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Abstract: We formulate a quasilinear parabolic equation describing the behavior of the global-in-time
solution to a semilinear parabolic equation. We study this equation in accordance with the blow-up
and quenching patterns of the solution to the original semilinear parabolic equation. This quasilinear
equation is new in the theory of partial differential equations and presents several difficulties for
mathematical analysis. Two approaches are examined: functional analysis and a viscosity solution.
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1. Introduction

The blow-up of the solution to the semilinear parabolic equation has been studied in
detail. Here, we take

ut − ∆u = up in Ω× (0, T),
∂u
∂ν

∣∣∣∣
∂Ω

= 0, u|t=0 = u0(x) (1)

for p > 1, where Ω ⊂ RN is a bounded domain with the smooth boundary ∂Ω, ν denotes
the outer unit normal vector on ∂Ω, and 0 < u0 = u0(x) ∈ C(Ω). There exists a unique
classical solution u = u(x, t) > 0 with the maximal existence time T = Tmax ∈ (0,+∞]. If
Tmax < +∞, the solution blows up in finite time. Hence, it holds that

lim
t↑T
‖u(·, t)‖∞ = +∞.

Here, we recall a few references related to the problem examined in this paper: the
blow-up profile and the post-blow-up continuation of the solution. First, Masuda [1]
studied the equation with the general nonlinear term

ut − ∆u = f (u) in Ω× (0, T),
∂u
∂ν

∣∣∣∣
∂Ω

= 0, u|t=0 = u0(x). (2)

By accepting the complex-valued t and u, the solution continues after the blow-up
time is formulated. For the cases of f (u) = u2, u2 + u, and eu, it is shown that this solution
becomes two-fold in t > T unless u0 is a constant.

Second, Baras–Cohen [2] and Lacey–Tzanetis [3] studied the solution u = u(x, t) ≥ 0
to

ut − ∆u = f (u) in Ω× (0, T), u|∂Ω = 0, u|t=0 = u0(x) (3)

for the non-negative nonlinearity f = f (u) ≥ 0. Using the least integral solution, they
formulate the notion of a complete blow-up of the solution, which means, roughly, that
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the solution u(·, t) becomes +∞ everywhere in Ω for t > T. They showed this property
under the appropriate conditions on f , Ω, and u0. Galaktionov–Vazquez [4] later refined
the result such that if N ≥ 3 and

f (u) = up, p ∈ ((N + 2)/(N − 2), 1 + 6/(N − 10)+),

the radially symmetric unbounded L1-solution constructed by Ni–Sacks–Tzantzis [5] blows-
up in finite time with the complete blow-up profile.

Third, Sakaguchi–Suzuki [6], motivated by their previous work [7] in the one space
dimension using the Backlund transformation x = x(u, t) for u = u(x, t), studied

u = u(x, t) ∈ C(Ω× [0, T]; (−∞,+∞]), (4)

satisfying
D(t) = {x ∈ Ω | u(x, t) = +∞} ⊂ Ω, 0 ≤ t ≤ T (5)

and the differential inequality

ut − ∆u ≥ 0 in
⋃

0≤t≤T
(Ω \ D(t))× {t} (6)

in the sense of distributions. They obtained that then the N-dimensional Lebesgue measure
of D(t) becomes zero for a.e. t. This result was later refined by Suzuki–Takahashi [8] as

∫ T

0
Cap2(D(t)) dt ≤ LN(Ω)

2
,

where Cap2 and LN denote the two-capacity and N-dimensional Lebesque measure, re-
spectively. In particular, the Hausdorff dimension of D(t) is not greater than N− 2 for a.e.t,
if u = u(x, t) ∈ (−∞,+∞] satisfies (4) and (6).

Here, we study the profile at t = T of the blow-up solution to (1). Our approach is
based on the observation of Masuda [1], mentioned above, that the ordinary differential
equation

du
dt

= up, u|t=0 = u0 > 0, (7)

uses the representation formula of the solution,

u(t) =
(

1
p− 1

)− 1
p−1

(T − t)|T − t|−
1

p−1−1 (8)

for

T =
u−(p−1)

0
p− 1

. (9)

Since (8) implies that

lim
t↑T

u(t) = +∞, lim
t↓T

u(t) = −∞, (10)

we reach the idea of using 0 ≤ v < +∞, defined by

u2 = v−
1

p−1 , (11)

which satisfies
lim
t→T

v(t) = 0.
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Since it holds that

v =

(
1

p− 1

)2
(T − t)2, v|t=0 = v0 ≡

(
1

p− 1

)2
T2 > 0, (12)

we obtain
dv
dt

= −2(p− 1)w, t ≥ 0 (13)

for

w =

{ √
v, 0 ≤ t ≤ T
−
√

v, t > T
(14)

and
T = sup{t > 0 | v(s) > 0, 0 < ∀s < t}. (15)

The solution to (13) with (14) is not uniquely global in time. It is, however, unique to
0 ≤ t ≤ T, as we confirm below. Hence, we can use

dv
dt

= −2(p− 1)
√

v, v ≥ 0, t ≥ 0 (16)

with
v|t=0 = v0 > 0, (17)

instead of (13) with (15), to detect the blow-up profile of the solution u = u(x, t) to (1) at
t = T.

In fact, since the mapping

v ∈ [0,+∞) 7→ −2(p− 1)
√

v ∈ R

is non-increasing, the solution v = v(t) ≥ 0 to (16) and (17) is unique, although it is not
Lispchitz continuous at v = 0. More precisely, if vi, i = 1, 2, are the solutions to (16) it
follows that

1
2

d
dt
‖v1 − v2‖2

2 = (
dv1

dt
− dv2

dt
) · (v1 − v2) ≤ 0

from this monotonicity.
Now we are able to recover u = u(t) for 0 ≤ t ≤ T using the solution v = v(t) from

(16) and (17) for T > 0 defined by (15). Actually, it is given explicitly by

v(t) =

{ (
1

p−1

)2
(T − t)2, 0 ≤ t ≤ T

0, t > T

for T > 0, as defined by (9).
As for (1), it follows that

vt − ∆v +
2(2p− 1)

p− 1
|∇
√

v|2 + 2(p− 1)
√

v = 0 in Ω× (0, T)

for v = v(x, t) > 0, as defined by (11) and T = Tmax. We thus construct

0 ≤ v = v(x, t) ∈ C(Ω× [0, ∞)),

satisfying

vt − ∆v +
2(2p− 1)

p− 1
|∇
√

v|2 + 2(p− 1)
√

v = 0 in Ω× (0, ∞) (18)
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with
∂v
∂ν

∣∣∣∣
∂Ω

= 0, v|t=0 = v0(x) > 0 (19)

for v0 = u−2(p−1)
0 . Once this v is obtained, the value

T = sup{t > 0 | min
Ω

v(·, s) > 0, 0 < ∀s < t}

coincides with the maximal existence time T = Tmax ∈ (0,+∞] of u = u(·, t), and the
function

u∗ = v(·, T)−
1

2(p−1) ∈ C(Ω; (0,+∞])

can stand for its blow-up profile at t = T if T = Tmax < +∞.
Multiplying v by a positive constant, we obtain the normal form of (18) and (19),

vt − ∆v + γ|∇
√

v|2 +
√

v = 0, v ≥ 0 in Ω× (0, T) (20)

with
∂v
∂ν

∣∣∣∣
∂Ω

= 0, v|t=0 = v0(x) > 0 (21)

for

γ =
2(2p− 1)

p− 1
, (22)

which is the quasilinear parabolic equation studied in this paper. This equation is expected
to clarify the blow-up patterns of the solution to (1). Table 1, below, summarizes several of
the approaches to the blow-up problem of (1) that have been tried so far.

Table 1. Blow-up of the solution to semilinear parabolic equation.

References Problems Methods

[1–4] complete blow-up comparison theorem

[9] post-blow-up continuation complex function theory

this paper blow-up patten function analysis, theory of viscosity solutions

[5–7] estimates of the blow-up set method of isoperimetric inequality

Surprisingly, the problems (20) and (21) are new in the theory of partial differential
equations, and several technical difficulties arise in their mathematical analysis. Here, we
take two approaches: the theory of functional analysis and that of a viscosity solution.

In the first approach, we use the approximate equation

vεt − ∆vε + γ|∇
√

vε + ε|2 +
√

vε = 0, vε ≥ 0 in Ω× (0, ∞) (23)

with
∂vε

∂ν

∣∣∣∣
∂Ω

= 0, vε|t=0 = v0(x), (24)

assuming 0 < v0 = v0(x) ∈ Cθ(Ω) for 0 < θ < 1, and try to pass the limit as ε ↓ 0
(Theorems 1 and 2).

In the second approach, we use w =
√

v in (20), to obtain

(w2)t − ∆(w2) + γ|∇w|2 + w = 0, w ≥ 0 in Ω× (0, T). (25)

Equation (25) takes a different form from the equation studied in the standard theory
of viscosity solutions, as referenced in Crandall–Ishii–Lions [10] and Koike [11], in which
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the comparison theorem, for example, guarantees the unique existence of the solution for
the Dirichlet boundary condition

w|∂Ω = 0. (26)

We show, however, that a part of this comparison principle is valid in (3) for γ ≤ 2,
which ensures a profile of the quenching of the solution to (3) for f (u) = up with 0 < p < 1
(Theorem 5).

This paper is organized as follows: In Section 2 we derive a criterion for the conver-
gence of the approximate solution defined by (23) and (24). Section 3 is concerned with the
elliptic part of (25) and (26),

−∆(w2) + γ|∇w|2 + w = 0, w ≥ 0 in Ω (27)

with
w|∂Ω = 0, (28)

and then, Section 4 deals with (25) and (26). Section 5 is devoted to the discussion, to-
gether with several examples of the nonlinearity f (u) in (2) or (3), to which our theorems
are applicable.

List of Symbols

1. Cm(Ω), m = 0, 1, 2, · · · ; set of m-times the continuously differentiable functions, where
Ω ⊂ Rn is an open set. C(Ω) = C0(Ω).

2. C(Ω× [0, T]; (−∞,+∞]), T > 0; set of continuous functions on Ω× [0, T] with the
value in (−∞,+∞].

3. Wm,p(Ω), 1 ≤ p ≤ ∞; set of measurable functions in Ω, with its distributional
derivatives in Lp(Ω) up to m-th order. Hm(Ω) = Wm,2(Ω).

4. Lp
loc(Ω× [0, T)); set of measureable functions belonging to Lp(K) for any compact set

K ⊂ Ω× [0, T).
5. C2+θ,1+θ/2(Ω× [0, ∞)), 0 < θ < 1; set of continuously differentiable functions up

to the second and the first orders with respect to x ∈ Ω and t ∈ [0, ∞), with their
derivatives Holder remaining continuous with the exponents θ and θ/2, respectively.

6. Lp(0, T; Wm,q(Ω)); set of Lp functions in t ∈ (0, T) with the values in Wm,q(Ω).
7. M(Q) = C′(Q); set of measures on Q = Ω× [0, T].

2. Convergence of the Approximate Solution

This section is concerned with the convergence of the approximate solution {vε}
defined by (23) and (24) for γ > 0. For the moment, we use T > 0 arbitrarily.

To construct this solution, we use a further approximation defined for 0 < δ � 1,
that is,

vδ
εt − ∆vδ

ε + γ|∇
√

vδ
ε + ε|2 +

√
(vδ

ε )+ + δ2 = 0, vδ
ε > −ε/2 in Ω× (0, T) (29)

with
∂vδ

ε

∂ν

∣∣∣∣
∂Ω

= 0, vδ
ε

∣∣∣
t=0

= v0(x), (30)

There is a local-in-time classical solution to (29) and (30) denoted by

−ε/2 < vδ
ε = vδ

ε (x, t) ∈ C2+θ,1+θ/2(Ω× [0, T)), (31)

for 0 < T � 1, where 0 < θ < 1.
The spatially homogeneous part of (29) and (30), on the other hand, is described by

dv
dt

= −
√

v+ + δ2, v|t=0 = v0 > 0.
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Its solution is given explicitly by

v(t) =
{
−δ2 + 1

4 (tδ − t)2, 0 ≤ t ≤ tδ − 2δ
−δt + δ(tδ − 2δ), t > tδ − 2δ,

where
tδ = 2

√
v0 + δ2.

Hence, we obtain

−ε/2 < vδ
−(t) ≤ vδ

ε (x, t) ≤ vδ
+(t), (x, t) ∈ Ω× [0, Tδ

ε ) (32)

by the comparison theorem, where

vδ
±(t) =

{
−δ2 + 1

4 (t
δ
± − t)2, 0 ≤ t ≤ tδ

± − 2δ

−δt + δ(tδ
± − 2δ), t > tδ

± − 2δ,
Tδ

ε = tδ
− − 2δ + δ−1ε/2,

and
tδ
± = 2

√
v±0 + δ2, v+0 = max

Ω
v0, v−0 = min

Ω
v0 > 0,

together with the existence of vδ
ε = vδ

ε (x, t) on Ω× [0, Tδ
ε ).

To make δ ↓ 0 with ε > 0 fixed, we use an estimate uniform in δ, that is,

‖vδ
ε‖C2+θ,1+θ/2(Ω×[0,Tδ

ε ))
≤ Cε. (33)

This estimate follows from the standard theory of quasilinear parabolic equations
(Chapters IV and IV of [12]) inside Ω and a reflextion argument on ∂Ω, as in Chapter 2 of [9]
and Appendix A of [13]. We thus obtain vε = vε(x, t) ∈ C2+θ,1+θ/2(Ω× [0, ∞)) satisfying

vεt − ∆vε + γ|∇
√

vε + ε|2 +√vε+ = 0, vε ≥ −ε/2 in Ω× (0, ∞) (34)

with
∂vε

∂ν

∣∣∣∣
∂Ω

= 0, vε|t=0 = v0(x). (35)

Here, the maximum principle ensures vε ≥ 0, and there arises a solution

0 ≤ vε = vε(x, t) ∈ C2+θ,1+θ/2(Ω× [0, ∞))

to (23) and (24), satisfying
‖vε(·, t)‖∞ ≤ ‖v0‖∞.

Now we show a criterion for this {vε} to converge to a solution v = v(x, t) to (20) as
ε ↓ 0, such that

0 ≤ v ∈ L∞
loc(Ω× [0, ∞)),

√
v ∈ L2(0, T; H1(Ω))

for the case of γ ≥ 2.
First, Inequality (32) implies

‖vε(·, t)‖∞ ≤ ‖v0‖∞, (36)

while
d
dt

∫
Ω

vε dx + γ‖∇
√

vε + ε‖2
2 ≤ 0

implies ∫ T

0
‖∇
√

vε + ε‖2
2dt ≤ γ−1‖v0‖1. (37)
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Second, the approximate solution vε(x, t) is monotone in ε for each (x, t) ∈ Ω× [0, ∞).
To see this property, we make a further approximation, using

ϕσ
δ (v)→ ϕδ(v) locally and uniformly in v ∈ R, σ→ 0,

where ϕσ
δ ∈ C1(R) and ϕδ(v) =

√
v+ + δ2, that is, vσ,δ

ε = vσ,δ
ε (x, t) satisfying

vσ,δ
εt − ∆vσ,δ

ε + γ

∣∣∣∣∇√vσ,δ
ε + ε

∣∣∣∣2 + ϕσ,δ
ε (vσ,δ

ε ) = 0, vσ,δ
ε > −ε/2 in Ω× (0, Tσ,δ

ε ),

with
∂vσ,δ

ε

∂ν

∣∣∣∣∣
∂Ω

= 0, vσ,δ
ε

∣∣∣
t=0

= v0(x).

It follows that Tσ,δ
ε → Tδ

ε , and

vσ,δ
ε → vδ

ε locally and uniformly on Ω× [0, Tδ
ε ), σ→ 0.

There is

zσ,δ
ε =

∂vσ,δ
ε

∂ε
,

and it holds that

zσ,δ
εt − ∆zσδ

ε + 2γ∇(vσ,δ
ε + ε)1/2 · ∇

(
1
2
(vσ,δ

ε + ε)−1/2(zδ
ε + 1)

)
+[(ϕσ

δ )
′(vσ,δ

ε )]zσ,δ
ε = 0 in Ω× (0, Tσ,δ

ε )

with
∂zσ,δ

ε

∂ν

∣∣∣∣∣
∂Ω

= 0, zσ,δ
ε

∣∣∣
t=0

= 0.

Then, we obtain

zσ,δ
εt − ∆zσ,δ

ε + γ∇(vσ,δ
ε + ε)1/2 · ∇[(vσ,δ

ε + ε)−1/2zσ,δ
ε ]

+[(ϕσ
δ )
′(vσ,δ

ε )]zσ,δ
ε ≥ 0 in Ω× (0, Tγ,δ

ε )

by
∇(vσ,δ

ε + ε)1/2 · ∇(vσ,δ
ε + ε)−1/2 = −(vσ,δ

ε + ε)|∇(vσ,δ
ε + ε)−1/2|2 ≤ 0,

which implies

zσ,δ
ε =

∂vσ,δ
ε

∂ε
≥ 0 on Ω× [0, Tσ,δ

ε ).

Then, it arises that

vσ,δ
ε (x, t) ≥ vσ,δ

ε′ (x, t), ∀(x, t) ∈ Ω× [0, Tσ,δ
ε′ ), ∀ε > ε′ > 0

and, hence,
vε(x, t) ≥ vε′(x, t), ∀(x, t) ∈ Ω× [0, ∞), ∀ε > ε′ > 0

by sending σ→ 0, and then δ ↓ 0. Thus it arises that the pointwise monotone convergence

lim
ε↓0

vε(x, t) = v(x, t) ≥ 0, ∀(x, t) ∈ Ω× [0, T). (38)

Letting
wε =

√
vε + ε, QT = Ω× (0, T),
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we obtain
‖wε‖L∞(QT)

+ ‖∇wε‖L2(QT)
≤ C

via (36) and (37), and the monotone convergence

lim
ε↓0

wε(x, t) = w(x, t) ≡
√

v(x, t), ∀(x, t) ∈ Ω× [0, T) (39)

by (38). Hence, it follows that

0 ≤ v ∈ L∞(QT),
√

v ∈ L2(0, T; H1(Ω)) (40)

and
w− lim

ε↓0
wε = w in L2(0, T; H1(Ω)), (41)

where w− lim denotes the weak convergence. Then, we have the following theorem.

Theorem 1. If γ ≥ 2 and w ∈ C(QT), the limit v ∈ C(QT) in (38) is a solution to (20) and (21)
in the sense of distributions.

We begin with the following lemma.

Lemma 1. If the convergence (41) is strong,

s− lim
ε↓0

wε = w in L2(0, T; H1(Ω)), (42)

the above v = v(x, t) in (40) is a solution to (20) and (21) in the sense of distributions.

Proof. Assumption (42) implies

s− lim
ε↓0

vε = v in L1(0, T; W1,1(Ω)) (43)

by
∇vε = 2wε∇wε.

It also implies
s− lim

ε↓0

√
vε + ε =

√
v in L2(0, T; H1(Ω)) (44)

by
∇
√

vε + ε = (w2
ε + ε)−1/2wε∇wε, 0 ≤ (w2

ε + ε)−1/2wε ≤ 1,

and the monotone convergence (39), as in

∇
√

vε + ε−∇
√

v = (w2
ε + ε)−1/2wε∇wε −∇w

= {(w2
ε + ε)−1/2wε − 1}∇wε + (∇wε −∇w).

Given

ϕ ∈ C2(Ω),
∂ϕ

∂ν

∣∣∣∣
∂Ω

= 0,

we obtain

d
dt

∫
Ω

vε ϕ dx + (∇vε,∇ϕ) +
∫

Ω

(
γ|∇
√

vε + ε|2 +
√

vε

)
ϕ dx = 0

by (31), (23), and (24), where ( , ) denotes the L2 inner product. Then, (42)–(44) imply

d
dt

∫
Ω

vϕ dx + (∇v,∇φ) +
∫

Ω
(γ|∇

√
v|2 +

√
v)ϕ dx = 0
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in the sense of distributions in t. In particular, the mapping

t ∈ [0, T) 7→
∫

Ω
vϕ dx

is absolutely continuous, and it holds that∫
Ω

vϕ dx
∣∣∣∣
t=0

=
∫

Ω
v0 ϕ dx.

Then, the result follows. �

Equation (31) with (23) implies

wεt − ∆wε = −gε in QT (45)

with
∂wε

∂ν

∣∣∣∣
∂Ω

= 0, wε|t=0 = w0(x) > 0 (46)

for w0 = v1/2
0 and

gε = 2(γ− 2)|∇
√

wε|2 +
√

vε

2
√

vε + ε
≥ 0 (47)

if γ ≥ 2. Then, we obtain
d
dt

∫
Ω

wε dx = −
∫

Ω
gε dx ≤ 0,

and, therefore,
‖gε‖L1(QT)

≤ ‖v1/2
0 ‖1 (48)

by wε ≥ 0. Hence, there is a subsequence, denoted by the same symbol, such that

gε ⇀ µ ∈ M(QT) = C′(QT)

in the sense of measures.

Remark 1. Inequality (48) implies

w ∈ C([0,+∞), L1(Ω))

according to (41) and the L1-compactness property of the heat equation [14]. This inequality also
ensures

s− lim
ε↓0

wε = w in Lp(QT), 1 ≤ p <
N + 2

N

s− lim
ε↓0
∇wε = ∇w in Lq(QT), 1 ≤ q <

N + 2
N + 1

by [15].

Lemma 2. If γ ≥ 2 and w ∈ C(QT), it holds that∫ T

0
‖∇(wε − w)‖2

2 dt ≤ 〈wε − w, µ〉+ 1
2
‖
√

v0 + ε−
√

v0‖2
2. (49)

Proof. We have
(wε − wε′)t − ∆(wε − wε′) = −gε + gε′ in QT
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with
∂

∂ν
(wε − wε′)

∣∣∣∣
∂Ω

= 0, (wε − wε′)|t=0 = 0.

Then, it follows that

1
2

d
dt
‖wε − wε′‖2

2 + ‖∇(wε − wε′)‖2
2 = (wε − wε′ ,−gε + gε′) ≤ (wε − wε′ , gε)

for 0 < ε′ < ε, and, therefore,∫ T

0
‖∇(wε − wε′)‖2

2 dt ≤
∫ T

0
(wε − wε′ , gε′) dt +

1
2
‖
√

v0 + ε−
√

v0 + ε′‖2
2. (50)

If w ∈ C(QT), the monotone convergence (39) implies

lim
ε↓0

wε = w uniformly on QT . (51)

by Dini’s theorem. Then, it holds that

lim
ε′↓0

∫ T

0
(wε − wε′ , gε′) dt = 〈wε − w, µ〉,

by (41). Hence, (49) follows from

lim inf
ε′↓0

∫ T

0
‖∇(wε − wε′)‖2

2 dt ≥
∫ T

0
‖∇(wε − w)‖2

2 dt. (52)

�

We are now able to give the following proof.

Proof of Theorem 1. The result follows from (49) and (51). �

A variant of Theorem 1 is the following theorem.

Theorem 2. Let 2 ≤ γ < 4 and assume the existence of ŵε, w∗, w∗ ∈ C(QT) such that

wε ≤ ŵε, ŵε → w∗ uniformly on QT , (53)

and
w ≥ w∗ on QT , 〈w∗ − w∗, µ〉 = 0. (54)

Then, it holds that (42), and hence v in (38), satisfies (12), (20), and (21) in the sense of
distributions.

We use the following lemma to prove this theorem.

Lemma 3. If γ ≥ 2, it holds that∫ T

0
‖∇(wε−w)‖2

2 dt ≤ 〈wε, µ〉 −
∫∫

QT

γ− 2
2
|∇w|2 + w

2
dxdt+

1
2
‖
√

v0 + ε−
√

v0‖2
2. (55)

Proof. In (50), we have

(wε′ , gε′) =
∫

Ω

γ− 2
2
|∇wε′ |2 +

1
2

√
vε′√

vε′ + ε′
wε′ dx

≥
∫

Ω

γ− 2
2
|∇wε′ |2 +

wε′

2
dx
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by (47), and, therefore, (41) ensures

lim inf
ε′↓0

∫ T

0
(wε′ , gε′) dt ≥

∫∫
QT

γ− 2
2
|∇w|2 + w

2
dxdt.

Then, we obtain (55) by (52). �

We conclude this theorem with the following proof.

Proof of Theorem 2. In (55), we have

〈wε, µ〉 = 〈wε − ŵε, µ〉+ 〈ŵε, µ〉 ≤ 〈ŵε, µ〉 = 〈w∗, µ〉+ o(1) = 〈w∗, µ〉+ o(1).

It holds, furthermore, that

〈w∗, µ〉 = 〈w∗, gε〉+ o(1) ≤ 〈w, gε〉+ o(1)

and

〈w, gε〉 =
∫∫

QT

γ− 2
2
|∇wε|2

wε
w +

1
2

√
vε√

vε + ε
w dxdt

≤
∫∫

QT

γ− 2
2
|∇wε|2 +

w
2

dxdt + o(1)

by (47). Then, it follows that∫ T

0
‖∇(wε − w)‖2

2 dt ≤ γ− 2
2

∫∫
QT

|∇wε|2 − |∇w|2 dxdt + o(1)

=
γ− 2

2

∫ T

0
‖∇(wε − w)‖2

2 dt + o(1)

from (41), which implies (42) by γ < 4. �

3. Comparison Theorem for the Elliptic Equation

In this section, we study the viscosity solutions to (27) with (28). To introduce this
notion, let Ω ⊂ RN be a bounded domain, and let USC(Ω) (resp., LSC(Ω)) be the set of
upper semi-continuous (resp., lower semi-continuous) functions in Ω. Given w : Ω→ R,
we define w∗ and w∗ by

w∗(x) = lim sup
y→x

w(y), w∗(x) = lim inf
y→x

w(y)

for x ∈ Ω. If w ∈ C(Ω), it holds that w = w∗ = w∗.

Remark 2. We have w∗ ∈ USC(Ω) if and only if w∗(x) < ∞ for any x ∈ Ω. Similarly, we have
w∗ ∈ LSC(Ω) if and only if w∗(x) > −∞ for any x ∈ Ω.

Remark 3. If w : Ω→ R, the above w∗ and w∗ are extended as

w∗(x) = lim sup
y∈Ω→x

w(x), w∗(x) = lim inf
y∈Ω→x

w(y)

for x ∈ Ω. The same properties as in Remark 2 are valid for w∗ and w∗.

Using

F(r, p, X) = −trX + γ|p|2 + r, r ∈ R, p ∈ RN , X ∈ SN(R), (56)
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we write (27) as
F(w,∇w,∇2w2) = 0 in Ω, (57)

where
SN = {A ∈ MN(R) | AT = A},

MN(R) is the set of N × N matrix with real entries, and AT denotes the transpose matrix
of A.

Since Equation (57) takes a different form when treated with the standard theory of
visicosity solution,

F(w,∇w,∇2w) = 0 in Ω,

we begin with the definition of its viscosity solution.

Definition 1. Let w = w(x) be a function defined in Ω.

(1) We say that if w in w∗ ∈ USC(Ω) is a viscosity subsolution to (27) if w∗ − ϕ attains a local
maximum 0 at x ∈ Ω for ϕ ∈ C2(Ω), then it holds that

F(ϕ,∇ϕ,∇2 ϕ2) ≤ 0 at x.

(2) We say that if w in w∗ ∈ LSC(Ω) is a viscosity supersolution to (27) if w∗ − ϕ attains a local
minimum 0 at x0 ∈ Ω for ϕ ∈ C2(Ω), then it holds that

F(ϕ,∇ϕ,∇2 ϕ2) ≥ 0 at x0.

(3) We say that if w is a viscosity solution to (27) if it is a viscosity subsolution and a viscosity
supersolution to (27).

Remark 4. It is obvious that if w ∈ C2(Ω) is a viscosity subsolution to (27), then it holds that

F(w,∇w,∇2w2) ≤ 0 in Ω,

and hence, it is a classical subsolution. Similarly, if w ∈ C2(Ω) is a viscosity supersolution (resp.,
solution) to (27), it is a classical supersolution (resp., solution).

Even if w ∈ C2(Ω) is a classical solution to (27),

F(w,∇w,∇2w2) = 0 in Ω. (58)

On the other hand, it is not necessarily a viscosity subsolution, nor a viscosity superso-
lution, although F in (56) is elliptic:

X, Y ∈ SN , X ≤ Y ⇒ F(r, p, Y) ≤ F(r, p, X), ∀(r, p) ∈ R×RN . (59)

Despite this, we have the following fact.

Proposition 1. If 0 ≤ w = w(x) ∈ C2(Ω) is a classical subsolution to (27), it is a viscosity
subsolution. If 0 < w = w(x) ∈ C2(Ω) is a classical supersolution to (27), it is a viscosity
supersolution.

To prove the above fact, we recall, for the moment, a fundamental fact used in the
theory of viscosity solutions.

Given w : Ω→ R and x ∈ Ω, we thus put

J2,+w(x) = {(p, X) ∈ RN × SN | w∗(x + h)− w∗(x)

≤ 〈p, h〉+ 1
2
〈Xh, h〉+ o(|h|2) as h→ 0}.



Mathematics 2023, 11, 758 13 of 23

Given 0 < r � 1 and (p, X) ∈ RN × SN , furthermore, we put

Φ+
r (x, p, X, w) = {ϕ ∈ C2(Br(x)) | w∗ − ϕ attains the maximum 0 at x,

∇ϕ(x) = p, ∇2 ϕ(x) = X}.

Let
Φ+(x, p, X; w) =

⋃
0<r�1

Φ+
r (x, p, X; w).

The following fact is proven in Koike’s work ([11], Proposition 2.6).

Lemma 4. Any x ∈ Ω and (p, X) ∈ J2,+w(x) admit ϕ ∈ Φ+(x, p, X; w).

Remark 5. We define Φ−(x, p, X; w) similarly, using

J2,−w(x) = {(p, X) ∈ RN × SN | w∗(x + h)− w∗(x)

≥ 〈p, h〉+ 1
2
〈Xh, h〉+ o(h2), h→ 0}.

Then, an analogous result to the above lemma holds.

An immediate consequence is the following fact, analogous to the work of Koike ([11],
Corollary 2.3), in which

j2,+w(x) =
{
(∇ϕ(x),∇2 ϕ(x)2) | ∃(p, X) ∈ J2,+w(x), ϕ ∈ Φ+(x, p, X; w)

}
.

Corollary 1. The function w is a viscosity subsolution to (27) if and only if

F(w∗(x), q, Y) ≤ 0, ∀x ∈ Ω, ∀(q, Y) ∈ j2,+w(x).

We are ready to give the following proof. Note that (60) does not imply (61) without
w(y) ≥ 0, and, similarly, (62) does not imply (63) without ϕ(y) ≥ 0.

Proof of Proposition 1. Let 0 ≤ w ∈ C2(Ω) be a classical subsolution:

F(w,∇w,∇2w) ≤ 0 in Ω.

Observe that w = w∗ = w∗ in Ω.
Fix x ∈ Ω and use (q, Y) ∈ j2,+w(x) arbitrarily. Then, there are (p, X) ∈ J2,+w(x) and

ϕ ∈ Φ(x, p, X; w) such that

q = ∇ϕ(x), Y = ∇2 ϕ(x)2.

Next, we obtain

w(y)− ϕ(y) ≤ w(x)− ϕ(x) = 0, |y− x| � 1, (60)

and hence
w(y)2 ≤ ϕ(y)2, |y− x| � 1, w(x)2 = ϕ(x)2 (61)

by w(y) ≥ 0. It follows, therefore,

∇(w(x)− ϕ(x)) = 0, ∇2(w(x)2 − ϕ(x)2) ≤ 0,

which implies

F(w(x), q, Y) = F(ϕ(x),∇ϕ(x),∇2 ϕ(x)2) ≤ F(w(x),∇w(x),∇2w(x)2) ≤ 0

by (59). Hence, 0 ≤ w = w(x) ∈ C2(Ω) is a viscosity subsolution.
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The proof of the latter part is similar. In fact, if 0 < w ∈ C2(Ω) and ϕ ∈ C2(Ω) satisfy

w(y)− ϕ(y) ≥ w(x)− ϕ(x) = 0, |y− x| � 1 (62)

then it arises that

w(y)2 ≥ ϕ(y)2, |y− x| � 1, w(x)2 = ϕ(x)2 (63)

by w(x) > 0. Hence, if 0 < w = w(x) ∈ C2(Ω) is a classical supersolution, then it is a
viscosity supersolution. �

Here, we show the following fact.

Theorem 3. Assume γ ≤ 2. Let w ≥ 0 (resp., z ≥ 0) be a viscosity subsolution (resp., supersolu-
tion) to (27) defined on Ω, and put

Ω0 = {x ∈ Ω | z∗(x) > 0}.

Then, if
sup
∂Ω0

(w∗ − z∗) ≤ 0, sup
Ω0

z < +∞

it holds that
sup
Ω0

(w∗ − z∗) ≤ 0.

Remark 6. The set Ω0 is open in Ω because z∗ is lower semicontinuous on Ω according to the
same reason z∗ = 0 in ∂Ω0\∂Ω.

For the proof of this theorem, we use the following notations used in the theory of
viscosity solutions; namely, given w : Ω→ R, let

J2,+w(x) = {(p, X) ∈ RN × SN | ∃(xk, pk, Xk) ∈ Ω×RN × SN , k = 1, 2, · · · ,

lim
k→∞

(xk, w∗(xk), p, X) = (x, w∗(x), p, X), (pk, Xk) ∈ J2,+w(xk)},

and

J2,−w(x) = {(p, X) ∈ RN × SN | ∃(xk, pk, Xk) ∈ Ω×RN × SN , k = 1, 2, · · · ,

lim
k→∞

(xk, w∗(xk), p, X) = (x, w∗(x), p, X), (pk, Xk) ∈ J2,−w(xk)}

Proof of Theorem 3. Assume the contrary,

sup
Ω0

(w∗ − z∗) = θ > 0.

We take 0 < ρ < 1, satisfying

sup
∂Ω0

(w∗ − ρz∗) ≤ (1− ρ) sup
∂Ω0

z∗ ≤ (1− ρ) sup
Ω0

z∗ ≤
θ

3
,

and put
θ̃ = sup

Ω0

(w∗ − ρz∗) ≥ θ.

Let ε > 0 and (x̂ε, ŷε) ∈ Ω0 ×Ω0 be the maximum point of

Φε(x, y) = w∗(x)− ρz∗(y)−
1
2ε
|x− y|2, (x, y) ∈ Ω0 ×Ω0.
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Since
Φε(x̂ε, x̂ε) ≤ Φε(x̂ε, ŷe), z∗(ŷε) ≥ 0

it holds that
1
2ε
|x̂ε − ŷε|2 ≤ ρz∗(x̂ε) ≤ ρ sup

Ω0

z∗,

and hence,
lim
ε→0
|x̂ε − ŷε| = 0.

A subsequence, therefore, admits x0 ∈ Ω0 such that

lim
ε→0

x̂ε = lim
ε→0

ŷε = x0.

Since Φε(x0, x0) ≤ Φε(x̂ε, ŷε), it holds that

ρ(z∗(ŷε)− z∗(x0)) ≤ w(x̂ε)− w∗(x0),

and therefore,

0 ≤ lim inf
ε→0

ρ(z∗(ŷε)− z∗(x0)) ≤ lim inf
ε→0

(w∗(x̂ε)− w∗(x0))

≤ lim sup
ε→0

(w∗(x̂ε)− w∗(x0)) ≤ 0

by the semicontinuity. We thus obtain

lim
ε→0

w∗(x̂ε) = w∗(x0), lim
ε→0

z∗(ŷε) = z∗(x0), (64)

which implies

lim
ε→0

1
ε
|x̂ε − ŷε|2 = 0 (65)

by Φε(x0, x0) ≤ Φε(x̂ε, ŷε).
Since

sup
∂Ω0

(w∗ − ρz∗) ≤ θ/3 < θ̃ ≤ Φε(x̂ε, ŷε),

Equalities (64) and (65) imply x0 ∈ Ω0, which means z∗(x0) > 0. Noting

0 < θ̃ ≤ Φε(x̂ε, ŷε) ≤ w∗(x̂ε)− ρz∗(ŷε),

thus we obtain
w∗(x̂ε) > ρz∗(ŷε) > 0, 0 < ε� 1. (66)

Then, H. Ishii’s lemma, as referenced in Koike ([11], Appendix A), guarantees X̂ε, Ŷε ∈
SN satisfying

( p̂ε, X̂ε) ∈ J2,+w(x̂ε), ( p̂ε,−Ŷε) ∈ J2,−
ρz(ŷε) (67)

and
−3
ε

(
I O
O I

)
≤
(

X̂ε O
O Ŷε

)
≤ 3

ε

(
I −I
−I I

)
(68)

for p̂ε = (x̂ε − ŷε)/ε. Note that the second relation of (67) means

( p̂ε/ρ,−Ŷε/ρ) ∈ J2,−z(ŷε).

Then, Lemma 4 and Remark 5 ensure

(xk, pk, Xk, φk), (yk qk, Yk, ψk) ∈ Ω×RN × SN , k = 1, 2, · · · ,
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satisfying
φk ∈ Φ+(xk, pk, Xk; w), ψk ∈ Φ−(yk, qk,−Yk, z) (69)

and

lim
k→∞

(xk, w∗(xk), pk, Xk) = (x̂ε, w∗(x̂ε), p̂ε, X̂ε), (70)

lim
k→∞

(yk, z∗(yk), qk, Yk) = (ŷε, z∗(ŷε), p̂ε/ρ,−Ŷε/ρ). (71)

Since w (resp., z) is a viscosity subsolution (resp., supersolution) to (27), it holds that

F(φk,∇φk,∇2φ2
k) ≤ 0 at xk, F(ψk,∇ψk,∇2ψ2

k) ≥ 0 at yk.

Here , we use
tr∇2φ2 = ∆φ2 = 2|∇φ|2 + 2φ∆φ

valid for φ ∈ C2(Ω), to obtain

−2φktrXk + (γ− 2)|pk|2 + φk ≤ 0 at xk,

−2ψktr(−Yk) + (γ− 2)|qk|2 + ψk ≥ 0 at yk

by (69). Sending k→ ∞, it arises that

−2w∗(x̂ε)trX̂ε + (γ− 2)| p̂ε|2 + w∗(x̂ε) ≤ 0,

−2z∗(ŷε)tr(−
Ŷε

ρ
) +

γ− 2
ρ2 | p̂ε|2 + z∗(ŷε) ≥ 0,

from (70) and (71), which implies

−2trX̂ε +
γ− 2

w∗(x̂ε)
| p̂ε|2 + 1 ≤ 0, −2tr(−Ŷε) +

γ− 2
ρz∗(ŷε)

| p̂ε|2 + ρ ≥ 0

by (66).
Since (68) implies

tr(X̂ε + Ŷε) ≤ 0,

we obtain (
1

w∗(x̂ε)
− 1

ρz∗(ŷε)

)
(γ− 2)| p̂ε|2 ≤ 2tr(X̂ε + Ŷε) + ρ− 1 < 0,

which is in contradiction to γ ≤ 2 and (66). Thus, the result follows. �

A direct consequence of Theorem 3 is the following fact based on its uniqueness and
regularity.

Corollary 2. Assume γ ≤ 2. Let w ≥ 0 and z ≥ 0 be bounded viscosity solutions to (27), defined
on Ω, and put

Ω0 = {x ∈ Ω | w∗(x) > 0} ∩ {x ∈ Ω | z∗(x) > 0}.

Then , if w∗ = w∗ = z∗ = z∗ on ∂Ω0, it follows that u = v ∈ C(Ω0).

Proof. This result is similar to the standard case. In fact, the assumption implies

w∗ ≤ z∗ ≤ z∗ ≤ w∗ ≤ w∗ on Ω0.

�

The following theorem is obvious if w ∈ C(Ω).
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Theorem 4. Let w ≥ 0 be a bounded viscosity solution to (27), defined on Ω with γ ≤ 2 satisfying

w∗ = w∗ = 0 on ∂(Ω\Ω0), (72)

and put
Ω0 = {x ∈ Ω | w∗(x) > 0}. (73)

Then, it follows that
w∗ = w∗ = 0 on Ω\Ω0. (74)

Proof. Assume the contrary,
sup

Ω\Ω0

w∗ > 0,

and let x0 ∈ Ω\Ω0 be a maximum point of w∗ on Ω\Ω0. Then, we obtain x0 ∈ Ω\Ω0
by (72). Since Ω\Ω0 is open, we find r0 > 0 such that w∗(x) ≤ w∗(x0) for all x ∈ Br0(x0).

Let ϕ(x) = w∗(x0). It is obvious that w∗ − ϕ attains a local maximum at x0. Since
w ≥ 0 is a viscosity subsolution to (27), it arises that

0 ≥ F(ϕ,∇ϕ,∇2 ϕ2) = w∗(x0) > 0 at x0,

which is a contradiction. Thus, w∗ ≤ 0 on Ω\Ω0. Since w ≥ 0, it follows (74). �

4. Comparison Theorem to (25)

The viscosity solutions to (25) are treated similarly. Recall F(r, p, X) for (r, p, X) ∈
R× Rn × SN in (56).

Definition 2. Let w : QT = Ω× (0, T)→ R.

(1) We say that w with w∗ < +∞ in QT is a viscosity subsolution to (25), provided that if w∗− ϕ

attains a local maximum 0 at (x, t) ∈ QT for ϕ ∈ C2(QT), then it holds that

(ϕ2)t + F(ϕ,∇ϕ,∇2 ϕ2) ≤ 0 at (x0, t0).

(2) We say that w in w∗ > −∞ in QT is a viscosity supersolution to (25), provided that if w∗ − ϕ

attains a local minimum 0 at (x, t) ∈ QT for ϕ ∈ C2(QT), then it holds that

(ϕ2)t + F(ϕ,∇ϕ,∇2 ϕ2) ≥ 0 at (x, t).

(3) We say that w is a viscosity solution to (25) if it is a viscosity subsolution and a viscosity
supersolution to (25).

Similarly to Remark 4 and Proposition 1, we obtain the following fact.

Proposition 2. If w ∈ C2(QT) is a viscosity subsolution (resp., supersolution) to (25), it is a
classical subsolution (resp., supersolution). If 0 ≤ w ∈ C2(QT) is a classical subsolution to (25),
conversely, it is a viscosity subsolution. If 0 < w ∈ C2(QT) is classical supersolution to (25),
finally, it is a viscosity supersolution.

Given (x, t) ∈ QT and r > 0, we use the following sets, where Qr(x, t) = Br(x)× (t−
r, t + r):

P2,+w(x, t) = {(p, τ, X) ∈ R×RN × SN | w∗(x + h, t + k)− w∗(x, t)

≤ τk + 〈p, h〉+ 1
2
〈Xh, h〉+ o(|k|+ |h|2) as (h, k)→ (0, 0)}.
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P2,−w(x, t) = {(p, τ, X) ∈ R×RN × SN | w∗(x + h, t + k)− w∗(x, t)

≥ τk + 〈p, h〉+ 1
2
〈Xh, h〉+ o(|k|+ |h|2) as (k, h)→ (0, 0)}.

P2,+w(x, t) = {(p, τ, X) ∈ R×RN × SN | ∃(xk, pk, τk, Xk) ∈ QT ×RN × SN ,

k = 1, 2, · · · , lim
k→∞

(xk, τk, w∗(xk, τk), pk, Xk) = (x, τ, w∗(x, τ), p, X),

(pk, τk, Xk) ∈ P2,+w(xk, tk)}.

P2,−w(x, t) = {(p, τ, X) ∈ R×RN × SN | ∃(xk, τk, pk, Xk) ∈ QT ×RN × SN ,

k = 1, 2, · · · , lim
k→∞

(xk, τk, w∗(xk, tk), pk, Xk) = (x, τ, w∗(x, τ), p, X),

(pk, τk, Xk) ∈ P2,−w(xk, tk)}.

Φ+
r (x, t, p, τ, X; w) = {ϕ ∈ C2(Qr(x, t))) | w∗ − ϕ attains its maximum 0 at (x, t),

∇ϕ(x, t) = p, ϕt(x, t) = τ, ∇2 ϕ(x, t) = X}.

Φ−r (x, t, p, τ, p, X; w) = {ϕ ∈ C2(Qr(x, t)) | w∗ − ϕ attains its minimum 0 at (x, t),

∇ϕ(x, t) = p, ϕt(x, t) = τ, ∇2 ϕ(x, t) = X}.

Φ±(x, t, p, τ, p, X; w) =
⋃

0<r�1

Φ±r (x, t, p, τ, X; w).

p2,±w(x, t) = {(∇ϕ(x, t), ϕt(x, t),∇2 ϕ(x, t)2)

| ϕ ∈ Φ±(x, t, p, τ, p, X; w), (p, τ, X) ∈ P2,+w(x, t)}.

Similarly to Lemma 4, we obtain the following fact.

Lemma 5. If w is locally bounded in QT , each (x, t) ∈ QT and (p, τ, X) ∈ P2,±w(x, t) admits
ϕ ∈ Φ±(x, t, p, τ, X; w).

The comparison principle for the viscosity solution to (25) is described as follows.
Although it is proven similarly to Theorem 3, we show the proof for completeness.

Theorem 5. Assume γ ≤ 2. Let w ≥ 0 (resp., z ≥ 0) be a viscosity subsolution (resp., supersolu-
tion) to (25) defined on QT , and put

Q0 = {(x, t) ∈ QT | z∗(x, t) > 0}.

Then, if
sup

∂Q0\(Ω×{T})
(w∗ − z∗) ≤ 0, sup

QT

w < ∞,

it holds that
sup

Q0\(Ω×{T})
(w∗ − z∗) ≤ 0.

Proof. Assuming the contrary,

sup
Q0

(w∗ − z∗) = θ > 0,
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we take 0 < ρ, γ < 1, satisfying

sup
∂Q0\(Ω×{T})

(w∗ − ρz∗ −
2γ

T − t
) ≤ θ

3
. (75)

It is obvious that

sup
Q0\(Ω×{T})

(w∗ − ρz∗ −
2γ

T − t
) ≡ θ̃ ≥ θ. (76)

Let

Φε(x, t, y, s) = w∗(x, t)− ρz∗(y, s)− 1
2ε
{|x− y|2 + (t− s)2} − γ

T − t
− γ

T − s

be defined for (x, t, y, s) ∈ Q̃0 × Q̃0, where ε > 0 and

Q̃0 = Q0\(Ω× {T}).

Let, furthermore, (x̂ε, t̂ε, ŷε, ŝε) ∈ Q̃0 × Q̃0 be a maximum point of Φε. Then, the
inequality

Φε(x̂ε, t̂ε, x̂ε, t̂ε) + Φε(ŷε, ŝε, ŷε, ŝε) ≤ 2Φε(x̂ε, t̂ε, ŷε, ŝε)

implies
lim
ε→0
{(t̂ε − ŝε)

2 + |x̂ε − ŷε|2} = 0,

and, furthermore, it arises that

lim
ε→0

(x̂ε, t̂ε) = lim
ε→0

(ŷε, ŝε) = (x0, t0) ∈ Q0

lim
ε→0

w∗(x̂ε, t̂ε) = w∗(x0, t0), lim
ε→0

z∗(ŷε, ŝε) = z∗(x0, t0),

lim
ε→0

1
ε
{(t̂ε − ŝε)

2 + |x̂ε − ŷε|2} = 0.

as in Theorem 3. Using the fact that (x0, t0) is also a maximum point of

w∗(x, t)− ρz∗(x, t)− 2γ

T − t
on Q̃0,

we obtain (x0, t0) ∈ Q0 and also

w∗(x̂ε, t̂ε) > ρz∗(ŷε, ŝε) > 0, 0 < ε� 1.

Then, H. Ishii’s lemma guarantees X̂ε, Ŷε ∈ SN such that

( p̂ε, τε +
γ

(T − t̂ε)2 , X̂ε) ∈ P2,+w(x̂ε, t̂ε), (77)

ρ−1( p̂ε, τε −
γ

(T − ŝε)2 ,−Ŷε) ∈ P2,−z(ŷε, ŝε), (78)

and
−3
ε

(
I O
O I

)
≤
(

X̂ε O
O Ŷε

)
≤ 3

ε

(
I −I
−I I

)
(79)

for
τε = (t̂ε − ŝε)/ε, p̂ε = (x̂ε − ŷε)/ε.

By the definition of P2,± and Lemma 5, we have

(xk, tk, pk, Xk, φk), (yk, sk, qk, Yk, ψk), k = 1, 2, · · · ,
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satisfying
φk ∈ Φ+(xk, tk, pk, τk, Xk; w), ψk ∈ Φ−(yk, sk, qk, κk,−Yk; z) (80)

and

lim
k→∞

(xk, tk, w∗(xk, tk), pk, τk, Xk) = (x̂ε, t̂ε, w∗(x̂ε, t̂ε), pε, τε +
γ

(T − t̂ε)2 , X̂ε), (81)

lim
k→∞

(yk, sk, z∗(yk, sk), qk, κk, Yk) = (ŷε, ŝε, z∗(ŷε, ŝε),
pε

ρ
,

τ̂ε

ρ
− γ

ρ(T − ŝε)2 ,
−Ŷε

ρ
), (82)

which implies

(ϕ2
k)t + F(φ2

k ,∇φk,∇2φ2
k) ≤ 0 at (xk, tk),

(ψ2
k)t + F(ψk,∇ψk,∇2(ψk)

2) ≥ 0 at (yk, sk),

because w (resp., z) is a viscosity subsolution (resp., supersolution) to (27). Then, there
holds that

2φkτk − 2φktrXk + (γ− 2)|pk|2 + φk ≤ 0 at (xk, tk),

2ψkκk − 2ψktr(−Yk) + (γ− 2)|qk|2 + ψk ≥ 0 at (sk, yk).

by (80).
Sending k→ ∞, we obtain

2w∗(x̂ε, t̂ε){τ̂ε +
γ

(T − t̂ε)2 } − 2w∗(x̂ε, t̂ε)trX̂ε + (γ− 2)| p̂ε|2 + w∗(x̂ε, t̂ε) ≤ 0,

2z∗(ŷε, ŝε){
τ̂ε

ρ
− γ

ρ(T − t̂ε)2 } − 2z∗(ŷε, ŝε)tr(−
Ŷε

ρ
) +

γ− 2
ρ2 | p̂ε|2 + v(ŷε, ŝε) ≥ 0.

by (81) and (82), which implies

2{τ̂ε +
γ

(T − t̂ε)2 } − 2trX̂ε +
γ− 2

w∗(x̂ε, t̂ε)
| p̂ε|2 + 1 ≤ 0,

2{τ̂ε −
γ

(T − ŝε)2 } − 2tr(−Ŷε) +
γ− 2

ρz∗(ŷε, ŝε)
| p̂ε|2 + ρ ≥ 0.

Using tr(X̂ε + Ŷε) ≤ 0, derived from (79), now we reach

2γ{ 1
(T − t̂ε)2 +

1
(T − ŝε)2 }+ (

1
w∗(x̂ε, t̂ε)

− 1
ρz∗(ŷε, ŝε)

)(γ− 2)| p̂ε|2

≤ 2tr(X̂ε + Ŷε) + ρ− 1 < 0,

which is a contradiction. �

The following corollary is a direct consequence of Theorem 5.

Corollary 3. Assume γ ≤ 2, and let w and z be bounded viscosity solutions to (25) defined on QT .
Let

Q0 = {(x, t) ∈ QT | w∗(x, t) > 0} ∩ {(x, t) ∈ QT | z∗(x, t) > 0}.

Then, if w∗ = w∗ = z∗ = z∗ on ∂Q0\(Ω × {T}, it follows that w = z ∈ C(Q0\(Ω ×
{T})).

An analogous result to Theorem 4 is the following theorem.
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Theorem 6. Let w ≥ 0, defined on QT , be a bounded viscosity solution to (25) with γ ≤ 2, and
put

Q0 = {(x, t) ∈ QT | w∗(x, t) > 0}, Q̃ = QT\Q0.

Then, if
w∗ = w∗ = 0 on ∂Q̃\(Ω× {T}), (83)

it follows that
w∗ = w∗ = 0 in Q̃. (84)

Proof. Assuming
sup

Q̃
w∗ > 0,

we obtain 0 < γ� 1 and (x0, t0) ∈ QT \Q0, satisfying

sup
Q̃

(
w∗ − γ

T − t

)
= w∗(x0, t0)−

γ

T − t0
> 0

by (83). Then, there is r0 > 0 such that

w∗(x0, t0)−
γ

T − t0
≥ w∗(x, t)− γ

T − t
, ∀(x, t) ∈ Qr0(x0, t0).

Put
ϕ(x, t) =

γ

T − t
+ w∗(x0, t0)−

γ

T − t0
,

and see that that w∗ − ϕ attains a local maximum 0 at (x0, t0). Then, we obtain

0 ≥ (ϕ2)t + F(ϕ,∇ϕ,∇2 ϕ2)

= 2w∗(x0, t0)
γ

(T − t0)2 + w∗(x0, t0) > 0 at (x0, t0),

which is a contradiction.
It thus follows that w∗ ≤ 0 in Q̃, and hence in (84), from w ≥ 0. �

5. Conclusions

In this paper, we study the quasilinear parabolic Equation (20) derived from the
semilinear parabolic equation (1). Here, we review our results and discuss them in the
relation to (1)–(3). To begin with, we note two facts regarding the relation between the
exponents p and γ.

First, the condition p > 1 is equivalent to 4 < γ < ∞ in (22). The case γ = 4 arises if
f (u) = eu in (2) by taking v = e−2u. Several results of (20) obtained in this paper, however,
are beyond this range of γ. The case γ < 2 means 0 < p < 1 for f (u) = up, and then,
v = 0 is equivalent to u = 0. Hence, these results are associated with the quenching of the
sub-linear parabolic equation. The other case of 2 < γ < 4 means p < 0, and then v = 0 if
and only if u = 0. Thus, several properties of (20) presented in this paper are associated
with the blow-up or quenching profiles of the solution to (1).

Second, Equation (1) for Ω = RN , N ≥ 2, admits a singular stationary solution

u = C|x|−
2

p−1

with a constant C > 0 if p > N
N−2 . This exponent of p corresponds to 2 < γ < N + 2, where

v = v(x) ≥ 0 is realized by √
v = C−(p−1)|x|2.

The role of the third exponent of this γ = N + 2, other than γ = 2 and γ = 4, however,
has not been clarified yet.
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Now we examine the results obtained in this paper in detail, in accordance with the
theory of semilinear parabolic equations. Section 2 was devoted to the case of γ ≥ 2, in
which the convergence of a family of approximate solutions is discussed.

First, Theorems 1 and 2 are valid to 2 ≤ γ < 4, with the non-trivial case 2 < γ < 4
corresponding to p < 0. Since u2 = 0 if and only if v = 0 in (11) for this p, this family of
approximate solutions to (20) converges if a continuous quenching profile of the solution
u = u(x, t) to (1) arises for p < 0.

Second, Theorem 2 for γ = 4 and γ > 4 is associated with (2) for f (u) = eu and
f (u) = up with p > 1, respectively. Since u2 = +∞ if and only if v = 0 in this case, a
similar convergence is assured if there is a blow-up profile of the solution u = u(x, t) to (2)
for these nonlinearities, which are continuous on Ω with the value +∞ admitted.

Third, Theorem 6 is concerned with the case of γ ≤ 2, with the non-trivial case γ < 2
corresponding to 0 < p < 1. There, we obtain w ≡

√
v = 0 if and only if u = 0, and

therefore, this theorem is associated with the quenching profiles of the solution u = u(x, t)
to (3) for f (u) = up and 0 < p < 1. In more detail, the quenching region

K = {x ∈ Ω | u(x, T) = 0}

determines the value of u = u(x, T) on the residual domain, Ω \ K.
The theorems obtained in this paper are thus strongly related to the results regarding

the blow-up and quenching of the solution to semilinear equations. As we observe, several
critical exponents on p are detected for these semilinear problems, which should lead to
those of γ to (20) in accordance with the profile of v(·, T).

We observe, also, that the theory of viscosity solutions guarantees the existence of
the solution under the presence of the comparison theorem via the method of Perron [10].
There may be a challenge when taking this approach via Theorem 3 or Theorem 5, regarding
their incompleteness, as compared to the standard case in which the positive region of the
super-solution is not involved. We will come back to these problems in the future.
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