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Abstract: When using machine learning methods to make predictions, the problem of small sample
sizes or highly noisy observation samples is common. Current mainstream sample expansion methods
cannot handle the data noise problem well. We propose a multipath sample expansion method (AMLI)
based on the idea of linear interpolation, which mainly solves the problem of insufficient prediction
sample size or large error between the observed sample and the actual distribution. The rationale of
the AMLI method is to divide the original feature space into several subspaces with equal samples,
randomly extract a sample from each subspace as a class, and then perform linear interpolation
on the samples in the same class (i.e., K-path linear interpolation). After the AMLI processing,
valid samples are greatly expanded, the sample structure is adjusted, and the average noise of the
samples is reduced so that the prediction effect of the machine learning model is improved. The
hyperparameters of this method have an intuitive explanation and usually require little calibration.
We compared the proposed method with a variety of machine learning prediction methods and
demonstrated that the AMLI method can significantly improve the prediction result. We also propose
an AMLI plus method based on the linear interpolation between classes by combining the idea of
AMLI with the clustering method and present theoretical proofs of the effectiveness of the AMLI and
AMLI plus methods.

Keywords: multipath; linear interpolation; sample optimization; predicted effects
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1. Introduction

When using machine learning models to make predictions, a series of problems, such
as insufficient sample sizes, missing parts of data, or large observation errors, are common.
Especially for small sample datasets, how to improve model performance by using effective
sample optimization techniques is crucial.

Improving model performance by increasing the number of numerical data can be
traced back to the interpolation method at the earliest. Boor and Carl [1] proposed the cubic
spline interpolation method, and Mitas and Mitasova [2] proposed the spatial interpolation
method. Lu and Wong [3] proposed an adaptive inverse distance spatial interpolation
algorithm, which uses the inverse proportional relationship between the distance between
neighbors and the interpolation weight. Efron [4] proposed using the bootstrap resampling
method based on jackknife; Chawla et al. [5] proposed the synthetic minority oversampling
technique (SMOTE); Pan and Yang [6] proposed a transfer learning method to simultane-
ously model different types of label samples to increase sample size for model training.
Fernandez et al. [7] proposed the SMOTE smoothing method, which constructs a new
sample by randomly selecting a sample and randomly selecting multiple samples from its
K-nearest neighbor.

With the advent of the era of big data, there are also some studies on sample optimiza-
tion in machine learning and deep learning. Zhu (2005) [8] proposed active learning and
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semi-supervised learning using the existing samples in the original sample space and using
certain algorithms to label the unlabeled samples with high quality to achieve the effect of
sample optimization. Eisenberger et al. [9] proposed an unsupervised shape interpolation
method based on a neural network.

Recent technology research found that Few-Shot Learning has become a promising
future development direction. Wang et al. [10] pointed out that the most important point
in Few-Shot Learning was the use of prior knowledge. Prior knowledge of Few-Shot
Learning comes from three sources: data, models, and algorithms. Current machine
learning methods are in stark contrast to human perception, and their sample learning
efficiency is very low. Few-Shot Learning is an exciting area of machine learning; it can
solve the problem of low sample learning efficiency. Based on matching neural networks
(matching learning), Vinyals et al. [11] proposed an LSTM to calculate the supported FCE,
and they also optimized the sample by adding another LSTM to modify the embedding
of the query samples. Snell et al. [12] proposed a striking inductive bias in the form
of a class of prototypes in prototypical networks, and its achieved Few-Shot Learning
performance can exceed matched networks without FCE complexity. Kokol et al. (2022) [13]
proposed the synthetic data learning method and demonstrated that small samples can
be better than large samples of low quality in the context of statistical machine learning.
Zhou et al. (2022) [14] proposed a new improved multiscale edge-labeling graph neural
network (MEGNN) to address the small sample size problem by acquiring as much feature
information as possible.

When the sample size is expanded, the distribution of the added samples often deviates
greatly from that of the actual samples (unknown). Moreover, the data observed daily
often contain noise, and the expansion of samples with noise often aggravates the influence
of the noise on the prediction result. The adaptive multipath linear interpolation AMLI
method proposed in this paper can effectively solve these problems and ensure that most
of the added samples are valid ones (i.e., their distribution generally deviates only slightly
from the actual distribution). The AMLI method is mainly based on the linear interpolation
method to expand the samples of the original data. The idea is to divide the original feature
space into several subspaces with an equal number of samples, extract one sample from
each subspace as a class, and then perform linear interpolation for the samples in the same
class, which is K-path linear interpolation. This method requires two hyperparameters
(K and η) in advance. The visual interpretation of parameter K is the number of samples
existing in each feature subspace, while η is the number of samples interpolated per unit
distance in the linear interpolation of the samples. In the simulation and empirical research,
we found that the selection of parameter K is critical, which varies with different samples.
By selecting appropriate hyperparameters, many valid samples can be expanded, and the
proportion of samples in which the observed value deviates greatly from the actual value
is reduced so that the composition structure of samples with error is adjusted and sample
optimization is achieved; consequently, the impact of observation noise on the prediction
result is also greatly reduced.

2. Research Hypothesis and Methodology Statement

This section describes the steps of the AMLI method and some assumptions that
should be satisfied when using the AMLI method.

For a given training dataset:

T = {(x1, y1), (x2, y2), . . . , (xN , yN)},

where xi = (x(1)i , . . . , x(n)i ) ∈ X ⊆ Rn is the feature vector of the example, and n is the
feature dimension. yi ∈ R is the corresponding output; i = 1, 2, . . . , N, where N represents
the sample size. Assuming

yi = f (xi − εi) + ε̃, i = 1, 2, . . . , N,
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where f (·) is a continuous function; εi is the set of independent and identically distributed
observation noise; and ε̃ is the model error. The specific steps of the AMLI method are
as follows.

First, the hyperparameter K is determined, and the feature space X is divided into
N/K feature subspaces, each subspace containing K observation samples. Second, a sample
is randomly selected from each subspace to form a set Sd, d = 1, 2, . . . , K, and then, we
have:

T = {S1, S2, . . . , SK},

where each Sd contains N/K samples.
∃ x0 ∈ X, for ∀i, we have x(i)0 = in f

x∈X
{x(i)} and call x0 the feature space min-

imum point. Let L(·) be the distance measurement function of the feature space X

(Sd = {x(d,1), . . . , x(d,N/K)}, x(d,1) = argmin
x∈sd

L(x, x0)); we call the point in each sample

class nearest to x0 the minimum point of the sample class (d = 1, . . . , K.); and x(d,h+1) =
argmin

{x:x∈Sd ,x 6=x(d,1),...,x(d,h)}
L(x, x(d,h)), in which Sd is the observation point having the second

nearest distance to x(d,h) (after x(d,1), . . . , x(d,h) ) (h = 1, 2, . . . , N/K− 1).
After determining the minimum point x(d,1) of the sample class, all the samples

in the set are searched to find the x(d,1) point in the feature space nearest to x(d,2), and
x(d,3), . . . , x(d,N/K). We define the unit distance filling parameter η and use linear inter-
polation in the feature space to interpolate ∑N/K−1

i=1 bη · L(x(d,i), x(d,i+1))c (for the sake of
convenience, the number of interpolated samples in this paper is rounded down and will
not be specifically mentioned below) virtual samples, and the interpolated samples are
equally spaced. x(h,h+1,i)

d represents the ith dummy sample interpolated between x(d,h)

and x(d,h+1)(i = 1, . . . , η · L(x(d,h), x(d,h+1))) in Sd, and for x(h,h+1,i)
d and its corresponding

output y(h,h+1,i)
d , it satisfies:

x(h,h+1,i)
d = x(d,h) + i · x(d,h+1) − x(d,h)

η · L(x(d,h), x(d,h+1)) + 1
,

y(h,h+1,i)
d = y(d,h) + i · y(d,h+1) − y(d,h)

η · L(x(d,h), x(d,h+1)) + 1
.

The above linear interpolation is performed on all sample classes, the number of
interpolations is ∑K

d=1 ∑N/K−1
i=1 η · L(x(d,i), x(d,i+1)), and all dummy samples are added to

the dataset.
The AMLI method divides the original feature space into N/K subspaces with equal

samples and then randomly selects a sample in each subspace as a sample class. When
performing sample classification operations in practical applications, we can calculate the
distances of all observation samples in the dataset to the minimum point of the feature
space and classify each sample into its respective sample class in ascending order. The
specific implementation process of the AMLI method is detailed in Algorithm 1.
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Algorithm 1: AMLI
Input: Hyperparameters K, η

Distance measurement method L(·). e.g., Euclidean distance minimum point
in x0. f eature space set S1, S2, . . . , Sk

Output: T (Resulting dataset)
1 for d = 1, . . . , K do
2 x(d,1) = argmin

x∈Sd

L(x, x0)

3 for h = 1, . . . , N/K− 1 do
4 x(d,h+1) = argmin

{x:x∈Sd ,x 6=x(d,1),...,x(d,h)}
L(x, x(d,h))

5 for i = 1, 2, . . . , η· L(x(d,h), x(d,h+1)) do

6 x(h,h+1,i)
d = x(d,h) + i · x(d,h+1) − x(d,h)

η · L(x(d,h), x(d,h+1)) + 1
,

y(h,h+1,i)
d = y(d,h) + i · y(d,h+1) − y(d,h)

η · L(x(d,h), x(d,h+1)) + 1
.

7 Add (x(h,h+1,i)
d , y(h,h+1,i)

d ) to dataset T
8 end
9 end

10 end

3. Simulation Experiments
3.1. Monte Carlo Simuations

In this section, we will demonstrate the optimization effect of the samples added
by using the AMLI method on the overall samples by using six groups of Monte Carlo
simulations. For the sake of simplicity and to achieve a better visualization effect, the
feature dimension n = 1 is defined, and the real function relationship selected is y = x3.
Since there is a certain error between the observed value of the sample and the actual value,
to simulate this effect, we add noise to the samples after data generation.

The distribution of data and the settings of noise and sample size are as follows:
Simulation 1: N = 200, x ∼ U(−2.5, 2.5), ε ∼ N(0, 1);
Simulation 2: N = 500, x ∼ U(−2.5, 2.5), ε ∼ N(0, 1);
Simulation 3: N = 800, x ∼ U(−2.5, 2.5), ε ∼ N(0, 1);
Simulation 4: N = 200, x ∼ N(0, 2.5), ε ∼ N(0, 1);
Simulation 5: N = 200, x ∼ t(5), ε ∼ N(0, 1);
Simulation 6: N = 200, x ∼ U(−2.5, 2.5), ε ∼ U(−1.732, 1.732).
Simulation 1 is used as the control group, and simulations 2 and 3 are used as experi-

mental groups with different sample sizes; simulations 4 and 5 are experimental groups
with different feature distributions; simulation 6 is an experimental group with different
types of noise (noise distribution parameters are selected to unify the noise variance and
to ensure that the expectation is 0). Some verification indicators (e.g., the proportion
of samples with an error greater than 0.5, 1, 1.5, 2, or 2.5; and the mean square error
(MSE) between the sample observation values and the actual value) are selected to test the
optimization effect of the AMLI method on the original sample after processing.

p(α) =
∑

N+∑K
d=1 ∑N/K−1

i=1 η·L(x(d,i),x(d,i+1))

i=1 I(|xi − x∗i | > α)

N + ∑K
d=1 ∑N/K−1

i=1 η · L(x(d,i), x(d,i+1))
,

MSE(x, x∗) =
∑N

i=1(xi − x∗i )
2

N
,

where x is the observed value of the sample; x∗ is the actual value of the sample; N +

∑K
d=1 ∑N/K−1

i=1 η · L(x(d,i), x(d,i+1)) is the number of total samples after AMLI optimization;
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and α = 0.5, 1, 1.5, 2, 2.5. Due to the randomness of each experiment, we selected different
hyperparameters to perform multiple calibrations in each simulation and calculated the
average value of each of the verification indicators for every 100 experiments.

To reflect the optimization effect of the AMLI method more visually, below, we describe
the AMLI processing process of simulation 1 in detail. First, 200 samples are generated
evenly in the interval of (−2.5, 2.5) (Figure 1(1)). Second, noise that obeys the standard
normal distribution is added to the feature variables (Figure 1(2)). Third, to achieve a better
visualization effect, original samples are divided into only four categories (just to achieve a
better visualization effect, and the verification index is not necessarily optimal) (i.e., the
hyperparameter K = 4) with labels of different colors (Figure 1(3)). Fourth, given the small
interval of the definition domain, high values of the unit distance filling parameter are
selected, and sample filling is performed after setting the hyperparameter η = 100. After
the filling, the sample size reaches 3035 (Figure 1(4)).

Figure 1. Steps of AMLI processing.

The comparison of the visualization effects in Figure 1(2) and Figure 1(4) indicates
that after processing with the AMLI method, the samples can adaptively fit the functional
relationship between x and y.

By using the above method, the parameters of the six simulations are calibrated, and
the verification indicators are calculated, as shown in Table 1.

Table 1. Monte Carlo simulation results.

Simulation MSE p(0.5) p(1) p(1.5) p(2) p(2.5)

Before After Before After Before After Before After Before After Before After
1 0.957 0.762 0.604 0.570 0.316 0.251 0.130 0.083 0.036 0.022 0.010 0.006
2 0.980 0.774 0.614 0.567 0.313 0.258 0.132 0.089 0.043 0.023 0.011 0.005
3 0.977 0.789 0.619 0.571 0.308 0.254 0.131 0.090 0.043 0.025 0.011 0.005
4 0.990 0.701 0.609 0.549 0.317 0.232 0.133 0.073 0.044 0.017 0.011 0.003
5 0.982 0.756 0.611 0.552 0.306 0.245 0.127 0.085 0.038 0.024 0.010 0.005
6 0.987 0.742 0.706 0.632 0.411 0.297 0.126 0.057 0.000 0.000 0.000 0.000
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Remark 1. The optimal effect of each simulation is determined by the lowest MSE after AMLI
processing by traversing all the hyperparameter values according to the grid search method.

Clearly, after the AMLI processing, the MSE of the samples and the proportion of
various error samples have been optimized, most of the added dummy samples are valid
ones, the increase in the sample size does not significantly weaken the AMLI’s optimization
effect, the samples that obey the normal distribution have better optimization performance,
and even the uniformly distributed noise shows good robustness. In many cases, the AMLI
method performs well in data optimization.

3.2. Analysis of Hyperparameter Taking Values

In this section, we discuss the patterns of setting the parameters of K and η in the AMLI
method. First, we examine the setting of parameter K. For the above simulation, we set the
parameter η = 100; perform traversal iterations consecutively by setting K = 1, 2 . . . , 200;
and obtain the average value of the index for one hundred iterations at each setting. The
change trend of the MSE index before and after the AMLI processing is shown in Figure 2.

Figure 2. Changes in the MSE under different K values.

At fixed parameter η values, the optimal value of K increases with the increase in the
sample size; the value range of K varies under different distributions of variables; and the
change in the noise distribution has little impact on the optimal value of K.

Next, we examine the pattern of the setting of parameter η. In the case of simulation 1,
under the condition of K = 21 to take the optimal value, traversal iterations are performed
consecutively by setting the parameter η = 1, 2, . . . , 200; the results are shown in Figure 3.
Clearly, the fluctuation of the sample MSE after optimization by using the AMLI method
decreases with the increase in the value of filling parameter η.
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Figure 3. Changes in the MSE under different η values.

3.3. Comparison with Other Interpolation Methods

The above experiments show that the AMLI method can greatly expand valid samples
and reduce the uniform error of samples as a whole so that the proportion of samples
with large errors is low. The AMLI method achieves sample optimization based mainly
on the idea of interpolation. The main interpolation methods include linear interpolation,
quadratic spline interpolation and cubic spline interpolation. In this section, we will
compare the AMLI method with other interpolation methods to demonstrate its superiority.

Similarly, simulation 1 is used as the control group, and simulations 2–6 are used as
the experimental group, using various interpolation methods with a fixed interpolation
number of 3500–4000. Only the MSE between the processed samples and the actual values
is selected as the evaluation index, and for each simulation, one hundred experiments are
carried out, and their average value is taken. The results are shown in Table 2. In terms
of the MSE, the AMLI method clearly outperforms the other methods, indicating that the
AMLI method has achieved a very significant optimization effect.

Table 2. MSE values of samples under different interpolation methods.

Simulation MSE

AMLI Linear Interpolation Quadratic Spline Cubic Spline

1 0.762 1.385 5.542 9.452
2 0.774 1.618 6.434 8.976
3 0.789 1.812 6.441 8.338
4 0.701 1.578 18.156 42.997
5 0.756 1.203 10.322 29.542
6 0.742 0.959 4.802 6.619
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4. Application of AMLI Method in Machine Learning

In this section, we will describe the performance of the AMLI method in both simulated
and actual data prediction when the method is combined with various machine learning
models. Using the side-by-side method, we divide the training set and the test set in the
ratio of 7:3; the training set is optimized by using the AMLI method. For the machine
learning method, we select the K-Nearest Neighbor (KNN) method, Feedforward Neural
Network (FNN), Gradient Boosting Decision Tree (GBDT) and Random Forest (RF), with
the MSE as the loss function. The hyperparameters of each model and the parameters of K
and η of the AMLI method are calibrated multiple times to obtain the optimal values. The
Euclidean distance is adopted as the distance function:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2,

L(xi, xj) =

√
n

∑
l=1

(xl
i − xl

j)
2.

4.1. Simulated Data Prediction

We assume that for simulated samples with a size of 1000, the simulated data feature
dimension n = 3, different feature dimensions obey different distributions, x1 ∼ N(0, 3),
x2 ∼ U(−3, 3), x3 ∼ t(5), and the weight vector of w1

(3,2), w2
(2,1) is randomly generated.

Let Y = X ·w1
(3,2) ·w

2
(2,1) + ε̃. After the data are generated, noise that obeys the Gaussian

distribution is added to X, which is then further divided into the test set and the training
set. The training set is processed using the AMLI method (K = 40, η = 5), and the total
number of samples after the processing is 9810.

As shown in Table 3, the MSE of the trained model using the data processed by
the AMLI method is smaller in the prediction, indicating that the prediction result is
more accurate.

Table 3. Simulation data prediction results.

MSE KNN FNN GBDT RF

Before AMLI processing 1.70 0.942 1.210 1.507
After AMLI processing 1.07 0.713 1.008 1.320

4.2. Actual Data Prediction
4.2.1. Demand Forecast for Shared Bike Rental

In this section, we present a case study by predicting the demand for shared bicycle
rentals in a certain city. The dataset includes multiple variables, such as season, holiday,
temp, and registered (Table 4). We use the AMLI method to optimize samples of actual
data. On the one hand, we combine the AMLI method with machine learning methods to
examine its optimization performance in actual predictions; on the other hand, given that
the dataset contains multiple categorical data, we can explore whether the AMLI method
can achieve good optimization in prediction when the assumptions of the AMLI method
are violated.
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Table 4. Description of variable indicators.

Variable Name Variable Definition

Season

1 = Spring
2 = Summer
3 = Autumn
4 = Winter

Holiday 1 = Holiday
0 = Non-holiday

Workdays 1 = Working day
0 = Weekend

Weather

1 = Sunny, cloudy
2 = Foggy, overcast

3 = Light snow, drizzle
4 = Heavy rain, heavy snow, heavy fog

Temp Temperature in Celsius
Atemp Apparent temperature

Humidity Humidity
Windspeed Wind speed

Casual Number of nonregistered users
Registered Number of registered users

Count Total number of car rentals

The dataset contains 7620 observation samples. We select 1000, 3000, and 7620 samples
consecutively to examine the prediction optimization of the AMLI method in combination
with machine learning methods when the sample size is insufficient, fair, or sufficient.

As shown in Table 5, at various sample size levels, the AMLI method has achieved a
certain optimization of prediction effect.

Table 5. Prediction results of shared bicycle rental demand (MSE).

N Hyper-Parameter N (After Processing) AMLI Processing KNN FNN GBDT RF

1000 K = 25
η = 5 191,057 Before 208.230 0.9677 88.152 231.210

After 46.340 0.0791 68.394 158.940

3000 K = 40
η = 3 290,856 Before 42.757 0.3342 22.794 43.679

After 26.020 0.0084 14.301 25.451

7620 K = 65
η = 1 428,277 Before 17.464 0.1168 9.879 23.521

After 6.798 0.0051 6.981 2.472

4.2.2. Concentration Forecast for PM2.5

In this section, we present a case study by predicting the concentration for PM2.5 in
a certain city to rule out the randomness of the dataset. The dataset includes multiple
concentrations of air pollutants such as PM10, CO, SO2, NO2 and O3. The dataset contains
3193 observation samples. We select 500, 1500, and 3193 samples consecutively to examine
the prediction optimization of the AMLI method. As shown in Table 6, the AMLI method
still has a good optimization effect.

Table 6. Prediction results of shared bicycle rental demand (MSE(10−3)).

N Hyperparameter N (After Processing) AMLI Processing KNN FNN GBDT RF

500 K = 17
η = 10 1089 Before 3.16 4.45 3.14 3.39

After 2.89 2.55 2.36 3.01

1500 K = 23
η = 30 7003 Before 2.69 2.54 2.33 2.62

After 2.18 2.07 1.86 2.33

3193 K = 50
η = 60 24,559 Before 1.77 1.63 1.48 1.54

After 1.41 1.13 1.07 1.16
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5. Proof

In this section, we will present the proof for the samples that satisfy the AMLI hy-
pothesis that after processing with the AMLI method, the average observation error of the
samples is reduced, and the proportion of samples with different errors is adjusted.

The rationale of AMLI is to divide the original feature space into N/K subspaces with
K samples, randomly extract a sample from each subspace as a class to divide the original
dataset into K classes, and then perform linear interpolation between two adjacent samples.
In essence, AMLI can be viewed as a method of linear interpolation between two subspaces
with close distances through K paths.

For the dataset T = {(x1, y1), (x2, y2), . . . , (xN , yN)}, we select two subspaces that are
assumed to have equal samples: X(1),X(2) ⊆ X ⊆ R, and X(1) ∩X(2) = ∅. In these two
subspaces, we assume the following common relation is present:

y = f (x∗) + ε̃ = f (x− ε) + ε̃, (1)

where x∗ is the actual value of x after removing the observation noise; and where x = x∗+ ε,
where ε is the noise term, ε ∼ N(0, σ2), and ε̃i is the model error.

According to our assumption, f (·) is a continuous function; if X(1),X(2) → 0, and
X(1) ∩X(2) = ∅, dis(X(1),X(2))→ 0, f (·) can be approximated as a linear function of g(·),
and then (1) can be transformed into

y = g(x∗) + ε1 + ε̃ = g(x− ε) + ε1 + ε̃, (2)

where ε1 is the linear fitting error term and ε1 → 0.
Since the samples we select in X(1),X(2) are equal in size, we assume there are K

observation samples; i.e., x(j) = (x(j)
1 , . . . , x(j)

K ) = (x∗(j)
1 + ε

(j)
1 , . . . , x∗(j)

K + ε
(j)
K ) ∈ X(j), j =

1, 2. The expectation of the absolute value of the uniform noise in the space at this time is
X(1),X(2):

E(
∑2

j=1 ∑K
i=1 |ε

(j)
i |

2K
) =

∫ +∞

−∞
|t| 1√

2π · σ
e−

t2

2σ2 dt

=

√
2
π
· σ
∫ +∞

0

t
σ

t−
t2

2σ2 d
t
σ

=

√
2
π
· σ
∫ +∞

0
e−

t2

2σ2 d
( t

σ )
2

2

=

√
2
π
· σ · Γ(1) =

√
2
π
· σ.

The expectation of the proportion of observed samples with a noise greater than 0.5 is

E(
∑2

j=1 ∑K
i=1 I(|x(j)

i − x∗(j)
i |) > 0.5

2K
) = E(

∑2
j=1 ∑K

i=1 I(|ε(j)
i |) > 0.5

2K
)

=
∑2

j=1 ∑K
i=1(P(ε(j)

i > 0.5) + P(ε(j)
i < −0.5))

2K

=
∑2

j=1 ∑K
i=1(P(

ε
(j)
i
σ

>
0.5
σ
) + P(

ε
(j)
i
σ

<
−0.5

σ
))

2K

=
∑2

j=1 ∑K
i=1 Φ(

−0.5
σ

)

K
= 2Φ(

−0.5
σ

).

We randomly select two samples from the subspace to perform linear interpolation
on them and iterate the process K times. The AMLI method determines the number of
interpolation samples according to the distance between two samples. For the sake of
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simplicity and convenience, we assume that the number of samples in each interpolation is
m, and the rest of the situation is similar and provable. The sample for the ith interpolation is

x
′
i = (x

′
i,1, x

′
i,2, . . . , x

′
i,m)

= (x(1)i +
x(2)i − x(1)i

m + 1
, x(1)i + 2 ·

x(2)i − x(1)i
m + 1

, . . . , x(1)i + m ·
x(2)i − x(1)i

m + 1
)

= (x∗(1)i + ε
(1)
i +

x∗(2)i − x∗(1)i + ε
(2)
i − ε

(1)
i

m + 1
, · · · , x∗(1)i + ε

(1)
i + m ·

x∗(2)i − x∗(1)i + ε
(2)
i − ε

(1)
i

m + 1
),

where i = 1, . . . , K and the corresponding output is y
′
i,d = y(1)i + d · y(2)i −y(1)i

m+1 . Based on (2),

the noise of x
′
i,d is ε

′
i,d = ε

(1)
i + d ·

ε
(2)
i − ε

(1)
i

m + 1
, d = 1, . . . , m.

After K interpolations, the uniform noise expectation is

E(
∑2

j=1 ∑K
i=1 |ε

(j)
i |+ ∑K

i=1 ∑m
d=1 |ε

(1)
i + d · ε

(2)
i −ε

(1)
i

m+1 |
2K + K ·m )

=
∑2

j=1 ∑k
i=1 E(|ε(j)

i |) + ∑K
i=1 ∑m

d=1 E(|ε(1)i + d · ε
(2)
i −ε

(1)
i

m+1 |)
2K + K ·m

=
∑2

j=1 ∑K
i=1 E(|ε(j)

i |) +
1

m+1 ∑K
i=1 ∑m

d=1 E(|(m− d + 1)ε(1)i + dε
(2)
i |)

2K + K ·m

=
2 + 1

m+1 ∑m
d=1

√
(m− d + 1)2 + d2

2 + m
· σ
√

2
π

<
2 + 1

m+1 ∑m
d=1

√
(m− d + 1)2 + d2 + 2d(m− d + 1)

2 + m
· σ
√

2
π

=
2 + 1

m+1 ∑m
d=1

√
(m + 1)2

2 + m
· σ
√

2
π

= σ

√
2
π

.

The above shows that the uniform noise of the samples after the optimization through
the AMLI method is reduced. The expectation for the proportion of samples with a noise
greater than 0.5 is

E(
∑2

j=1 ∑K
i=1 I(|ε(j)

i | > 0.5) + ∑K
i=1 ∑m

d=1 I(|ε(1)i + d · ε
(2)
i −ε

(1)
i

m+1 | > 0.5)

2K + K ·m )

=

4K ·Φ(
−0.5

σ
) +

K

∑
i=1

m

∑
d=1

p(|ε(1)i + d ·
ε
(2)
i − ε

(1)
i

m + 1
| > 0.5)

2K + K ·m

=

4K ·Φ(
−0.5

σ
) +

K

∑
i=1

m

∑
d=1

p(
|(m− d + 1)ε(1)i + d · ε(2)i |√

(m− d + 1)2 + d2 · σ
>

0.5(m + 1)√
(m− d + 1)2 + d2 · σ

)

2K + K ·m

=

4Φ(
−0.5

σ
) + 2

m

∑
d=1

Φ(− 0.5(m + 1)√
(m− d + 1)2 + d2 · σ

)

2 + m

<

4Φ(
−0.5

σ
) + 2

m

∑
d=1

Φ(− 0.5(m + 1)√
(m− d + 1)2 + d2 + 2d(m− d + 1) · σ

)

2 + m
= 2Φ(

−0.5
σ

).

Thus, after being processed by the AMLI method, the proportion of samples with an
error greater than 0.5 in the data decreases.
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6. Extension
6.1. AMLI Plus

The above simulation experiments indicate that the selection of parameter K in the
AMLI algorithm is very important. The selection of the optimal value of parameter K
involves many parameter adjustment calculations while under the influence of random-
ness, thereby making it difficult to guarantee that the selected K value results in optimal
performance at all times. If the AMLI method fails to achieve a good result, we can consider
another interpolation method that combines the clustering method to perform linear inter-
polation between classes; we name this method AMLI plus. Below, we describe specific
steps of the AMLI plus method.

First, all observed samples are clustered according to their distribution. Assuming that
the number of clusters is K, and accordingly, the virtual space is divided into K subspaces,
each containing all observed samples of the same category:

T = {(x1, y1), (x2, y2), . . . , (xk, yk)} = {G1, G2, . . . , GK},

where G1 represents the class whose center is closest to the minimum point of the feature

space x0; the center of the class is x̄(d) =
1

n(d)

n(d)

∑
i=1

x(d)i , d = 1, . . . , K, n(d) Gd, d = 1, . . . , K;

n(d) is the number of samples in Gd; and Gd+1 satisfies x̄(d+1) = argmin
{x̄:x̄ 6=x̄(1),...,x̄(d)}

(L(x̄(d), x̄)).

The choice of clustering method can be diverse; additionally, the K-means, the X-means or
the DBSCAN method, which can eliminate noise points according to Ester et al. [15], can
be selected.

Second, interpolation is performed between classes, in which the unit distance fill-
ing parameter η is defined; additionally, n(d) · n(d+1) linear interpolations are performed
between x(d)i ∈ Gd and all samples in Gd+1. The number of interpolation samples is

∑n(d+1)

j=1 ∑n(d)

i=1 η · L(x(d)i , x(d+1)
j ), and the interpolated samples are also equally spaced.

The specific implementation process of the AMLI method is detailed in Algorithm 2.

Algorithm 2: AMLI plus
Input: unit distance f illing parameter η

distance measurement method L(·)
minimum point o f f eature space x0
set G1, G2, . . . , Gk

Output: T (Resulting dataset)
1 for d = 1, . . . , K− 1 do
2 for h = 1, . . . , n(d) do
3 for j = 1, . . . , n(d+1) do
4 for i = 1, . . . , η · L(x(d+1,j), x(d,h)) do

5 x(h,j,i)
d = x(d,h) + i · x(d+1,j) − x(d,h)

η · L(x(d+1,j), x(d,h)) + 1
,

y(h,j,i)
d = y(d,h) + i · y(d+1,j) − y(d,h)

η · L(y(d+1,j), y(d,h) + 1
.

6 Add (x(h,j,i)
d , y(h,j,i)

d ) to dataset T
7 end
8 end
9 end

10 end
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6.2. The Proof of AMLI Plus

In this section, we will present evidence of the effectiveness of the AMLI plus method.
The proof idea is essentially the same as that of the AMLI method, and we will focus on the
differences between the two.

Unlike the AMLI method, the AMLI plus method divides the virtual space into K
subspaces according to the number of clusters, and each subspace contains all observation
samples of the same category; thus, the sample size of each subspace may vary. It is assumed
that two adjacent subspaces, namely, X(1),X(2), contain n(1), n(2) samples, respectively;
additionally, it is assumed that n(1) · n(2) linear interpolations are performed. For the sake
of simplicity, assuming that the number of samples interpolated each time is m, then the
uniform noise after the interpolation is

E(

∑n(1)

i=1 |ε
(1)
i |+ ∑n(2)

i=1 |ε
(2)
i |+ ∑n(1)

i=1 ∑n(2)

j=1 ∑m
d=1

∣∣∣∣∣ε(1)i + d ·
ε
(2)
j −ε

(1)
i

m+1

∣∣∣∣∣
n(1) + n(2) + n(1)n(2)m

)

=

∑n(1)

i=1 E(|ε(1)i |) + ∑n(2)

i=1 E(|ε(2)i |) + ∑n(1)

i=1 ∑n(2)

j=1 ∑m
d=1 E(

∣∣∣∣∣ε(1)i + d ·
ε
(2)
j −ε

(1)
i

m+1

∣∣∣∣∣)
n(1) + n(2) + n(1)n(2)m

=
n(1)σ

√
2
n + n(2)σ

√
2
n + 1

m+1 ∑n(1)

i=1 ∑n(2)

j=1 ∑m
d=1 E(

∣∣∣(m− d + 1)ε(1)i + dε
(2)
i

∣∣∣)
n(1) + n(2) + n(1)n(2)m

=
n(1) + n(2) + n(1)n(2)

m+1 ∑m
d=1

√
(m− d + 1)2 + d2

n(1) + n(2) + n(1)n(2)m
· σ
√

2
π

<
n(1) + n(2) + n(1)n(2)

m+1 ∑m
d=1

√
(m− d + 1)2 + d2 + 2d(m− d + 1)

n(1) + n(2) + n(1)n(2)m
· σ
√

2
π

=
n(1) + n(2) + n(1)n(2)

m+1 ∑m
d=1 m + 1

n(1) + n(2) + n(1)n(2)m
· σ
√

2
π

= σ

√
2
π

.

Thus, the uniform noise after optimization by the AMLI plus method is reduced. The
proportion of samples with a noise error greater than 0.5 is expected to be

E(

∑n(1)

i=1 I(|ε(1)i | > 0.5) + ∑n(2)

i=1 I(|ε(2)i | > 0.5) + ∑n(1)

i=1 ∑n(2)

j=1 ∑m
d=1 I(

∣∣∣∣∣ε(1)i + d ·
ε
(2)
j −ε

(1)
i

m+1

∣∣∣∣∣ > 0.5)

n(1) + n(2) + n(1)n(2)m
)

=

∑n(1)

i=1 P(|ε(1)i | > 0.5) + ∑n(2)

i=1 P(|ε(2)i | > 0.5) + ∑n(1)

i=1 ∑n(2)

j=1 ∑m
d=1 P(

∣∣∣∣∣ε(1)i + d ·
ε
(2)
j −ε

(1)
i

m+1

∣∣∣∣∣ > 0.5)

n(1) + n(2) + n(1)n(2)m

=

2(n(1) + n(2))Φ
(
−0.5

σ

)
+ ∑n(1)

i=1 ∑n(2)

j=1 ∑m
d=1 P(

|(m− d + 1)ε(1)i + d · ε(2)j |√
(m− d + 1)2 + d2 · σ

>
0.5(m + 1)√

(m− d + 1)2 + d2 · σ
)

n(1) + n(2) + n(1)n(2)m

=

2(n(1) + n(2))Φ
(
−0.5

σ

)
+ 2n(1)n(2) ∑m

d=1 Φ

(
− 0.5(m + 1)√

(m− d + 1)2 + d2 · σ

)
n(1) + n(2) + n(1)n(2)m

<

2(n(1) + n(2))Φ
(
−0.5

σ

)
+ 2n(1)n(2) ∑m

d=1 Φ

(
− 0.5(m + 1)√

(m− d + 1)2 + d2 + 2d(m− d + 1) · σ

)
n(1) + n(2) + n(1)n(2)m

= 2Φ
(
−0.5

σ

)
.
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Therefore, after the samples are processed by the AMLI plus method, the proportion
of samples with an error greater than 0.5 in the data decreases.

Remark 2. The proof rationale of the AMLI plus method is to divide the clustered samples of
different categories into different subspaces and to assume that neighboring subspaces have a
common linear relationship; therefore, when the number of clusters and the clustering method are
selected, the above requirement should be satisfied as much as possible.

7. Conclusions

In this study, we propose a multipath sample interpolation method based on the
idea of linear interpolation, which can solve the problem of insufficient sample sizes or
large errors between observed samples and actual distribution when making predictions.
The AMLI method, simple to implement and flexible, can greatly expand valid samples,
reduce the influence of sample noise, and thus significantly improve the prediction effect.
Finally, we propose the AMLI plus method, another class-to-class-based linear interpolation
method, which can also achieve good optimization results. In general, we find that the
AMLI method is robust, effective, and very suitable for addressing a series of problems in
machine learning, e.g., insufficient sample sizes and large amounts of observation noise.
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