 0 0
0 ag 0 O 0 a@ 0 0
7 7
we have that the action of Aut(M?,) on the subspace (Zl a;V;) is given by (Zl wVi),
where Z Z
a] = x(xaq +way + tay),
wy = xzay + xyan + wyas + (ty + wz)ay + tzay,
oy = y(yPas +2yzay + 2%a7)),
wy = xy(yag +zaz),
af = y*(yas + za6),
af = xy’ag,
wy = x’yag.

We are interested only in the cases with

(a3, 04, 05) # (0,0,0), (ng, 46, 27) # (0,0,0).

1. a7y #0, then choosingz = —£%, t = —W, we have af = a} = 0. Thus, we can

suppose a1 = &y = 0 and consider following subcases:
(a) a3 # 0, then choosing x = 1, y = , /z—;, w = —%, we have the family of

representatives (Vs + V4 + vV + V7);
(b) a3 = 0, then ag # 0.

i xy =0, then choosingx =1, y = i—;, we have the family of represen-
tatives (Vs + Vs + V7);
ii. a # 0, then choosing x = 2, y = \/%, we have the family of
representatives (Vy + Vs + BV + V7).
2. ay =0, a4 # 0, then choosing z = —%,t = x(“”‘ii;‘z“‘*), w = —%, we have

a] = a5 = a3 = 0 and consider following subcases:

(a) as = 0, then we have the family of representatives (V4 + BVe);
(b) a5 # 0, then choosing x =1, y = %‘5‘, have the family of representatives

(V4 + V54 BVe).
3.  ay =ay4 =0, then ag # 0 and choosing z = —%, we have a; = 0. Thus we obtain
that a5 = 0, which implies a3 # 0. Then choosing w = —%, we have ay = 0 and

obtain the representatives (V3 + Vi) and (V1 + V3 + Vi) depending on whether
a1 = 0 or not.

Summarizing all cases, we have the following distinct orbits
(V3 + BV4+7Ve + V) OBN=0E=) gy gy 4 v,)0B)=0(=F),

(Vy + Vs + BV + V) OB=0F) (7, 4+ BV), (Vy + Vs + BVe), (V3 + V),
<V1 + V3 + V6>.
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2.3.11. Central Extensions of ‘ﬁi‘f 0

Let us use the following notations:

Vi = [Aul,
Vi = [Miz + g4,

Vo = [A],
Vs = [Az],

V3 = [Az3],
Ve = [al31 + Ag).

6
Take 6 = ) a;V; € H2(m§‘f°). The automorphism group of ‘ﬁ'ﬁéo consists of invert-

i=1
ible matrices of the form

X z 0
10 vy 0
P=1s u 2
t v (1+a)yz xy
Since
o 0 ag O of
7| a2 0 a3 ag|, _ |a;tan
¢ ang a5 0 0 ¢= g
0 a 0 O 0

6
we have that the action of Aut(’ﬂi‘fo) on the subspace (). «;V;) is given by (¥ afV;),
i=1

o ay 0

k% * *
o oy o
az 0 0
ag 0 0

6

. i
i=1

where
o = x(xeq +w(ag +ang)),
ay = xz(1—wa)ag + xyap + wyaz+
(ty + wz — uxe)ag — wyans — a(ty — ux + wza)ag,

0 = y(yas+z(2+a)ny),

w; = xylay,

ai = y*(yas+z(1+2a)ae),

w0y = xy’as.

We are interested only in the cases with

(g, 26) # (0,0).

1. a4 = 0, then ag # 0 and choosing w = —2°L, t =

ang’

we have a] = a5 = 0. Thus, we can suppose & =

x (e (yap +uaag) —aq (yas —yaas —zang))

2 s
yo2a?

«y = 0 and consider following

subcases:
(a) a = —%, a5 = 0, a3 = 0, then we have the representative <V6>“__l;
-2
(b) o= —%, a5 =0, a3 # 0, then choosing x = z—i, y = 1, we have the representa-
tive (V3 + V6>a:_%}
(c) a = —1, a5 # 0, then choosing x = z—z, y = 1, we have the family of represen-

tatives (BV3 + Vs + V6>,X:,%;

—1 = i = =% -
(d) oc. # —5,a3 = 0, then choosingy =1, z = o2y We have the representa
tive <V6>a#7%;

(e) a # —%, a3 # 0, then choosing x = z—z, y=12z= —m, we have the

representative (V3 + V), , 1;

2

2. w4 # 0, then consider following subcases:
_ _ : _ 2yar o, x(masteome) o

(a) & = —2, a4 = 2u4, then choosing z = Ay = 102 ,u=w=0,we

can suppose &, = &5 = 0 and consider following subcases:

i. «1 = a3 = 0, we have the representative <V4 + %V6> ;
o

=2
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(b)

(©

ii. a1 =0, a3 # 0, then choosing x = Z—z, y = 1, we have the representa-
tive <V3+V4+%V6> 2;
a——
_ . _ o _
iii. a1 # 0, az = 0, then choosing x = —ﬁ, y = 1, we have the representa-
tive <V1 -2V — V6>a:_2;
2
iv. a1 # 0, a3 # 0, then choosing x = a;‘;% y = %, we have the
6 6
representative (V1 + V3 +2V4 4+ Vi), _».
& = —2, aq4 # 2u¢, then choosing w = — fo‘zl%, we can suppose a] = 0 and
consider following subcases:
1. ag = wg, a3 = 0, then choosing x =1, z = %, t= —3%, we have the
representative (V4 + Vi), _»;
ii. ag = ng, &3 7 0, then choosing x =1, y = z—i z = %, t= —3%, we
have the representative (V3 + V4 + Vi), _»;
iii. ayg # wg, then choosing t =0, u = 72(5‘0‘72“6), we have a; = 0.

A. ag # 0, a3 = 0, then choosingy =1, z = ;756, we have the family
of representatives (V4 + BVe),_ 5 501

B.  ag #0, a3 # 0, then choosing x = g—i, y=1z= ;TZ, we have
the family of representatives (V3 + V4 + BVe),— 552015

C ag =0, a5 = ag = 0, then we have the representative (Vy4),__,;

D. ag =0, a5 = 0, az # 0, then choosing x = z—i, y =1, we have
the representative (V3 + Vy),__;

E. a4=0, a5 # 0, then choosing x = %’ y = 1, we have the family
of representatives (V3 + V4 + Vs),__,.
« # —2, then choosing z = —%, we can suppose a3 = 0 and consider
following subcases:
1. ayg + axg = 0, then choosing t = —%, u =0, w =0, we can suppose
a3 = 0 and consider following subcases:
A. a1 = as = 0, then we have the family of representatives
<V4 - %V6>;

B. a1 =0, a5 # 0, then choosingx =1, y = g—‘;, we have the family
of representatives <V4 + V5 — %V6> ;

C. a1 # 0, a5 = 0, then choosing x = fz—?, y = 1, we have the
family of representatives (V1 +aVy — Vi);
2
D. aj #0, a5 # 0, then choosing x = —“;g“s, y= %, we have the

family of representatives (V1 +aVy + Vs — V).

XK1
ay4t+ung

il. &g + ang # 0, then choosing w = —
consider following subcases:

*
, we can suppose a] = 0 and

A. ng = g, 0 = 1, ap = a5 = 0, then we have the representative
<V4 + v6>1J¢:1"

B. ag=ag,a=1a,=0,a5 # 0, then choosingx =1, y = %/ we
have the representative (V4 + Vs + V), _4;
C. ng =wag4,0 =1,0ay #0,a5 =0, then choosingx =1, y = %21’ we

have the representative (V, + V4 + Vi) ,_1;
D.  as=ag,a=10a #0, a5 # 0, then choosing x = “23%, y = 2,
4
we have the representative (V, + V4 4+ Vs 4 Vi), 5
E.  wag =ayg, a #1,a5 = 0, then choosing x =1, t = (W“ﬁ, we
have the representative (V4 + V), 11
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F. ng = ag, 0 # 1, a5 # 0, then choosingx =1, y = z—‘;, t= (af‘%)u4,
we have the representative (V4 + V5 + V) PARTY
G. ng # ag, 5 = 0, then choosingy =1, t =0, u = Wi%), we
have the family of representatives (V4 + V)51
H.  wag # ay, a5 # 0, then choosing x = 1, y = ﬁ—‘;, t =0,
u = m, we have the family of representatives
<V4 + Vs + ,BV6>!37&1}

Summarizing all cases of the central extension of the algebra 917,, we have the
ing distinct orbits:
incase of & = —

N—=

(BV3+ Vs + V),
incaseof = 1:
(Va4 V4+Ve), (Vo + Vi+ V54 V),
in case of « = 0:

(V34 BV + Ve + V7)) OBM=0B=7) (V, + V5 4 Vg + V;)OPB)=0(=F),
(Vs + BV + V7)OB)=0=F) (V] + V3 + V),

incaseof a = —2:
<V1 4+ V3+2Vy+ V6>, <V3 4+ V4+ ﬁV6>, <ﬁV3 4+ V4+ V5>,
forany a« € C:

(V3+Ve), (Va+BVe), (Va+ Vs + BV6)ar—2, (Ve)azo, (Va— £ Ve6)aros
(Va+ Vs = 1Ve)aro, (Vi +aVs— Ve)aro (V14 aVa+ Vs — Ve)uro 2,

which gives the following new algebras (see Section 3):

ng/ B891 BQO/ Bgi,y/ B§2/ Bg3l B94/ B95/ Bgé/ Bg7/ BgS/ Bg’gﬁl
0F =28 paA0 paA) puA0 paAd puA0,—2
BlOO ’ B?Ol ’ BTOZ ’ BTOS ’ BTO4 ’ BTOS '

2.4. One-Dimensional Central Extensions of Four-Dimensional Three-Step Nilpotent
Bicommutative Algebras

2.4.1. The Description of Second Cohomology Space

follow-

In the following Table 2, we give the description of the second cohomology space of

four-dimensional three-step nilpotent bicommutative algebras.

Table 2. The list of non-two-step nilpotent four-dimensional bicommutative algebras.

B}, : e1e1 = €9 ere] = €3
H2(Bg,) = <[A12]/ [A14], [Az1], [Aa], [A44]>
Bg, () : e1e1 = €9 e1er = e3 ere;] = we3

H?(Bg,(a)) = <[A14], [An], [A13 + aAp + aAs1], [An], [A44]>

B, («) : ere] = e erey = ey €261 = ey €33 = ¢4
H? (B, (x)) = <[A13], [A21], [As1], [A33]>
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Table 2. Cont.

835 : €161 = e €16 = é4 €183 = é4 €261 = €4 €363 = €4
H?(Bgs) = <[A13], [A21], [Az1], [A33]>

Bge(a #0) e1e1 =ep  ejep=ey  ele3 —ey  epe] = Qey
H2(Bjg(a)) = <[A13]/ [A21], [As1], [A1a + aByp + a3 + aBy], [A33]>
637 : €11 = e €261 — €4 €363 = €4

H2(Bg;) = <[A12], [A13], [Az1], [A33]>

Bés e1e1 = e e1e3 = ey ere1 = ey

H?(Bjg) = <[A12], [A21], [Az1], [Az3], [A23 + A4ﬂ>

Bég el =ey ejep=eq  e3e] = ey

H2(Bjy) = <[A13], [A21], [As1], [As3], [Aa + A32}>

B%O e1ep =e3 eje3 =e4 epe] =e4  €36) =€y
H2(Bf,) = <[A11], [A13], [B22], [A32]>

B%l €1 = e3 €163 = é4 €36y = €4

H2(Bf)) = <[A11], [Ao1], [A2], [As2], [A14 + Asz + A42]>

B%Z : €161 = ey €16 = e3 €61 = é4 €36y — €4
H2(B,) = ([An], [B13], [82a], [Aso] )

8%3 €16 = e3  exe;1 —e4 €36 — ey

H2(B,) = ([An], [B13], [82a], [Aso] )

B‘ﬁ e1ep =e3  eje3 =e4  epe] =ey  €xe) =ey
H?(Bf,) = <[A11]/ [A13], [A22], [A32]>

B%S e1ep =e3 eje3=eq 0] =ey

H?(Bf5) = <[A11], [A13], [B22], [A32]>

6%6 €1 = e3 e1e3 = é4 €26y = €4

H2(Bf,) = <[A11], [A21], [An2], [Az2], [A1s + A23}>

8%7 €16 = e3 €163 = e4

H?(B},) = <[A11], [A14], [B21], [A2], [A32]>

B%S €161 — é4 €16 = e3 €36) — €4

H2(Bl) = ([bu], [8a1], [822), [Asa), [ + o] )

B‘fg T elep=e3 e3ep =ey

H2(Bly) = ([Au), [13], (A1), [A22], [Be])

2.4.2. Central Extensions of Bgl

Let us use the following notations:

Vi=[A1n], Vo=I[Aul, Vz=[As1], Vi=[An], Vs5=[Aul
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5
Take 6 = Y o;V; € H?(B§;). The automorphism group of 5§, consists of invertible
i=1
matrices of the form

x 0 0 O
2

|y x 0 0

?=1; xy x3 0t

u 0 0 r

Since
0 o 0 af a7 0 aj
rf0o 0 0 O a0 0 O
¢ a3z 0 0 O ¢= ay 0 0 0

g 0 0 a5 ay 0 0 ag

5 5
we have that the action of Aut(B5;) on the subspace ( }_ «;V;) is given by (¥ a}V;), where
=1

i=1 i

a] = x3ay,

wy = r(xapy+uas),

ay = xtas,

ay = txaz+rxag +ruas,
ar = r2us.

We are interested only in the cases with

(a2, a4, 25) # (0,0,0), a3 # 0.

r(xay+uas)

Since a3 # 0, then choosing t = — ,we have ay = 0.

X3
1. Ifas # 0, then choosing u = —%2, we have aj = 0.
(a) a1 = 0, then choosing x =1, r = z—g, we have the representative (V3 + Vs);
2
(b) a1 # 0, then choosing x = %, r = as\/aﬂl@, we have the representative

<V1 + V3 + V5>.
2. If a5 = 0, then ap # 0.
(a) «1 = 0, then choosing x =1, ¥ = ';‘—z, we have the representative (V, + V3);

3
(b) a1 # 0, then choosing x = 2L, r = Y., we have the representative

ag’ m/
<V1 + Vo + V3>.

Therefore, we have the following distinct orbits
(V3+Vs), (Vi+V3+Vs), (Vo+V3), (Vi+Va+V3),
which gives the following new algebras (see Section 3):

B10s, B1o7, B1os, B1go-

2.4.3. Central Extensions of B,

Let us use the following notations:

Vi=[Au), Vo=[Mn], Vi=[Az+adn+als], Vi=[Ay], V5= [Nyl
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5
Take § = ¥ &;V; € H?(B%,). The automorphism group of B%, consists of invertible

i=1
matrices of the form

X 0 0 O
|y x? 0 0
O (1+a)xy x> ¢t
u 0 0 r
Since
0 0 a3 m a* ot oay o a
[ a2 aaz 0 O _|astaa™ anz; 0 O
¢ axs 0 0 O ¢= o 0o 0 o0}
oy 0 0 as ay 0 0 af

5
we have that the action of Aut(13j,) on the subspace ( }_ «;V;) is given by (
i=1 i

a] = rxaq+txaz+ruas,

wy = x*(xap —ya(a—1)ag),
ay = xtas,

ay = txoawaz +rxag +ruas,
ar = r2us.

We are interested only in the cases with

a3 #0, (a1,a4,a5) # (0,0,0).

5
afV;), where
=1

a3 # 0, then choosing t = — %, we have a] = 0. Now we consider following cases:
1. a5 = 0, then ay # 0.
a a € {0,1}, ay = 0, then choosing x = 1, r = 22, we have the representative
8 ay P

<V3 + V4>;

14

3
(b) a € {0,1}, ap # 0, then choosing x = “—g, r= %, we have the representative

344

<V2 +Vs3+ V4>;

() a € {0,1}, then choosing x =1, y = —%2— r = % we have the representa-
& Yy (a—T1)aas 0y p
tive (V3 + Vy).
2. o5 75 0.
(a) a=1, ag = ay =0, then choosing x = 1, r = , /%2, we have the representative
& s P
<V3 + V5> ;

2
&y — 9

r =
ag’ az./0305”

(b) o« =1, a4 =0, ap # 0, then choosing x =
representative (V, + V3 + Vs);

we have the

2

(c) a =1, ag # 0, then choosing x = \/275’ r = a5\;;375’ we have the family of
representatives (BVjy + V3 + V4 + V5>O(ﬁ)zo(_ﬁ);

(d a =0, ap =0, then choosing x = 1, r = z—g, u = fg—;‘, we have the

representative (V3 + Vs);
i

u =
X3./A305 a3us’

X2

0(3’1’:

(e) a =0, ap # 0, then choosing x =
representative (V, + V3 + V5);

the representative (V3 + Vs).

Summarizing all cases, we have the following distinct orbits
incaseofa =0: (Vo+V3+Vy), (Va+V3+Vs), incaseofa =1

(BV3 4 V3 + V44 V5)0B)~0hF) | (V) +V3+Vy), (Va+Vi+Vs),

= — %% we have the

(f) a ¢ {0,1}, then choosing x =1, y = (“7’%%3, r= /z—;, U= (“f‘ﬁ, we have
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incaseofx € C (V3+Vy), (V3+ Vs5), which gives the following new algebras
(see Section 3, as we are interested in non-commutative algebras, we do not consider B%15):

1
B110, B111, Bflz, B113, B114, Blé , Blig:

2.4.4. Central Extensions of B (a # 0)

Let us use the following notations:

Vi=[A], Vo=[An], V3=[As31], Vi=[Ms+aAn+ads+ady], Vs=[Asy]

Take 6 = Z a;V; € H?(Bg(a # 0)). The automorphism group of B (a # 0) consists

of invertible matnces of the form

X 0 0 0
2
ly b 0 O
=1 0 x> 0
u x(I+a)y+z) o a8
Since
0 0 N, Qg o* ot Al +att g
| a0 aay any O ey Faa™t aag oo 0
4) o3 0 o5 0 4) o DC; 0 Oé; 0l
ang 0 0 0 any 0 0 0
5 5
we have that the action of Aut(Bg (« # 0)) on the subspace ( Y ;V;) is givenby (¥ a;V;),
i=1 i=1
where
af = x(xPay+ (v —x((1+ @)y +2))ag + xza5),
wy = x*(xap+a((1—a)y+z)ay),
o = x(x%az+oany+ xzas),
ay = xtay,
ar = xtas.

We are interested only in the cases with ay # 0.
x(yooy 200y +os—oos) —xong oy —xop (g —as))
2
4225
4

Choosing v = ,z = yla—1) — 72, we have

a] = a5 =0.

1. 2a%ay = (zx —1)%as, a3 = 0, then a # 1 and we have the family of representatives
<V4 = V5>

2. 2a%wy = (a —1)%a5, a3 #0, then « # 1 and choosing x = %’ we have the family of
representatives <V3 +Vy+ ( )2 V5>

3. 2a%ay # (a—1)%as, then choosingx =1, y = —

X3

2y (a1 Ve have the family of

representatives (V4 + BVs) L2 .

dar=Ta

Summarizing all cases, we have the following distinct orbits
(Va+BVs), (Va+ Va+ (x 1)2 V5>1x7é11

which gives the following new algebras (see Section 3):

a#0,f pa#0,1
B117 B118 '



Mathematics 2023, 11, 777

28 of 49

2.4.5. Central Extensions of 838

Let us use the following notations:

Vi=[An], Va=[An], Vi=[A31], Vi=[As3], V5=[An+ Ayl

5
Take § = Y &;V; € H2(B3;). The automorphism group of Bjg consists of invertible
i=1
matrices of the form

X 0 0 O
2

ly X 0 O

¢= z 0 x2 0

u x(y+z) o 2

Since
0 o9 0 O n* af a0
7lax 0 a5 O ay+a** 0 af O
¢a30a40¢_ o} 0 a; 0]

as 0 0 0 a; 0 0 0

5 5
we have that the action of Aut(Bs) on the subspace ( }_ «;V;) is givenby ( 1_ a;V;), where

i=1 i=1
w; = 2wy, af = x%(xap—zag+2zas), af = x(x*az+ xzaq + vas),
w = xtay, af = xtas.
. . . . _ x(xaztzay)
We are interested only in the cases with a5 # 0. Choosing v = — ==, wehave
* __

az = 0.
1. a4 =2as, ap = a1 = 0, then we have the representative (2V4 + Vs);
2. ag = 2a5, ap = 0, a7 # 0, then choosing x = %, we have the representative

<V1 +2V4+ V5>,‘
3. a4 = 2as5, ay # 0, then choosing x = g—;, we have the family of representatives
<0¢V1 + VZ + 2V4 + V5>}

4. wy # 25, a1 =0, then choosing x =1, z = Mfizz%, we have the family of representa-
tives (aVy + Vs), 1;
5. a4 # 2a5, a1 # 0, then choosing x = %/ z = %, we have the family of

representatives (V1 +aVy + Vs), 4.

Summarizing all cases, we have the following distinct orbits
<V1 +aVy+ V5>, <0¢V4 + V5>, <0¢V1 + Vo +2Vy+ V5>,

which gives the following new algebras (see Section 3):
Bl19, Blaos Blor-

2.4.6. Central Extensions of 839

Let us use the following notations:

Vi=[A3], Vo=1[An], Vz=[As], Vi=[Az], V5= [A1is+ Az

5
Take 0 = ¥ a;V; € H3(N,). The automorphism group of N}, consists of invertible
i=1
matrices of the form

x 0 0 0

2
|y X 0 0
?=1: 0 x> 0
u x(y+z) o 2
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Since
0 0 & as o* ot oay o ag
rlax 0 0 O _ oy 0o 0 O
¢ a3 a5 ag O $= W+ af oap 0|
0 0 0 O 0 0o 0 0

5 5
we have that the action of Aut(N) on the subspace (Y. a;V;) is given by (¥ a;V;),
i=1 i=1

where
w; = x(XPwg +xzag+ons), af = Pap,
ay = x%(xa3 + z(ay — 2as)), ay = xtay, ar = xias.
We are interested only in the cases with a5 # 0. Choosing v = — %, we have
aj =0.
1. wag =2as5, a3 = ap = 0, then we have the representative (2V4 + Vs);
2. a4 = 2a5, a3 = 0, ap # 0, then choosing x = %/ we have the representative
(V2 42V + Vs);
3. wag = 2as5, a3 # 0, then choosing x = z—:, we have the family of representatives
(aVy+ V342V + Vs);

4. g4 # 25, ap =0, then choosingx =1, z =
tatives (aVy + Vs), »;
5. w4 # 2as5, ay # 0, then choosing x =

—_ % i -
7;—ow; We have the family of represen

ap
a5’

— ____&o&3 .
Z = ~m—a)ay W have the family of

representatives (V, +aVy + Vs), 4.

Summarizing all cases, we have the following distinct orbits
(aVa+V3+2Vy+Vs), (aVy+Vs), (Va+aVy+Vs),
which gives the following new algebras (see Section 3):
Blops Bloss Bloy-

2.4.7. Central Extensions of 8‘1‘1

Let us use the following notations:

Vi=[An], Va=[An], V3=[An], Vi=[An], Vs=[Au+Az;+Ap]

5
Take § = ¥ «;V; € H( B%l). The automorphism group of B‘lll consists of invertible
i=1
matrices of the form

X 0 0 O
2

|y X 0 0

¢= z 0 ¥2 0

u x(y+z) o 2

Since
0 0 0 as ay o* o't
tlay a3 0 O | oy 0 0
¢ 0 ag a5 O ¢= 0 aj+a™ af 0]

0 as 0 O 0 as 0 o0

5 5
we have that the action of Aut(311) on the subspace ( }_ a;V;) is givenby ( ¥ aV;), where
i=1 i=1

— — 2
af = x(xaq+yas), a5 = x°a,

ay = x(xaz+zas), af = x3ay, wr = x*as.
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_xm

We are interested only in the cases with a5 7 0. Choosing y = —7,

_ _ xa3
z= -2, we
have a] = a3 = 0.

1. a4 = ap = 0, then we have the representative (Vs);
2. a4 =0, ap #0, then choosing x = , /‘;‘—;, we have the representative (V, + Vs);
3. ag # 0, then choosing x = %' we have the family of representatives (¢Vy + V4 + V5s).

Summarizing all cases, we have the following distinct orbits
(Vs), (V2 + V5), (aVy + V4 + V5),

which gives the following new algebras (see Section 3):

B12s, B126, B127.

2.4.8. Central Extensions of 8‘1*6

Let us use the following notations:

Vi=[An], Va=[An], Vi=[An], Vi=[As+Axg], Vs5=[A3]

5
Take § = Y &;V; € H?(B,). The automorphism group of B, consists of invertible
i=1
matrices of the form

x 0 0 O
0 x2 0 0
=10 y x> 0
u v oxy x*
Since
0 0 0 wy ay n* oty
rla as ag O _|a a3+a™ ay O
P10 as 0 0?70 al 0 o[
0O 0 0 O 0 0 0 0

5 5
we have that the action of Aut(B;;) on the subspace ( }_ «;V;) is givenby (¥ a}V;), where
i=1 i=1

o = x(xag+uag), af = 2,
wy = x*(X*az+yes), af = xay, af = x as.
We are interested only in the cases with oy # 0. Choosing u = — %1, we have a = 0.
a5 = a3 = ap = 0, then we have the representative (Vy);
as = a3 =0, ap # 0, then choosing x = %’ we have the representative (V, + Vy);
a5 = 0, a3 # 0, then choosing x = z—i, we have the family of representatives
<06V2 + V3 + V4>,‘
4. a5 #0, ap =0, thenchoosingx =1, y = —Z—:, we have the family of representatives
: 14 1514 .
5. a5 #0, ap # 0, then choosing x = a—i, y=— txi ag, we have the family of represen-

tatives (Vp + V4 + DCV5>0(7£0.

Summarizing all cases, we have the following distinct orbits
(Va+aVs), (Vo + Vi +aVs), (aVa + V3 + Vy),

which gives the following new algebras (see Section 3):

o o i3
B128’ B129’ B130'
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2.4.9. Central Extensions of 8%7

Let us use the following notations:

Vi=[Au), Va=I[Aul, Vi=[An], Vi=[Ap], Vs5=[A3z)]

5
Take § = Y &;V; € H?(B{,). The automorphism group of By, consists of invertible
i=1
matrices of the form

x 0 0 0
loy 0o o0
=10 2 xy 0
u v xz x%y
Since
a0 0 0 ap a o« oatt A
tlas ag 0 O ay oy 0 0
P10 as 0 0|?" |0 «¢ 0 o)
0 0 0 O o 0 0 O

5 5
we have that the action of Aut(3};) on the subspace ( ¥ a;V;) is givenby ( ¥ a}V;), where
i=1 i=1

w; = x(xag+um), o = xyra, af = xyas,
oy = ylywa+zas), ai = xylas.
We are interested only in the cases with a; # 0. Choosing v = — %, we have a] = 0.

as = oy = ag = 0, then we have the representative (V;);

2. a5 = a4 =0, a3 # 0, then choosing x = ’/%’ y = 1, we have the representative

(V2 + V3);

3. a5 =0, a4 #0, a3 = 0, then choosing x =1, y = Z—i, we have the representative
Vo + Vy);

4. ti5 2: 0, ;4> #0, ag # 0, then choosing x = Z—;, y= Z—i %’ we have the representa-

5. ch:e;é(Ov,zoch Z 30,+ttz;;1> i:hoosing x=1y=22z=- ”‘ig‘*, we have the representative
Vi + Vs);

6. zi5 ; 0, 0?3> # 0, then choosing x = %/ y= z—:, z= —“;2‘4, we have the representa-

5

tive (Vo + V3 + V5>.

Summarizing all cases, we have the following distinct orbits
(Va), (V2 + V4), (V2 + V3), (Vo + V3 + Vy), (V2 + Vs), (V2 + V3 + V5),
which gives the following new algebras (see Section 3):
B131, B132, B133, B134, Bi3s, Bise-

2.4.10. Central Extensions of Bjg
Let us use the following notations:

Vi=1[A3], Va=[An], Vi=[An], Vi=[Az], Vs=[Az+Awn]
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5
Take 6 = Y ;V; € H?(B{g). The automorphism group of By consists of invertible
i=1
matrices of the form )

x> 0 0 0
0O x 0 O
¢= y 0 x* 0
u z xy x*
Since
0 0 & O o** o* a; 0
7la a5 0 O | o oy 0 0
P las a0 0]?7T | az ajra 0 0]
0 a5 0 O 0 as 0 0

5 5
we have that the action of Aut(B];) on the subspace ( ¥ «;V;) is given by (¥ a}V;), where
i=1 i=1

a; = xay, wy = xap, af = x(xaz+zas),
wf = —xfya +xtey, af = 2as.
We are interested only in the cases with a5 # 0. Choosing z = — ’%‘53, we have a3 = 0.

1. a1 = ag = ay = 0, then we have the representative (Vs);

2. a1 =ag =0, ap # 0, then choosing x = g—;, we have the representative (V, + V5);

3. a1 =0, ag # 0, then choosing x = z—;, we have the family of representatives
<0CV2 +V4+ V5>,‘

4. w7 # 0, ap = 0, then choosing x = 1, y = %, we have the representative

<aV1 + v5>a7é0;
5. w1 #0, ay # 0, then choosing x = %, y=
tives («Vy + Vo + V5>a¢o-

Summarizing all cases, we have the following distinct orbits

(X2
a1as”

we have the family of representa-

(aVy+ V4 +Vs), (aV1 + Vs), (aV] 4+ Va2 + Vs),
which gives the following new algebras (see Section 3):

BLX

1377 B}

«
1387 B139'

2.4.11. Central Extensions of B,
Let us use the following notations:

Vi=[Au], Va=[Anp], Vs=[An], Vi=[An], Vs=[Agp]

5
Take 6 = Y. ;V; € H?(Bj,). The automorphism group of B}, consists of invertible
i=1
matrices of the form

x 0 O 0
loy 0o o0
=1z o xy 0
u v oyz xyz
Since
0 0 ar O af «F a; O
tlas a4 0 O a3 a; 0 O
¢ 0O 0 0 O ¢ = 0 a* 0 0}
0 as 0 O 0 af 0 0



Mathematics 2023, 11, 777 33 of 49

1

1

5 5
we have that the action of Aut(3},) on the subspace ( ¥ a;V;) is givenby ( } a}V;), where
-1 =1

w; = x(xa;+zan), af = x’yap, af = xyas,
w; = ylywa+oms), ai = xylas.
We are interested only in the cases with a5 # 0. Choosing v = — %, we have ay = 0.

ay = x1 = a3 = 0, then we have the representative (Vs);
ay = a1 =0, az # 0, then choosing y = /z—:, we have the representative (V3 + Vs);

ay =0, a1 # 0, a3 = 0, then choosing x = Z—i, y = 1, we have the representative

<V1 + V5>;
4. ap; =0, a1 #0, az # 0, then choosing x = ﬁ%, y= z—g, we have the representa-

tive (V1 + V3 + Vs);

5. a3 #0, a3 =0, thenchoosingx =1, y = \/%, z = —%, we have the representative
(Vo 4+ Vs);

6. ap #0, az # 0, then choosing x = %, Y= \/Zj;, z = —%, we have the representa-
tive (Vo + V3 + Vs).
Summarizing all cases, we have the following distinct orbits

(Vs), (V3 +Vs), (Vi +Vs), (V14 V3 + Vs), (Vo + Vs), (Vo + V3 + Vs),

which gives the following new algebras (see Section 3):

B140, B141, B142, B143, B1a4, Buss.

2.5. Two-Dimensional Central Extensions of Three-Dimensional Nilpotent Bicommutative Algebras

2.5.1. The Description of Second Cohomology Spaces of Three-Dimensional Nilpotent
Bicommutative Algebras

In the following Table 3, we give the description of the second cohomology space of
two-generated three-dimensional nilpotent bicommutative algebras.

Table 3. The list of two-step nilpotent three-dimensional bicommutative algebras.

BS’;‘ :oelep=ep
HZ, (B3y) = <[A12 + Ao1], [A13 + Az1), [A33]>
Hgicom(BST) = H%om(Bgl) 2 <[A21]/ [A31]>
BS; .o e1e1 —=e3 €6y — €3
HZ, 0 (B35) = ([B12], [821), [A22] )

bicom \"~02 ’ ’
Bg; . e1ep =e3 e8] — —e3
H>(B3;) = <[A11], [A12], [A22]>
Bi(a#0) : ejep =wmes eye; =e3 erer = e3
H2(B3; (« # 0)) = ([Au], [812], [821])
B3;(0) D ey =e3

H2(B34(0)) = ([8u], [A1a], [821], [822], [A32])

2.5.2. Central Extensions of Bgi‘

Let us use the following notations:

Vi=[An+An], Va=[A3+As3], Vi=[An], Vi=[An], Vs5=[Asz]
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The automorphism group of Bgi‘ consists of invertible matrices of the form
0 0

¢ =  wl.
0 y

0 a1 Q& o* oy
¢Tag+as 0 0 |¢p=(ai+a; 0 0],

a+ay 0 ag ay+ay 0 af

N R

Since

5 5
the action of Aut(BS’i‘ ) on subspace < Y ocl-Vl-> is given by < Y zx;‘Vi>, where
i=1 i=1

o x3uq, P% wxay + xyap +yzas, o = xas,

_ _ .2
wy = x(waz+yay), af = y-as.

We are interested only in two-dimensional central extensions and consider the vector
space generated by the following two cocycles:

01 =a1V1+arVao+a3V3+a4Vy+as5Vs and 6, = ﬁlvl + ,BQVQ + ,34V4 + ,35V5.

Our aim is to find only central extensions with (a3, a4, B3, B4) 7 0. Hence, we have the
following cases.

1. a3 # 0, then we have

wf = 2y, By = 2By,
oy = wxay+xyay +yzas, P55 = wxPi+ xyPo +yzPs,
wy = xaz, By = 0,
ay = x(waz +yay), Pi = xyPa
o= yas, Bs = ¥*Bs.
(@) Bs # 0, then we can suppose a5 = 0 and choosing w = —%, z= _’(("‘4/2137;5“3/‘2),

we have aj = B5 = 0. Thus, we can assume a4 = B> = 0 and consider follow-

ing subcases:

i ay = By = P1 = 0, then we have the family of representatives
(aV1+ V3, Vs);

ii. ap = By =0, B1 # 0, then choosing x = { 185‘81_1, y =1, we have the
family of representatives («V1 + V3,V + Vs);

iii. ay =0, Bs #0, B1 = 0 then choosing x = /35/3;1, y = 1, we have the
family of representatives («Vq + V3, V4 + Vs);

iv. ay =0, Bs #0, By # 0, then choosing x = ﬁﬁﬁflﬁgl, y= ﬁiﬁflﬁgz,
we have the family of representatives (aV1 + V3, V1 + V4 + Vs);

V. ay #0, Bs = B1 = 0, then choosing x =1, y = 0(30(2_1, we have the
family of representatives («V1 4+ V, + V3, Vs);

vi. ay # 0, s = 0, B1 # O, then choosing x = tx%ﬁlocgzﬁgl,
y = a3flag 3/35_2, we have the family of representatives
<DéV1 +Vo+V;3, Vi + V5>;

vil.  ap #0, Bs # 0, then choosing x = azﬁM;lﬁgl, y= azﬁiaglﬁgz, we
have the family of representatives (¢V1 + V, + V3, V1 + V4 + Vs);

(b) Bs=0,p4 #0.
agBr—afy

i a5 = B1 = 0, a1B1 # azPy, then choosingy =1, w = 1Bt
have the family of representatives (¢ V1 + V3, BV, + V4>a7gﬁ;

we
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ii. a5 = B1 = 0, a1fs = a3P2, apnz = wjay, then choosing y = 1,
W= —405 1, we have the family of representatives
(aV1 + V3,aVy + Vy);

ii. a5 = B1 =0, a184 = azPo, a203 # wq04 then Choosing X = a4fr — 24,
y = —a3Ba(asfo — apBs), and w = agPfa(asPr — a2B4), we have the
family of representatives («V1 + Vo + V3,aVy + Vy);

iv. a5 =0, B1 # 0, then choosing

x=1y=4g,
_ (“3/52+064ﬁ1*N1ﬁ4)*\/(“3ﬁz+agﬁ1*061/54)2*4“3/51(1’64%*062!34)
a3P4 ’

(©

(d)

we have the family of representatives (¢V1 + V3, V1 + BV2 + Vy);
V. a5 # 0, B1 = 0, then choosing
_ /azas(agBa—azpy)
a3Po—a1fy 7
we have the family of representatives (¢V1 + V3 + V5, V2 + V4);
Vi. as # 0, B1 # 0, then choosing
2 2R3 2 3 2
ply = 0 = S andz = SRR,

we have the family of representatives (aV1 + V3 + V5,V + Vy);

X=uwa5Yy=—/a3n5z=0and w =

X =

Bs = 0,64 =0, B1 # 0, then we can suppose a7 = 0 and consider following
subcases:

i a5 = 0, then choosing w = —%, we have 7 = 0.

A.  ifay = ay = 0, then we have a split algebra;
B. ifag = 0, a4 # 0, then choosing x =1,y = %’ we have the
representative (V3 + Vy, Vy);
C. if ap # 0, then choosing x = 1,y = Z—;, we have the family of
representatives (Vy + Vi +aVy, V1);
ii. as # 0, B2 = 0, then choosing x = a5, y = \/a3a5,z2 = —ap and w = 0,
we have the representative (V3 + V5, V1);
iii. a5 # 0, B2 # 0, then choosing
_ w3k wBi(mpi—np)
~uash Y T gy 2]

we have the representative (V3 + V5, Vi + V7).

z = andw =0,

Bs = Pas = B1 = 0,62 # 0, then we can suppose a; = 0 and choosing

w=— %, we have a) = 0. Thus, we have following subcases:
i if a5 = 0, then we have the family of representatives (V1 + V3, V3);
ii. if a5 # 0, then choosing x =1, y = 1x30¢5_1, we have the family of

representatives («V; + V3 + V5, V).

2. w3 =0, a4 # 0, then we can suppose B4 = 0.

(@)

0 = X, Bi = Xy,
ay = wxaq+xyay +yzas, P5; = wxPq+ xyPo +yzPs,
ay = 0, B3 = 0,
ay = XYy, By = O,
af = ylas, Bs = yBs.
5 # 0, then we can suppose a5 = 0 and choosing z = — M, we have
Ps # pp g VBs
B5 = 0. Thus, we have following subcases:
i if B1 = 0, then &y # 0 and choosing x =1, y = %’ w= —% we have

the representative (V1 + V4, Vs);
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ii. if B1 # 0, a1 = 0 then choosingx =1, y = 4/ %, we have the family of
representatives («Vy + Vy, Vi 4 Vs);

iii. if By # 0, a1 # 0 then choosing x = ‘z‘g;, y = aggg, w = ?g%, we
have the representative (V1 + Vg4, V1 + V5).
(b) Bs =0, By # 0, then we can suppose &1 = 0 and choosing w = — %, we have
B5 = 0. Thus, we have following subcases:
i if a5 = 0, then we have the family of representatives (aV, + V4, V1);
ii. if a5 # 0, then choosing x = 1, y = %' z = —z—g, we have the

representative (V4 + V5, Vy).

(o) Bs = B1 =0, B2 # 0, then we can suppose ap = 0. Since in case of a1 = 0,
we have a split extension, we can assume a1 # 0, Thus, we have following

subcases:

i. if 5 = 0, then choosing x =1, y = %, we have the representative
<V1 + Vg, V2> ;

ii. if w5 # 0, then choosing x = ai‘;, Y=t a , we have the representative
<V1 + V4 + Vs, V2>.

Now we have the following distinct orbits:

<DCV1 + V3, V5>, <06V1 + V3, Vi + V5>, <DCV1 4+ V3, Vi + V5>,
(avl + V3, Vi+Vs4+ V5>, <£¥V1 + V7, + V3, V5>, <IXV1 +V,+ V3,V + V5>,
<DCV1 + Vo + V3,‘BV1 +V4+ V5>, <0éV1 + V3, ﬁVz + V4>,
<aV1 4+ V34 V3,aV, + V4>, <0(V1 +V3,Vi+BVy+ V4>,
<1XV1 +V3+ V5,8V + V4>, <0CV1 +V3+V;5,Vi+ V4>, <V1,V3 + V4>,
<V1, Vo+ V3 + IXV4>, <V1, V3 + Vs, >, <V1 + V5, V3+ Vs, >, <0¢V1 + V3, Vz},
<DCV1 + V3 + V5, V2>, <V1 + Vg, V5>, <V1 + Vs,aVo + V4>, <V1 + V4, Vi + V5>,
<V1,0€V2 + V4>, <V1, Vi+ V5>, <V1 + Vg, V2>, <V1 4+ V4 + Vs, V2>.

Hence, we have the following new five-dimensional nilpotent bicommutative algebras
(see Section 3):

% o Ii% o @, % a,p B
B146’ B147, B148’ B149, B150/ B151, B152/ B153, 8154/ B155, 8156’ B157, Biss, B159, Bi60, Bi61,
14 14
Bisss Blgss Bisa, Bigs, Biss, Bigy, Bies, Bieo, Bi7o-

2.5.3. Central Extensions of B3} (0)

Let us use the following notations:
Vi=[Anl, V2=I[A], Vi=[An], Vi=I[An] Vs5=][As]

The automorphism group of 3; (0) consists of invertible matrices of the form

Since

v 0 o atowy
4)T az ag 0 )= ay ay 0 ],
0 a5 O 0 af O

5 5
the action of Aut(53;(0)) on the subspace ( ¥ «;V;) is given by (¥ a;V;), where
i=1 i=1

w; = x(xagtzap), af = xPyay, af = xyas,
_ _ 2
ay = ylyag+tas), af = xy‘as.
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We are interested only in (ay, a5) # (0,0) and consider the vector space generated by
the following two cocycles:

01 =1V +aoVy+a3Vz+ay4Vy+a5Vs and 6, = f1V1 4+ B3Vs+ BaVa+ B5Vs.

1.  ap #0, then we have

o = x(xa;+zan), B} = x*By,
Wy = x’yap, By = 0,
a3 = xyas, B3 = xyps,
o = ylyaattas), By = y(yPa+1tPs),
v = xylas, By = xy’ps.
(a) Bs # 0, then we can suppose a; = 0 and choosing z = —ﬂ t = yﬁﬁ L, we

have a] = B; = 0. Thus, we have following subcases:

i

ii.

1ii.

iv.

Vi.

Vii.

Viii.

ix.

a3 = g = B3 = P1 = 0, then we have the representative (V;, Vs);
a3 =wag = B3 =0, B1 # 0, then choosing x = ’55 , ¥ =1, we have the
representative (V,, V1 + Vs);

a3 = ag = 0 B3 # 0, 1 = 0, then choosing y = %, we have the
representative (Vy, V3 + Vs);

a3 =wn4 =0, B3 #0, B1 # 0, then choosing x = /5/137!%35’ y= %, we have
the representative (V,, V1 + V3 + Vs);

a3 =0, a4 #0, B3 = 1 = 0, then choosingx =1, y = %’ we have
the representative (V, + V4, Vs);

2 2
a3 =0, ag #0, B3 =0, B1 # 0, then choosing x = ¢ il y=73 by
a3Bs 25

we have the representative (V, + V4, V1 + Vs);

a3 =0, ag #0, B3 # 0, then choosing x = \/% y =
the family of representatives (V, + V4, aVq + V3 + Vs);
a3 # 0, ag = P71 = B3 = 0, then choosing x = %” we have the
representative (V, 4+ V3, Vs);
a3 #0, ag = B1 =0, B3 # 0, then choosing x = ﬂlz’ Y= g we have
the representative (V, + V3, V3 + Vs);

%, we have

a3 # 0, ag =0, B1 # 0, then choosing x = a , Y= lng;, we have
the family of representatives (V, + V3, Vi —l— sz3 + V5)0@)=0(=a),

a3 # 0, ag # 0, then choosing x = lx , Y= M a , we have the family of
representatives (Vy + V3 + Vg, aVy + Vs + V5>

(b) Bs = 0,Bs # 0, then choosing t = 0, z = w, we can suppose

f—
X =u

i.

ii.

iii.

iv.

*2f4
= 0 and have following subcases:

a3 = a5 = B3 = P1 = 0, then we have the representative (Vy, Vy);

a3 =5 = B3 =0,B1 # 0, then choosing x =1, y = g] we have the

representative (V, V1 + Vy);

a3 =as5 =0, B3 # 0, then choosingx =1, y = %, we have the family
of representatives (V,aVy + V3 + Vy);

a3 = 0, a5 # 0, then choosing x = z—;, y = 1, we have the family of
representatives (Vy + V5, aVq + BV3 + Vy);

a3 # 0, a5 = B3 = B1 = 0, then choosing x = %, we have the
representative (V, 4+ V3, V4);
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(©

(d)

NG
Vo

vii a3 #0, a5 = B3 =0, By # 0, then choosing x = 32, y =

have the representative (V, + V3, V1 + V4>'

vii. a3 #0, a5 =0, B3 # 0, then choosing x = 072' y= ii?, we have the
family of representatives (V, + V3, txvl + Vg + Vy);

vili.  az # 0, a5 # 0, then choosing x = az, y = &2, we have the family of

representatives (Vy + V3 + V5, aV1 + V3 + Vy).

Bs = Ba =0, B3 # 0, then choosing z = Wm‘;ig:llﬁ), we can suppose &} =

a3 = 0 and have following subcases:

i a5 = B1 = ag = 0, then we have the representative (V,, V3);

ii. a5 = B1 =0, ag # 0, then choosing x = 1, y = %’ we have the
representative (V, 4+ V4, V3);

iii. a5 =0, B1 # 0, ag = 0 then choosing x =1, y = %, we have the
representative (Vy, V1 + V3);

iv. a5 =0, B1 #0, ag # 0, then choosing x = z‘;g;, y= 24/3; we have the
representative (V, + Vy, V1 + V3);

V. a5 # 0, then choosingy =1, x = %’ t = _%/ we have the family of
representatives (Vy + Vs, a4V + V3).

Bs = Bs = B3 = 0, B1 # 0, then we can suppose &] = 0 and consider following

subcases:

i. a5 = g = a3 = 0, then we have the representative (V,, V1);

ii. a5 = ag =0, a3 # 0, then choosing x = g—;, we have the representative
<V2 + V3, V1> ;

iii. a5 =0, ag # 0, a3 = 0, then choosing x =1, y = z—i, we have the
representative (Vy 4+ V4, V1);

iv. a5 =0, ag # 0, a3 # 0, then choosing x = DQ, y= azi , we have the
representative (V, + V3 + Vy, V1);

V. as # 0, ag = 0, then choosing x = %, y=1,t= —z—‘;, we have the
representative (V, 4+ V5, V1);

vi. as # 0, az # 0, then choosing x = Dlz’ y= z: t= _%’ we have the

5

representative (V, + V3 + V5, V).

2. wp =0, then a5 # 0 and we have

(@)

o = X, Bi = Py,
ay = 0, g5 = 0,
G = s, B = xybs,
0y = ylyast+tas), By = yPa
ar = xy2a5, g = 0.

B1 # 0, then choosing t = y('xlﬁéiﬁf“lﬁl), we can suppose &7 = «; = 0 and have

following subcases:

i a3 = B4 = B3 = 0, then we have the representative (Vs, V1);

ii. a3 = s = 0, B3 # 0, then choosing x = 1,y = %, we have the
representative (Vs, Vi + V3);

iii. a3 =0, Bs # 0, then choosing x =1,y = gl , we have the family of
representatives (Vs, Vi +aV3 + V4>O(’X) O(=),

iv. a3 # 0, Bs = B3 = 0, then choosing x = 1,y = z—;, we have the
representative (V3 + V5, V1);
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V. a3 #0, By =0, B3 # 0, then choosing x = Z;g?,y = 2, we have the
representative (V3 + V5, V1 + V3);
vi. a3 # 0, By # 0, then choosing x = 72 %,y = 22, we have the family
of representatives (V3 + Vs, V1 +aV3 + V4)O(“)EO(7”‘).
()  B1 =0, B3 # 0, then choosing t = %, we can suppose a3 = a; =0
and have following subcases:

i a1 = B4 = 0, then we have the representative (Vs, V3);

ii. a1 =0, By # 0, then choosing x =1,y = g—i, we have the representa-
tive <V5, Vi3 + V4>;

iii. a1 # 0, B4 = 0, then choosing x = z—?,y = 1, we have the representative

(V14 V5,V3);
iv. a1 # 0, By # 0, then choosing x = Z;lg%,y = z;gg, we have the repre-
sentative (V1 + Vs, Vi + Vy).
(c) B1 = B3 = 0, then B4 # 0, and we can suppose a; = 0. Consider following

subcases:

i a1 = a3 = 0, then we have the representative (Vs, Vy);

il. a1 =0, a3 # 0, then choosingx =1,y = z—g, we have the representative
(V3 + Vs, Va);

iii. a1 # 0, a3 = 0, then choosing x = Z—i’, y = 1, we have the representative

(V1+V5,Vy);
iv. a1 # 0, a3 # 0, then choosing x =
tative (V1 + V3 + V5, Vy).

Now we have the following distinct orbits:

<V2, V5>, <V2, Vi+ V5>, <V2, Vs + V5>, <V2, Vi+V3+ V5>, <V2 + Vg, V5>,
(V2 + V4, V14 Vs), (Vo + Vg, aVi + V3 + Vs), (Vo + V3, Vs), (Vo + V3, V3 + Vs),
(Va2 + V3, Vi 4 aVs + V5)OW=0(=0) 7, 4 Vs 4+ Vy,aVy + V4 + Vs), (Va, V),
(Va,V1+Vy), (Vo,aV1+ V34 Vy), (Vo + Vs5,aV1 + BV3+ Vy), (Vo + V3, Vy),
<V2 + V3,V + V4>, <V2 + V3,aV1+ V3 + V4>, (Vz + V34 V5,4V + ﬁV3 + V4>,
(V2,V3), (Va+ V4, V3), (Vo,V1+V3), (Va+ V4, Vi + V3), (Vo + Vs,aV + V3),
(V2, V1), (V2 + V3, V1), (V2 + V4, Vi), (V2 + V3 +Vy, Vi), (V2 + V5, Vy),
(Va4 V3 + Vs, V1), (Vs, V1), (Vs, V1 + V3), (Vs, V1 + aV; + V,)0@=00),
(V3 + Vs, V1), (V3 + Vs, Vi + V3), (V3 + Vs, Vi +aV3 4 V) OW=00 g, vy,
<V5, Vs + V4>, <V1 + Vs, V3>, <V1 + Vs, Vs + V4>, <V5, V4>, <V3 + Vs, V4>,
<V1 + Vs, V4>, <V1 4+ V3 + Vs, V4>.

Hence, we have the following new five-dimensional nilpotent bicommutative algebras
(see Section 3):

2

14
3 ., 03 )
Gag Y = moWe have the represen

&,
Bi71, B172, B173, B174, B175, B17s, Bi77, B17s, B179, By, Blgﬂll Bigo,
«, «,
Bis3, Bisss Blglé/ Bigs, B1s7, Bigg, 818/3, B, B, B19o, B1o1, B}q,, B193, B1os, B1os, B1os, B1oy,
0,0,0
B1os, B199, B2oo, B3g1 B202, B203, Bgss B2os, Bsy ", Baos, BYs, Blo1, B207, By, BYys-

3. Classification Theorem for Five-Dimensional Bicommutative Algebras

The algebraic classification of complex five-dimensional bicommutative algebras
consists of two parts:

1.  Five-dimensional algebras with identity xyz = 0 (also known as two-step nilpotent
algebras) are the intersection of all varieties of algebras defined by a family of poly-
nomial identities of degree three or more; for example, it is in the intersection of
associative, Zinbiel, Leibniz, Novikov, bicommutative, etc, algebras. All these alge-
bras can be obtained as central extensions of zero-product algebras. The geometric
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classification of two-step nilpotent algebras is given in [9]. It is the reason why we are
not interested in it.

2. Five-dimensional nilpotent (non-two-step nilpotent) bicommutative algebras, which
are central extensions of nilpotent bicommutative algebras with nonzero products of
a smaller dimension. These algebras are classified by several steps:

(a)
(b)

(©
(d)

Complex split five-dimensional bicommutative algebras are classified in [13];
Complex non-split five-dimensional nilpotent commutative associative alge-
bras are listed in [27];

Complex one-generated five-dimensional nilpotent bicommutative algebras
are classified in [14];

Complex non-split non-one-generated five-dimensional nilpotent non-commutative
bicommutative algebras are classified in Theorem (see below).

Theorem 2. Let B be a complex non-split non-one-generated five-dimensional nilpotent (non-2-
step nilpotent) non-commutative bicommutative algebra. Then B is isomorphic to one algebra from
the following list:
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exe] = —e3 exey = —ey erez = —Pes
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gg : €161 = é€5 €16y = €3 €261 = €4
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Bgo : ejep =e3 ejes = es exe1 = ey
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Blo A7 (00) : e1ep = e3 e1e3 = Pes exe; = ey
€r6e4 = €5 €36y — es ege1 = €5
Bso : e1e1 = ey e1ep) = e3 eje3 = e5 e1eq = —2es5
eye1 = —e3 exer = 2e3 + 64 exey = —e5
Bg, : e1e] = ey e1ep = e3 e1e3 = Kes ereq = (1 —2a)es
€re1 — —e3 €rey = 263 +€4 €263 = €5 €264 — —Neés5
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€61 — —e3 + es5 €rey) = 263 + €4 €263 = €5 €264 — —€5
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€264 = €5 €361 = €5 €462 = €5
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Bg’lﬁ : €16y = ey €163 = Kes €164 = €5 €26y — €3
eyes = eg epey = nesg eqep = fPes
g2 : €16y = €4 €164 = €5 €281 = €5
€26y = €3 €36y = €5 €467 — Kés5
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€361 — es €467 = €5
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erey = e5 ese; = apfes e3er = e5 eqep = fPes
Bl : e1er = ey ere] = ey erer = e3
€361 — eé5 €467 = €5
Bi‘éézo : €162 = €4 €163 = €5 €261 — ey €267 = €3
€6y =65 €361 = —¢65 €46 = —%65
B'i‘égo : €16y = ey e1e3 = ée5 €201 — ey €r6ey = €3
1
€264 = €5 €3] — —¢€5 €36y = €5 egey = — 65
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B[i‘04 €181 = €5 €16y = ey €163 = Kes €281 — Key
€26 e3 €264 — Kés €361 — —WNeés €46y) — —¢€5
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Blgg eje1 =e5 e1ey = ey e1e3 = aes
ere1 ey €26y — €3 €264 wes
e3eq —Kes €36y — €5 eqen —e5
Bige €161 €2 €261 =é3 €361 = €5 €464 €5
Bio7 ele] = e e1ey = ¢es exe; = e3
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€261 = €5 €461 = 65
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€202 5 €361 = €5 €464 €5
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Bll#S e1eq € €16 = €3 e1es3 es5 €re1 wes
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Blli e1e1 € €16 = €3 e1e3 es5 €2e1 wes
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€164 = €5 €261 — ey €262 nes
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B[i‘19 e1e1 = e €16y = €5 €163 = é4 ere1 €y
ere3 e5 €363 — Kkes5 eqeq e5
B%ZO e1eq €2 €163 = é4 e€re1 [}
e€re3 es5 €363 — Kkés5 eqeq e5
%21 e1eq (%] €16y = Kes5 ei1es €4 €261 eq +e5
eye3 = es5 eze3 = 2es5 ese1 = e5
%22 erel ] e1ex = ey e1éy (4] (141 aes
ese1 = e4+es5 e3ey = e5 eze3 = 2es5
123 e1e1 = e e16r = ey e1ey = €5
€3€1 €4 €36y = €5 €363 — e5
Bf,4 e1e1 = e e16r = ey e1eq4 = €5 exe1 = 65
€361 €4 €36y = €5 €3€3 nes
Bi2s e1ep = e3 e1e3 = ey eley = es5
€362 €4 €363 = €5 €467 = €5
Bi2e e1ex =e3 e1e3 = ey eley = es5 exe1 = es5
€367 €4 €363 = €5 €467 = €5
B[{27 €162 e3 €163 = €4 €164 = €5 €2e1 nes
e3ep = e4 + 65 e3e3 = e5 eqey = e5
B%ZS e1ep €3 €163 = ey €164 = €5
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8%29 e1ep e3 €163 = é4 €164 = €5 €re1 e5
€262 [} €263 = €5 €36y — Keés5
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Bis1 ejep =e3 ejes = ey e1eq = es
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Bfys : e1e1 = e e1e0 = ey e1e3 = aes
exe) = ey eser = (x+1)es
Biss : eje] = e e1ep = ey exe1 = ey
€361 = €5 €363 = €5
Bigo : eje] = e ejep = ey ejes = es
ere1 = ey e3e1 = e4 +e5
Bi7o : eje; = e ejep = ey ejes = es
ere] = ey e3e] = e4 tes5 e3e3 = ¢4
Bin1 : e1er =e3 e1e3 = ey e3er = e5
Bi72 : ele1 =es e1er =e3 e1e3 = ey eser = e5
Bi73 : e1er =e3 e1e3 = ey exe1 =es5 eser = e5
Bi74 : ele1 = es e1er =e3 e1e3 = ey
€261 = €5 €36y = €5
Bi7s : e1ep = e3 e1e3 = €4 €26y = €4 e3ey = e5
B176 : ele1 = es e1ex =e3 e1e3 = ey
€267 — €4 €36y = €5
Bf,, : e1e1 = wes e1er = e3 e1e3 = ey
€281 = €5 €26y — €4 €36y — €5
Bi7g : e1ep =e3 e1e3 = ey exe1 = ey ezep = es
Bi79 : e1ep =e3 e1e3 = ey exe1 =eg+es ezey = es
B%SO : €161 = é€5 €16y = €3 €163 = é4
ere1 = e4 + es e3¢y = e5
u, — — — —
B181 €161 = «es5 €16y = €3 €163 = €4 €261 = €4
exey = e4 + Pes e3ex = e5
Bisz : ejep =e3 ejes = ey €€y = ¢5
Biss : eje1 = e e1ep =e3 e1e3 = ey €€y = ¢5
%84 : e1e1 = wes e1ep = €3 e1e3 = ey
€61 = €5 €6y = €5
«, _ _ _
B185 eje1 = aes ejep = e3 e1es = ey
ere1 = Pes ey = ée5 e3er = ey
Bise : e1ex =e3 e1e3 = ey exe1 = ey exer = e5
Bigy : e1e] =ées e1ey =e3 e1e3 =eyq
€261 = €4 €262 = €5
Biss : e1e1 = wes e1er = e3 e1e3 = ey
e8] = e4 +e5 ey = €5
u, _ _ _
B189 eje1 = aes e1ep = e3 e1e3 = ey
exe1 = eq + Pes exer = e5 e3er = ey
Bigo : eje] =es e1ep =e3 e1e3 = ey exe; = es
Big1 : eje1 = ¢5 e1ex = €3 eje3 = ey
exe1 = e5 exer = ey
o2 : eje1 = aes e1er = e3 e1e3 = ey
exe1 = e5 e3er = ey
Bigs : eje] =es ejep =e3 e1e3 = ey
Biog : eje1 = e e1ep =e3 e1e3 = ey exe1 = ey
B1gs : e1ep =ées e1e; =e3 e1e3 = ey eey = ey
Bi1gs : e1ep =ées e1e; =e3 e1e3 = e
€61 = €4 €6y = €4
Bio7 : e1ep =ées5 e1e; =e3 e1e3 = ey eser = ey
Bios : e1e; =ées5 e1e; =e3 e1e3 = e
€61 = €4 e3ey = ey
B1go : e1e] =ées5 e1ex = e3 eser = ey
Baoo : eje1 = e5 e1ep = e3 exe] = €5 e3ey = ey
BSn : e1e1 = e5 e1er = e3 ere1 = wes
exep = €5 e3ey = ey
Baoz : eje; = es e1ep =e3 exe1 = ey ezer = ey

Baos : €161 =65 €162 = €3 exe] =eq+e5 €36 = €4
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BSos : e1e1 = es e1er = e3 ere1 = ey + wes
exe; = es5 eze; = ey
B2os : ejex = e3 exe1 = es5 ezey = ey
B2os : eje) = ey ejex = e3 exe1 = es ezey = ey
Baoz : ejex = e3 exe1 = ey exe; = es5 e3ey = ey

Note that B, is a commutative algebra and

]131%2 = B%l' Biééﬁ = Bféa' B35 ~ Byg', B3g ~ Byg' By ~ By, 1
Bg';)'#() = B(l)gf Bég'o) =~ Blgy, By =~ Blgg, ngo = 517516'71/ Bébo = Bos, ngé 00 o~ BE ’
Boy =~ B1%), Bgf 0~ B’ Bl = By, Bgiﬁéo =~ B%;,a),a;eo, Bgy = By,
B(O,O) ~ BO B“"B ~ B%% BY, ~ B% B"‘/ﬁﬁ ~ B%’%’ﬁafz
81— Piops Pg1 = Pgy , Pg3 = Bg3, Dg7 = Dgy ’
By{ ~ By; ¥ B, ~ By, B ~ By', B ~ B, Byt ~ By 7Y,

—ZN—ZﬁN—aN—zxsz—txsz—tx
B105 - B104' BllZ - BllZ’ B180 - BlSO’ B201 - B201’ B2O4 - B204'
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