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Abstract: Electronic Health Records (EHRs) must be encrypted for patient privacy; however, an
encrypted EHR is a challenge for the administrator to categorize. In addition, EHRs are predictable
and possible to be guessed, although they are in encryption style. In this work, we propose a secure
scheme to support the categorization of encrypted EHRs, according to some keywords. In regard to
the predictability of EHRs, we focused on guessing attacks from not only the storage server but also
the group administrator. The experiment result shows that our scheme is efficient and practical.

Keywords: electronic health record; public key encryption with equality test; privacy protection;
group-based application; guessing attack
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1. Introduction

With the tremendous benefits of cloud computing, more and more data are being out-
sourced to the cloud by data owners, and shared with authorized users [1–3]. Outsourcing
electronic health records (EHRs) to a third party is the most common practice in health
systems, providing both computational cost savings and quality service.

An electronic health record (EHR) is a technical tool for recording a patient’s health
in a smart healthcare system. The EHR contains all information related to the patient’s
health, including sensitive information, such as personal medical history, health reports,
and medication records. Due to the sensitive patient data contained in EHRs, and the large
storage space required for the data, cloud storage technology has been proposed for data
storage management [4,5]; however, cloud service providers are not entirely trustworthy:
for example, cloud servers can be curious [6], and for some reason can steal users’ data or
compromise the integrity of the data.

To prevent sensitive data from being disclosed to cloud servers, patients encrypt the
EHRs before uploading to the cloud server [7]; however, medical staff have to download
and decrypt the data prior to searching, which makes the overhead cost much higher. To
solve this problem, researchers have proposed public-key-encryption-based searchable en-
cryption (PEKS), which allows servers to search encrypted data without revealing plaintext
data (see [7–11]): for example, the public key searchable encryption scheme first proposed
by Boneh et al. [8] has been applied to mail routing, where the mail server retrieves the data
and sends the ciphertext of the message containing the keywords to the recipient. Khader
et al. proposed a public key searchable encryption scheme based on K-Resilient IBE [11],
which not only proved to be secure under the standard model, but also without using the
bilinear pair, resulting in a significant improvement in operational efficiency.

However, searchable encryption (SE) only allows for searching on ciphertexts that have
been encrypted under the same public keys, which makes it unsuitable for scenarios with
different public key encryption. To solve this issue, a public key encryption with an equality
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test (PKEET) ([12,13]) was proposed, which was used to check whether two ciphertexts that
were encrypted by different public keys contained the same plaintext. To reduce the storage
cost of trapdoors, and the communication cost, Ling et al. [14] proposed the concept of
group public key encryption with an equality test; however, Ling’s scheme failed to resolve
the guessing attack from the group administrators in the system, which led to the security
risk of data leakage. We have built on Ling’s results, to further improve the security of the
scheme, and to combine it with the smart healthcare system.

In the traditional PKEET application scenario, any user can generate encrypted files,
upload the ciphertext to the server, and wait for the result after the server test. The
application of smart medical scenarios can lead to the privacy leakage of patient medical
data. In order to solve this problem, we introduced a group-oriented PKEET into the
medical scenario shown in Figure 1, taking the hospital as a group, with the patients
uploading their encrypted electronic health records to the hospital. The third-party server
could then perform an equality test on the ciphertexts within the group, after authorization,
to determine whether the patient was suffering from the same symptoms, while the health
records outwith the group could not be compared with the health records within the group:
this ensured that external malicious attackers could not guess the internal patient’s health
records, thus avoiding the leakage of patient privacy. When the server returned the test
results to the doctor, the doctor could classify the patients in the group, according to their
symptoms, to conduct better research for the disease.

Doctors Healthcare Cloud Server

Internet

Group 1 Group n

………… ……

Patients

Figure 1. A typical G-PKEET application scenario.

1.1. Our Contributions

To support the efficient management of EMR, we introduced the notion of group-
oriented PKEET. The main contributions of this scheme can be summarized as follows.

• We improved the group-oriented PKEET proposed in [14], to be resistant to guessing
attack even by the group administrator: in this way, patient privacy was enhanced.

• We applied our group-oriented PKEET to the healthcare system, so that the EMR were
managed efficiently and securely.

1.2. Related Work

Public key encryption with keyword search.
The concept of public key encryption with keyword search (PKE-KS) was first pro-

posed by Boneh [8]. In the scheme, the receiver sends a trapdoor to the server, so that the
server can search for specific keywords contained in the ciphertext.
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Public key encryption with equality testing. Public key encryption with equality
testing (PKEET) was introduced by Yang et al. [12]. In the scheme, the tester can arbitrarily
check whether two ciphertexts encrypted with different public keys contain the same
plaintext, without decrypting the ciphertext. To impose authorization mechanisms on
PKEET, Tang proposed a strengthened PKEET (FG-PKEET) [13] to support fine-grained
authorization. In the scheme, two users were required to jointly generate a token, and to
authorize the tester to perform the equality test. In addition, Tang [15] presented an all-or-
nothing PKEET (AoN-PKEET), which developed a fine-grained authorization mechanism
that specified the users who performed the equality test. Ma et al. [16] proposed a public
key encryption scheme to support the delegation equality test (PKE-DET), in which only
the delegated party was required to handle the work in a practical multi-user environment:
however, due to a large number of bilinear mapping operations, it could not be used in real
scenarios. Huang et al. [17] proposed a public key encryption scheme with an authorization
equality test (PKE-AET). In the PKE-AET, the protocol method was divided into receiver
warrants and cipher warrants, to improve privacy protection.

Group encryption with equality testing. The concept of group encryption with equality
testing was first proposed by Ling et al. [14]. The authors combined group mechanism
with PKEET, and enabled equality testing on different users’ ciphertexts within a group,
which reduced the storage cost of trapdoors and computation; however, Ling’s scheme
was unable to resist a guessing attack from the group administrator, which was a serious
privacy threat, especially in the healthcare system.

1.3. Organization

In the following, we briefly introduce some preliminaries in Section 2; we present
the system definition and security model of the scheme in Section 3; in Section 4, we
describe our scheme’s construction; in Section 5, we propose a formal security analysis; the
comparison and performance evaluation are shown in Section 6; finally, we present this
paper’s conclusion in Section 7.

2. Preliminaries

In this part, we give a brief introduction to the basic mathematical background, the
bilinear map, the building block, and the cryptographic tool used.

2.1. Mathematical Background

Bilinear Map: Let G and GT be two multiplicative cyclic groups of prime order p.
Suppose that g is G group’s generator. A bilinear map ê : G × G → GT has the following
properties:

• bilinear: for any g ∈ G and a,b ∈ Z∗p, ê(ga, gb) = ê(g,g)ab;
• non-degenerate: ê(g,g) 6= 1 ;
• computable: there is an effective algorithm for computing ê(g,g) for any g ∈ G.

Computational Diffie–Hellman Problem (CDH) [18]: Let G be a group of prime order

p. The CDH problem is as follows: we represent by R←− the process of uniformly sampling

a random element; if, given 3-tuple (g,ga,gb) ∈ G3 as input and a, b R←− Z∗p, we can say that
the CDH problem is hard in G, any probabilistic polynomial time algorithm A computes
gab with negligible advantage ε:

AdvCDH
A,G

def
= Pr

[
A
(

g, ga, gb
)
= gab

]
≤ ε

2.2. Building Block

G-PKEET is the building block to construct our security [14]. The system model of
G-PKEET is shown in Figure 2, which includes four entities: Group Administrator (GA);
Sender; Receiver; and Cloud Server (CS).
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• Group Administrator (GA) is responsible for generating the group secret key, gsk, and
the group public key, gpk, of the system; then, it keeps the gsk, and sends the gpk to
the patient.

• Sender: the patient encrypts the electronic medical record with the group public key
(gpk) and with the patient’s own secret key (sk), to generate the ciphertext C, then
stores it in the cloud server.

• Cloud Server (CS): with the authorization, the cloud server is in charge of performing
the equality test, and returns the result to the doctor.

• Receiver: upon receiving the result from the cloud server, the receiver can classify the
based on the result.
The receiver can use their own private key to decrypt the ciphertext at the same time.

Receiver
GA

Cloud Sever

Sender 1 Sender 2 Sender n

……

Group trapdoor Result
E

n
cry
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n
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Public key
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 P

u
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Figure 2. G-PKEET system model.

3. System Definition and Security Model
3.1. The Syntax of PKEET

Public key encryption with equality testing consists of the following algorithms
(Gen, Enc, Dec, Test) operating over plaintextM, ciphertext space C, and key space K :

• Gen(1λ): the algorithm inputs a security parameter, λ, and outputs a public/secret key
pair (pk, sk);

• Enc(pk, M): the algorithm inputs message M, the receiver’s public key, pk, and outputs
a ciphertext, C;

• Dec(sk, C): the algorithm inputs a ciphertext, C, the receiver’s secret key, sk, and
outputs a message, M;

• Test(C1, C2): the algorithm inputs two ciphertexts, C1, C2, and outputs 1, if C1 and C2
are encrypted from the same plaintexts, and 0 otherwise.

3.2. The Syntax of G-PKEET

As an improvement, the group public key encryption with equality testing consists of
the following algorithms (Setup, KeyGenuser, KeyGengroup, Join, Enc, Dec, Aut, Test) oper-
ating over plaintextM, ciphertext space C, and key space K :
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• Setup(λ): the algorithm inputs a security parameter, λ, and outputs pp as a system
parameter;

• KeyGenuser(pp): the algorithm inputs system parameter pp, and outputs (pki,ski) as a
public/secret key pair;

• KeyGengroup(pp): the algorithm inputs system parameter pp, and outputs gsk as a
group secret key; it is run by GA;

• Join(gsk, pki): the algorithm inputs a group secret key, gsk, a public key, pki, and
outputs gpki as a group public key for group user Ui; it is run by GA;

• Enc(gpki, ski, pkj, M): the algorithm inputs a group public key, gpk, and a secret key,
ski, of the group user Ui, a public key, pk j, of the group user Uj, and a message, m,
where Ui and Uj represent the receiver and sender, respectively, and outputs Cij as a
ciphertext;

• Dec(gpki, skj, Ci,j): the algorithm inputs a group public key, gpki of the group user
Ui, a secret key, sk j, of the group user Uj, where Ui and Uj represent the receiver and
sender, respectively, and outputs message M;

• Aut(gsk): the algorithm inputs a group secret key, gsk, and outputs a group trapdoor
gtd; it is run by GA;

• Test(Ci,j, Ci′ ,j′ , gtd): the algorithm inputs two ciphertexts, Ci,j, Ci′ ,j′ , a group trapdoor,
gtd, and outputs 1, if Ci,j and Ci′ ,j′ are encrypted from the same plaintexts, and 0
otherwise.

3.3. Security Models

To simplify the security analysis, we defined the following games and adversaries for
the security model:

• Type-I Adversary: the attacker authorized by GA cannot retrieve a message from the
challenge ciphertext;

• Type-II Adversary: the attacker unauthorized by GA cannot determine by which
plaintext the challenge ciphertext is encrypted.

OW-CCA security against Type-I adversary.
Game 1: Let A1 be a Type-I adversary.

1. Setup: With a security parameter, λ, challenger C1 runs the Setup algorithm to generate
public parameter pp; then, it runs the KeyGenuser algorithm to generate n group users’
public/secret key pair (pki, ski) (1 ≤ i ≤ n); it runs the KeyGengroup algorithm, to
generate a group secret key, gsk; it runs the Join algorithm, to generate n group user’s
group public key, gpki (1 ≤ i ≤ n); and it runs the Aut algorithm, to generate a group
trapdoor, gtd; finally giving pp, all pki, gpki, and gtd to the adversary A1.

2. Phase 1: A1 makes the following queries for polynomial times:

• OKey query 〈i〉 : A1 sends pki, and gets ski from the oracle;
• OEnc query 〈i, j, M〉 : A1 sends (gpki, ski, pk j, M), and gets the encryption result

of M from the oracle;
• ODec query

〈
i, j, Ci,j

〉
: A1 sends (gpki, sk j, Ci,j), and gets the decryption result of

Ci,j from the oracle.

3. Challenge: The challenge C1 randomly selects a message, M, runs Enc(gpki∗ , ski∗ , pk j∗ ,
M), and sends the output Ĉi∗ ,j∗ to A1.

4. Phase 2: A1 issues queries, as in Phase 1: the constraint is that (i∗, j∗, Ĉi∗ ,j∗ ) cannot
appear in ODec.

5. Guess: A1 outputs a guess, M∗: if M∗ = M, A1 wins the game.

We define the advantage of A1 in the Game 1 as

AdvOW-CCA
A1

(λ) = Pr[M∗ = M]

Definition 1. The improved G-PKEET scheme is OW-CCA-secure if AdvOW−CCA
A1

is negligible
for any probabilistic polynomial time OW-CCA adversary in the security parameters.
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IND-CCA security against Type-II adversary.
Game 2: Let A2 be a Type-II adversary.

1. Setup: With a security parameter, λ, challenger C2 runs the Setup algorithm to generate
public parameter PP; then, it runs the KeyGenuser algorithm to generate n group users’
public/secret key pair, (pki, ski) (1 ≤ i ≤ n); it runs the KeyGengroup algorithm to
generate a group secret key, gsk; it runs the Join algorithm to generate n group user’s
group public key, gpki (1 ≤ i ≤ n); and it runs the Aut algorithm to generate a group
trapdoor, gtd; finally, it gives pp, all pki, gpki, and gtd to the adversary, A2.

2. Phase 1: A2 makes the following queries for polynomial times:

• OKey query 〈i〉 : A2 sends pki, and gets ski from the oracle;
• OEnc query 〈i, j, M〉: A2 sends (gpki, ski, pk j, M), and gets the encryption result

of M from the oracle;
• ODec query

〈
i, j, Ci,j

〉
: A2 sends (gpki, sk j, Ci,j), and gets the decryption result of

Ci,j from the oracle.

3. Challenge: A2 randomly selects two messages, m0, m1, and sends them to challenge

C2; then, C2 randomly selects σ
R← {0, 1}, runs Enc(gpki∗ , ski∗ , pk j∗ , M), and sends

Ĉi∗ ,j∗ to A2.
4. Phase 2: A2 issues queries, as in Phase 1. The constraint is that (i∗, j∗, Ĉi∗ ,j∗ ) cannot

appear in ODec.
5. Guess: A2 returns a guess, σ∗. If σ∗ = σ, A2 wins the game.

We define the advantage of A2 in the Game 2 as

AdvINC-CCA
A2

(λ) =
∣∣∣Pr[σ∗ = σ]− 1

2

∣∣∣
Definition 2. The improved G-PKEET scheme is IND-CCA-secure if AdvIND−CCA

A2
is negligible

for any probabilistic polynomial time IND-CCA adversary in the security parameters.

4. Construction

• Setup(λ): this algorithm is performed by Key Generation Center (KGC). KGC inputs se-
curity parameter λ, and outputs public parameters pp = {G, GT , p, g, e, H1, H2, H3, H4}.
H1, H2, H3, H4 are four collision-resistant hash functions:
− H1:{0, 1}l1 → G,
− H2:G → G,
− H3:G → {0, 1}l1+l2 ,
− H4:{0, 1}∗ → {0, 1}λ, where l1 and l2 represent the length of message and the length
of Zp.

• KeyGenuser(pp): this algorithm is performed by the patient, who randomly selects

xi, yi
R← Z∗p, and outputs a public/secret key pair, (pki, ski)

(pki, ski)=((gxi , gyi ), (xi, yi)).

• KeyGengroup(pp): this algorithm is performed by the GA (for example, the hospital
director), who randomly selects s1, s2 ← Z∗p, and: (1) outputs a group secret key, gsk =
(s1, s2); (2) sets the group trapdoor, gtd = s2.

• Join(gsk, pki): this algorithm is performed by GA, and outputs a group public key for
group patients, Ui:

gpki = (gxis1 , gs2)

• Enc(gpki, ski, pk j, M): this algorithm is performed by patient i. To encrypt EHRs, say

M ∈ {0, 1}∗, patient i randomly chooses two random numbers, ζ1, ζ2
R← Z∗p, and uses

doctor j′s public key, pk j, to set the ciphertext, C = (C1,C2,C3,C4,C5), as follows:
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C1 = g
xi
yi

s1ζ1 , C2 = H1(M)
xi
yi

ζ1 · H2(gs2ζ2),
C3 = gζ2 , C4 = H3(gxjζ2)⊕

(
M‖gζ1

)
,

C5 = H4
(
C1‖C2‖C3‖C4‖M‖gζ1

)
.

• Dec(gpki, sk j, Ci,j): this algorithm is performed by a doctor, and computes (M′||gζ ′1)

← C4 ⊕ H3(C
xj
3 ), then decides if the following equation holds:

ê(C1, gyi ) = ê(gxis1 , gζ ′1) ,
C5 = H4

(
C1‖C2‖C3‖C4‖M′‖gζ ′1

)
;

if yes, then the doctor obtains the EHRs’ M′.
In the decryption step, a verification operation is performed, to prevent attackers from
decrypting the modified ciphertext to obtain the plaintext; data security is ensured.

• Aut(gsk): this algorithm is performed by GA, and outputs a group gtd = s2 to the
cloud server, for the next testing step.

• Test(Ci,j, Ci′ ,j′ , gtd): the algorithm is performed by tester (cloud server). Given cipher-
texts, group trapdoor, the algorithm outputs 1 if the following equation holds:

ê(C1, C′2/H2((C′3)
s2)) = ê(C′1, C2/H2(C

s2
3 )).

Note: We presented a detailed construction for the G-PKEET scheme as above, and
compared it to Ling et al.’s scheme [14]. We made some improvements to the encryp-
tion part, by using a pair of generated private keys to encrypt the EHRs, so that only
the server could test the ciphertext if it got the group trapdoor.

5. Security Analysis

In this section, we show that our improved G-PKEET scheme is OW-CCA-secure
against a Type-I adversary, and IND-CCA-secure against a Type-II adversary with the
random oracles.

Theorem 1. The improved G-PKEET scheme is OW-CCA-secure against a Type-I adversary, based
on the CDH problem in the random oracle model.

Proof. Let A1 be a probabilistic polynomial time (PPT) adversary attacking the OW-CCA
security. Assuming that A1 makes, at most, qH1 > 0 H1 hash queries , qH2 > 0 H2 hash
queries, qH3 > 0 H3 hash queries, qH4 > 0 H4 hash queries, qK > 0 secret key queries, qEnc >
0 encryption queries, qDec > 0 decryption queries, and qAut > 0 authorization queries. Let
AdvOW−CCA

A1
(λ) represent the advantage ofA1 in the following games. We will demonstrate

the security proof through a series of games.

Game 1.0:

1. pp ← (p,G,GT , ê, g), ∀1 ≤ i ≤ n, (xi, yi)
R← Z∗p, ski = (xi, yi), pki = (gxi , gyi ) , s1, s2

R←
Z∗p, gsk = (s1, s2), gpki = (gxis1 , gs2), gtd = s2. H1, H2, H3, and H4 are random oracles.
H-query. The challenger prepares four hash tables, to record and respond to queries.

OH1 query 〈v1〉 : given a v1 ∈ G, the challenger randomly selects u R← Z∗p, computes
h1 = gu ∈ G, saves(v1, u, h1) into T1, and sends h1 to A1.
OH2 query 〈v1〉 : given a v1 ∈ G, the challenger chooses a compatible random value,
h2, and saves (v1, h2) into T2 for OH2 .
OH3 query 〈v1〉 : given a v1 ∈ G, the challenger chooses a compatible value, h3,
uniformly from the set {0, 1}l1+l2 that is returned, and saves (v1, h3) into T3 for OH3 .
OH4 query 〈v1〉 : given a v1 ∈ G, the challenger chooses a compatible value, h4,
uniformly from the set {0, 1}λ that is returned, and saves (v1, h4) into T4 for OH4 .

2. state ← A
OH1 ,OH2 ,OH3 ,OH4 ,OKey ,OEnc ,ODec
1

(PP, {pki, gpki}n
i=1, gtd, i∗, j∗), where the oracles are simulated as follows, and j∗ can-

not appear in OKey oracle:
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OKey query 〈i〉 : input index i; the challenger sends (xi, yi) to A1;
OEnc query 〈i, j, M〉 : input two indexes, i, j, and a plaintext M; the challenger runs
the Enc algorithm, and returns Ci,j = Enc(gpki, ski, pk j, M);
ODec query

〈
i, j, Ci,j

〉
: input two indexes, i, j, and a ciphertext, Ci,j; the challenger

runs the Dec algorithm, and returns M = Dec(gpki, sk j, Ci,j).

3. M R← {0, 1}l1 , ζ1, ζ2
R← Z∗p, Ĉi∗ ,j∗ = (Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ĉ5), and computes :

Ĉ1 = g
xi∗
yi∗

s1ζ1 , Ĉ2 = H1(M)
xi∗
yi∗

ζ1 · H2(gs2ζ2),
Ĉ3 = gζ2 , Ĉ4 = H3(g

xj∗ ζ2)⊕
(

M‖gζ1
)
,

Ĉ5 = H4

(
Ĉ1

∥∥∥Ĉ2

∥∥∥Ĉ3

∥∥∥Ĉ4

∥∥∥M‖gζ1
)

.

4. M′ ← A
O(H1,H2,H3,H4)

,O(Key,Enc,Dec)
1 (state, Ĉi∗ ,j∗). The constraint is that (i∗, j∗, Ĉi∗ ,j∗ ) cannot

appear in ODec, and j∗ cannot appear in OKey.

Let S1.0 denote the event M′ = M in Game 1.0. Thus, the advantage ofA1 is as follows:

AdvOW-CCA
A1

(qH1 , qH2 , qH3 , qH4 , qKey, qEnc, qDec)

= Pr[S1.0] (1)

Game 1.1: In this game, the performance of the challenger is the same as in Game 1.0,
except for the following:

1. OEnc query 〈i, j, M〉: the challenge C1 selects ζ1, ζ2
R← Z∗p, and returns a ciphertext,

Ci,j, to A1, then computes

C1 = g
xi
yi

s1ζ1 , C3 = gζ2 ;

it executes a query on OH1 , with input M to return h1, a query on OH2 , with input
gs2ζ2 to return h2, and a query on OH3 , with input gxjζ2 to return h3; then, it computes

C2 = h
xi
yi

ζ1

1 · h2, C4 = h3 ⊕ (M||gζ1).

and, finally, it executes a query on OH4 with input (C1||C2||C3||C4||M||gζ1) to return
h4; then, it sets

C5 = h4.

The challenger saves (v1, h1), (v1, h2), (v1, h3), (v1, h4) to T1, T2, T3, T4, and returns Ci,j
to A1.
ODec query

〈
i, j, Ci,j

〉
: the challenger executes a query on OH3 on input C

xj
3 , and gets

the answer h3; it then computes C4 ⊕ h3, to get M′||gζ ′1 , and checks if the following
equations hold:

C1 = g
xi
yi

s1ζ ′1 ,
C5 = H4

(
C1‖C2‖C3‖C4‖M′‖gζ ′1

)
.

If either fails to be maintained, the challenger sends ⊥ to A1; otherwise, it sends M′

to A1.

2. M R← {0, 1}l1 , ζ1, ζ2
R← Z∗p, W∗ R← {0, 1}l1+l2 , Ĉi∗ ,j∗ = (Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ĉ5) computes

Ĉ1 = g
xi∗
yi∗

s1ζ1 , Ĉ2 = H1(M)
xi∗
yi∗

ζ1 · H2(gs2ζ2);
Ĉ3 = gζ2 , Ĉ4 = W∗1.1 ⊕

(
M‖gζ1

)
;

Ĉ5 = H4(Ĉ1||Ĉ2||Ĉ3||Ĉ4||M||gζ1).
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Finally, the challenger saves the tuple (gxj∗ ζ2 , W∗1.1) into tables T3 for OH3 .

Let S1.1 denote the event M′ = M in Game 1.1. Given the idealness of the random
oracle, Game 1.1 is the same as Game 1.0, and we have

Pr[S1.1] = Pr[S1.0] (2)

Game 1.2: In this game, the performance of the challenger is the same as in Game 1.1,
except for the following:

1. OH3 query 〈v1〉 is the same as that in Game 1.1; in addition, if A1 asks (Ĉ3)
xj∗ , denote

this event by E1;
2. ODec query

〈
i, j, Ci,j

〉
is the same as that in Game 1.1; in addition, if A1 requests the

decryption of (Ĉ1, Ĉ2, Ĉ3, Ĉ
′
4, Ĉ5) after receiving the challenge ciphertext Ĉi∗ ,j∗ , where

Ĉ
′
4 6= Ĉ4, the challenger sends ⊥ to A1;

3. M R← {0, 1}l1 , ζ1, ζ2
R← Z∗p, W∗2.1

R← {0, 1}l1+l2 , Ĉi∗ ,j∗ = (Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ĉ5) is defined
as follows:

Ĉ1 = g
xi∗
yi∗

s1ζ1 , Ĉ2 = H1(M)
xi∗
yi∗

ζ1 · H2(gs2ζ2),
Ĉ3 = gζ2 , Ĉ4 = W∗2.1,

Ĉ5 = H4(Ĉ1||Ĉ2||Ĉ3||Ĉ4||M||gζ1).

Finally, the tuple (gxj∗ ζ2 , W∗2.1 ⊕ (M||gζ1)) is saved into tables T3 for OH3 .

Let S1.2 denote the event that M = M′ in Game 1.2. The challenge ciphertext generated
in Game 1.1 is identically distributed to that in Game 1.2, as Ĉ4 is a random value
in both Game 1.1 and Game 1.2; therefore, if event E1 does not happen, Game 1.2 is
identical to Game 1.1, and we have

|Pr[S1.2]− Pr[S1.1]| ≤ Pr[E1]. (3)

Next, we show that the event (3) holds.

Lemma 1. Event E1 happens in Game 1.2 with negligible probability if the CDH problem is
intractable.

Proof. Suppose that Pr[E1] is non-negligible. We construct a PPT algorithm, B1, to break the
CDH assumption. Given a tuple, (G, GT , p, ê, g, gα, gβ), it runsA′1, and works as follows:

1. B1 sets PP = (G, GT , p, g, ê); it chooses two random values, s1, s2
R← Z∗p, 1 ≤ i∗, j∗ ≤ n,

and sets gsk = (s1, s2), sk j∗ = α, pk j∗ = gα, and gpkj∗ = ((gα)s
1, gs

2). Then, it chooses

random value xi
R← Z∗p, and sets ski = xi, pki = gx

i , gpki = (gxis1 , gs2), and gtd = s2.
H1, H2, H3, H4 are four random oracles. H-query. B1 prepares four hash tables to
record and respond to queries, where all the hash tables are initialized to empty:
OH1 query 〈v1〉: same as that in Game 1.1;
OH4 query 〈v1〉: same as that in Game 1.1;
OH3 query 〈v1〉: same as that in Game 1.1;
OH2 query 〈v1〉: same as that in Game 1.1, except that if A′1 asks (Ĉ3)

xj∗ = gαβ, we
denote this event by E′1.

2. state ← A
OH1 ,OH2 ,OH3 ,OH4 ,OKey ,OEnc ,ODec
1 (pp, {pki, gpki}n

i=1, gtd,i,j), where the oracles are
simulated as follows:
OKeyquery〈i〉: same as that in Game 1.1;
OEncquery〈i, j, M〉: same as that in Game 1.1, except that if query 〈i, j∗, M〉, B1 chooses

random values, ζ1, ζ2
R← Z∗p, and outputs a ciphertext, Ci,j = (C1, C2, C3, C4, C5),

defined as
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C1 = (gα)s1ζ1 , C3 = gζ2 ,

then it executes a query on OH1 , with input M to return (v1, uM, h1), a query on OH2 ,
with input gs2r2 to return h2, and a query on OH3 , with input gxjζ2 to return h3; then, it
computes

C2 = (gα)uMζ1 · h2, C4 = h3 ⊕ (M||gζ1);

finally, it executes a query on OH4 , with input (C1||C2||C3||C4||M||gζ1) to return h4,
and sets C5 = h4.
The challenger saves (v1, h1) to table T1 for OH1 , (v1, h2) to table T2 for OH2 , (v1, h3)
to table T3 for OH3 , (v1, h4) to table T4 for OH4 , and returns Ci,j to A′1.
ODec query

〈
i, j, Ci,j

〉
: same as that in Game 1.1. In addition to query

〈
i, j∗, Ci,j

〉
, if

A′1 asks the decryption of (Ĉ1, Ĉ2, Ĉ3, Ĉ
′
4, Ĉ5) after obtaining the challenger ciphertext

Ĉi∗ ,j∗ , and Ĉ
′
4 6= Ĉ4, the challenger sends ⊥ to A1. For the tuple (v1, h3), B1, after

computing M′||gζ ′1 = C4 ⊕ h3, verifies if C1 = g
xi
yi

s1ζ ′1 ; otherwise, it returns ⊥; then, it
inputs (C1||C2||C3||C4||M′||gζ ′1) to get h4, and verifies if C5 = h4: if so, it returns M; if
a compatible tuple does not exist, it returns ⊥.

3. M R← {0, 1}l1 , ζ1
R← Z∗p, (W∗)′ R← {0, 1}l1+l2 , Ĉi∗ ,j∗ = (Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ĉ5), defined as

follows:

Ĉ1 = g
xi∗
yi∗

s1ζ1 , Ĉ2 = H1(M)
xi∗
yi∗

ζ1 · H2((gβ)s2),
Ĉ3 = gβ , Ĉ4 = (W∗)′ ⊕

(
M‖gζ1

)
,

Ĉ5 = H4(Ĉ1||Ĉ2||Ĉ3||Ĉ4||M||gζ1);

finally, it saves the tuple (∆, C′4) into table T3, where ∆ Indicates that the value is
unknown.

4. M′ ← A
O(H1,H2,H3,H4)

,O(Key,Enc,Dec)
1 (state, Ĉi∗ ,j∗). The constraints are that j∗ cannot appear

in OKey, and (i∗, j∗, Ĉi∗ ,j∗ ) cannot appear in ODec.

Indistinguishable simulation. Based on the setting of the simulation, the correctness and
randomness of the simulation hold, given a ciphertext Ci,j = (C1, C2, C3, C4, C5) for a
decryption query, if j 6= j∗, B1 is able to execute decryption simulation; if j = j∗, we
have the following scenarios:

• Cα
3 has been queried to OH3 before decryption query is asked: in this case, C4 is

uniquely determined after Cα
3 is queried toOH3 ; then, the decryption oracle is perfectly

simulated;
• Cα

3 has never been queried to OH3 when the decryption query is asked: in this case, ⊥
is returned by the decryption oracle if the simulation fails; however, the idealness of
the random oracle happens with probability 1/2l1+l2 .

E2 denotes the event that a valid ciphertext is refused in the simulation: then, we
have Pr[E2] ≤ qD/2l1+l2 , which is negligible, so that B1 executes the decryption simulation
correctly, but with negligible probability. The simulation is indistinguishable from Game 1.2.

Probability of successful simulation. If the simulated game is not aborted, then the
probability of successful simulation is 1.

Analysis. As A′1 queries (Ĉ3)
α with probability Pr

[
E′1
]
, B1 is able to solve the CDH

problem with probability Pr
[
E′1
]
, and we have Pr

[
E′1
]

= AdvCDH
A1

. In addition, if E2 does
not occur, we have Pr

[
E′1 | ¬E2

]
= Pr[E1].

Pr
[
E′1
]
= Pr

[
E′1 | E2

]
Pr[E2] + Pr

[
E′1 | ¬E2

]
Pr[¬E2]

≥ Pr
[
E′1 | ¬E2

]
Pr[¬E2] = Pr[E1](1− Pr[E2])

≥ Pr[E1]− Pr[E2].
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Therefore, according to AdvCDH
A1

≥ Pr[E1]− qD/2l1+l2 , we have

Pr[E1] ≤ AdvCDH
A1

+ qD/2l1+l2 , (4)

which is negligible. This completes the proof of Lemma 1.
Finally, in Game 1.2, we analyze the challenge ciphertext Ĉi∗ ,j∗ :

Ĉ1 = g
xi∗
yi∗

s1ζ1 , Ĉ2 = H1(M)
xi∗
yi∗

ζ1 · H2(gs2ζ2),
Ĉ3 = gζ2 , Ĉ4 = W∗ ⊕

(
M‖gζ1

)
,

Ĉ5 = H4(Ĉ1||Ĉ2||Ĉ3||Ĉ4||M||gζ1).

Note that Ĉ1, Ĉ3, and Ĉ4 are independent from the message M. Given the one-wayness
of hash functions, A1 can figure out M from Ĉ2 and Ĉ5 with a negligible probability ε; thus,
we have

Pr[S1.2] ≤ ε (5)

According to (1)–(5), we have

AdvOW-CCA
A1

(qH1 , qH2 , qH3 , qH4 , qKey, qEnc, qDec) ≤ AdvCDH
A∞

+ qD/2l1+l2 + ε,

which is negligible. This completes the proof of Theorem 1.

Theorem 2. The improved G-PKEET scheme is IND–CCA-secure against a Type-II adversary
based on the CDH problem in the random oracle model.

Proof. Let A2 be a probabilistic polynomial time (PPT) adversary attacking the IND-CCA
security. Assuming that A2 makes, at most, qH1 > 0 H1 hash queries , qH2 > 0 H2 hash
queries, qH3 > 0 H3 hash queries, qH4 > 0 H4 hash queries, qK > 0 secret key queries, qEnc > 0
encryption queries, qDec > 0 decryption queries, and qAut > 0 authorization queries, let
AdvIND−CCA

A2
(λ) represent the advantage ofA2 in the following games. We will demonstrate

the security proof through a series of games.

Game 2.0:

1. pp ← (p,G,GT , ê, g), ∀1 ≤ i ≤ n, (xi, yi)
R← Z∗p, ski = (xi, yi), pki = (gxi , gyi ) , s1, s2

R←
Z∗p, gsk = (s1, s2), gpki = (gxis1 , gs2), gtd = s2. H1, H2, H3, and H4 are random oracles.
H-query. The challenger prepares four hash tables, to record and respond to queries:

OH1 query 〈v1〉 : given a v1 ∈ G, the challenger randomly selects u R← Z∗p, computes
h1 = gu ∈ G, saves (v1, u, h1) into T1, and sends h1 to A2;
OH2 query 〈v1〉 : given a v1 ∈ G, the challenger chooses a compatible random value
h2, and saves (v1, h2) into T2 for OH2 ;
OH3 query 〈v1〉 : given a v1 ∈ G, the challenger chooses a compatible value h3
uniformly from the set {0, 1}l1+l2 that is returned, and saves (v1, h3) into T3, for OH3 ;
OH4 query 〈v1〉 : given a v1 ∈ G, the challenger chooses a compatible value h4
uniformly from the set {0, 1}λ that is returned, and saves (v1, h4) into T4, for OH4 ;

2. (M0, M1) ← A
OH1 ,OH2 ,OH3 ,OH4 ,OKey ,OEnc ,ODec
2 (PP, {pki, gpki}n

i=1, gtd,i,j), where the ora-
cles are simulated as follows:
OEnc query 〈i, j, M〉 : input two indexes, i, j, and a plaintext M; the challenger runs
Enc algorithm, and returns Ci,j = Enc(gpki, ski, pk j, M);
ODec query

〈
i, j, Ci,j

〉
: input two indexes, i, j, and a ciphertext, Ci,j; the challenger

runs a Dec algorithm, and returns M = Dec(gpki, sk j, Ci,j).

3. b R← {0, 1}, ζ1, ζ2
R← Z∗p, Ĉi∗ ,j∗ = (Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ĉ5) computes:

Ĉ1 = g
xi∗
yi∗

s1ζ1 , Ĉ2 = H1(Mb)
xi∗
yi∗

ζ1 · H2(gs2ζ2),
Ĉ3 = gζ2 , Ĉ4 = H3(g

xj∗ ζ2)⊕
(

Mb‖gζ1
)
,

Ĉ5 = H4(Ĉ1||Ĉ2||Ĉ3||Ĉ4||Mb||gζ1).
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4. b′ ← A
OH1 ,OH2 ,OH3 ,OH4 ,OKey ,OEnc ,ODec
2 (Ĉi∗ ,j∗). The constraints are that j∗ cannot appear

in OKey, and (i∗, j∗, Ĉi∗ ,j∗ ) cannot appear in ODec.

Let S2.0 denote the event b′ = b in Game 2.0. Thus, the advantage of A2 is as follows:

AdvIND-CCA
A2

(qH1 , qH2 , qH3 , qH4 , qKey, qEnc, qDec)
= |Pr[S2.0]− 1/2|

Game 2.1: In this game, the performance of challenger is the same as in Game 2.0,
except for the following:

1. OEnc query 〈i, j, M〉 : the challenger chooses two random values, ζ1, ζ2
R← Z∗p, and

returns a ciphertext, Ci,j, then computes

C1 = g
xi
yi

s1ζ1 , C3 = gζ2 .

It executes a query on OH1 with input M to return h1, a query on OH2 with input gs2ζ2

to return h2, and a query on OH3 with input gxjζ2 to return h3; then, it computes

C2 = h
xi
yi

ζ1

1 · h2 , C4 = h3 ⊕ (M||gζ1),

and, finally, executes a query on OH4 , with input (C1||C2||C3||C4||M||gζ1) to return
h4, then sets: C5 = h4.
The challenger saves (v1, h1), (v1, h2), (v1, h3), (v1, h4) to T1, T2, T3, T4, and returns Ci,j
to A2.

2. b R← {0, 1}, ζ1, ζ2
R← Z∗p, W∗ R← {0, 1}l1+l2 , Ĉi∗ ,j∗ = (Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ĉ5) computes:

Ĉ1 = g
xi∗
yi∗

s1ζ1 , Ĉ2 = H1(M)
xi∗
yi∗

ζ1 · H2(gs2ζ2),
Ĉ3 = gζ2 , Ĉ4 = W∗ ⊕

(
Mb‖gζ1

)
,

Ĉ5 = H4(Ĉ1||Ĉ2||Ĉ3||Ĉ4||Mb||gζ1).

Finally, the tuple (gxj∗ ζ2 , W∗) is saved into tables, T3, for OH3 .

3. b′ ← A
OH1 ,OH2 ,OH3 ,OH4 ,OKey ,OEnc ,ODec
2 (Ĉi∗ ,j∗). The constraints are that j∗ cannot appear

in OKey, and (i∗, j∗, Ĉi∗ ,j∗ ) cannot appear in ODec.

Let S1.1 denote the event b′ = b in Game 2.1. The idealness of the random oracle,
Game 2.1, is the same as Game 1.0, and we have

Pr[S2.1] = Pr[S2.0]. (6)

Game 2.2: in this game, the performance of the challenger is the same as in Game 2.1,
except for the following:

1. OH3 query 〈v1〉 : same as that in Game 2.1, except that if A2 asks (Ĉ3)
x∗j , we denote

this event by E1.
2. ODecquery

〈
i, j, Ci,j

〉
: same as that in Game 2.1, except that if A2 asks the decryption

of (Ĉ1, Ĉ2, Ĉ3, Ĉ
′
4, Ĉ5) after receiving the challenge ciphertext Ĉi∗ ,j∗ , where Ĉ

′
4 6= Ĉ4, the

challenger sends ⊥ to A2.

3. b R← {0, 1}, ζ1, ζ2
R← Z∗p, W∗2.1

R← {0, 1}l1+l2 , Ĉi∗ ,j∗ = (Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ĉ5), defined as
follows:

Ĉ1 = g
xi∗
yi∗

s1ζ1 , Ĉ2 = H1(M)
xi∗
yi∗

ζ1 · H2(gs2ζ2),
Ĉ3 = gζ2 , Ĉ4 = W∗2.1,

Ĉ5 = H4(Ĉ1||Ĉ2||Ĉ3||Ĉ4||Mb||gζ1).
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Finally, the tuple (gxj∗ ζ2 , W∗2.1 ⊕ (Mb||gζ1) is saved into tables T3.

Let S2.2 denote the event that b = b′ in Game 2.2. The challenge ciphertext generated
in Game 2.1 is identically distributed to that in Game 2.2, as Ĉ4 is a random value in
both Game 2.1 and Game 2.2; therefore, if event E1 does not happen, Game 1.2 is equal
to Game 2.1, and we have

Pr[E1] ≤ AdvCDH
A2

+ qD/2l1+l2 . (7)

Game 2.3: In this game, the performance of the challenger is the same as in Game 2.2,
except for the following:

1. b R← {0, 1}, ζ1, ζ2
R← Z∗p, W∗3.1

R← {0, 1}l1+l2 , W∗3.2
R← G, Ĉi∗ ,j∗ = (Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ĉ5),

defined as follows:

Ĉ1 = g
xi∗
yi∗

s1ζ1 , Ĉ2 = H1(M)
xi∗
yi∗

ζ1 ·W∗3.2,
Ĉ3 = gζ2 , Ĉ4 = W∗3.1,

Ĉ5 = H4(Ĉ1||Ĉ2||Ĉ3||Ĉ4||Mb||gζ1).

Finally, the tuple (gxj∗ ζ2 , W∗3.1 ⊕ (Mb||gr1)), (gs2ζ2 , W∗3.2) is saved into table T3, T2.

Let S2.3 denote the event b′ = b in Game 2.3. Given the idealness of the random oracle,
Game 2.3 is the same as Game 2.2, and we have

Pr[S2.3] = Pr[S2.2].

Game 2.4: In this game, the performance of the challenger is the same as in Game 2.3,
except for the following:

1. OH2 query 〈v1〉 : same as that in Game 2.3, except that if A2 asks (Ĉ3)
s2 , we denote

this event by E3;
2. ODec query

〈
i, j, Ci,j

〉
: same as that in Game 2.3, except that if A2 asks the decryption

of (Ĉ1, Ĉ
′
2, Ĉ3, Ĉ

′
4, Ĉ5) after receiving the challenge ciphertext Ĉi∗ ,j∗ , where Ĉ

′
2 6= Ĉ2 and

Ĉ
′
4 6= Ĉ4, the challenger sends ⊥ to A2;

3. b R← {0, 1}, ζ1, ζ2
R← Z∗p, W∗4.1

R← {0, 1}l1+l2 , W∗4.2
R← G, Ĉi∗ ,j∗ = (Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ĉ5),

defined as follows:

Ĉ1 = g
xi∗
yi∗

s1ζ1 , Ĉ2 = W∗4.2,
Ĉ3 = gζ2 , Ĉ4 = W∗4.1,

Ĉ5 = H4(Ĉ1||Ĉ2||Ĉ3||Ĉ4||Mb||gζ1).

Finally, the tuple (gxj∗ ζ2 , W∗4.1⊕ (Mb||gζ1)) , (gs2ζ2 , W∗4.2/H1(Mb)
xi∗
yi∗

ζ1) is saved to table
T3, T2 .

Let S2.4 denote the event that b = b′ in Game 2.4. The challenge ciphertext generated
in Game 2.3 is equally distributed to that in Game 2.4, as C∗4 is a random value in both
Game 2.3 and Game 2.4; therefore, if event E3 does not happen, Game 2.4 is the same
as Game 2.3, and we have

|Pr[S2.4]− Pr[S2.3]| ≤ Pr[E3]. (8)

Next, we show that the event (8) holds.

Lemma 2. Event E3 happens in Game 2.4 with negligible probability if the CDH problem
is intractable.
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Proof. Suppose that Pr[E3] is non-negligible. We construct a PPT algorithm, B2, to break the
CDH assumption. Given a tuple (G, GT , p, ê, g, gα, gβ), it runs A′2, and works as follows.

1. B2 sets PP = (G, GT , p, g, e); it chooses two random values (xi, yi)
R← Z∗p, and sets

ski = (xi, yi), pki = (gxi , gyi ), 1 ≤ i, j ≤ n; it chooses a random value, s1
R← Z∗p, and

sets gsk = (s1,>), gpki = (gxis1 , gα), 1 ≤ i, j ≤ n, and gtd = >. H1, H2, H3, H4 are four
random oracles.
H-query. B2 prepares four hash tables to record and respond to queries, where all the
hash tables are initialized to empty:
OH1 query 〈v1〉: same as that in Game 2.3;
OH2 query 〈v1〉: same as that in Game 2.3;
OH4 query 〈v1〉: same as that in Game 2.3;
OH3 query 〈v1〉: same as that in Game 2.3, except that A′2 asks (Ĉ3)

s2 = gαβ, and we
denote this event by E′3.

2. state ← A
′OH1 ,OH2 ,OH3 ,OH4 ,OKey ,OEnc ,ODec
2 (PP, {pki, gpki}n

i=1, i∗, j∗), where the oracles are
simulated as follows, and j∗ cannot appear in OKey:
OKey query 〈i〉: same as that in Game 2.3;
OEnc query 〈i, j, M〉: same as that in Game 2.3;
ODec query

〈
i, j, Ci,j

〉
: same as that in Game 2.3.

3. b R← {0, 1}, ζ1, ζ2
R← Z∗p, W∗4.1

′ R← {0, 1}l1+l2 , W∗4.2
′ R← G, Ĉi∗ ,j∗ = (Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ĉ5),

defined as follows:

Ĉ1 = g
xi∗
yi∗

s1ζ1 , Ĉ2 = W∗4.2
′,

Ĉ3 = gβ , Ĉ4 = W∗4.1
′,

Ĉ5 = H4(Ĉ1||Ĉ2||Ĉ3||Ĉ4||Mb||gζ1).

Finally, the tuple ((gc)xj∗ , W∗4.1
′ ⊕ (Mb||gζ1)) is saved into table T3 for OH3 , and the

tuple (>, W∗4.2
′/H1(Mb)

xi∗
yi∗

ζ1) into table T2 for OH2 .

4. b′ ← A
OH1 ,OH2 ,OH3 ,OH4 ,OKey ,OEnc ,ODec
2 (Ĉi∗ ,j∗). The constraints are that j∗ cannot appear

in OKey, and (i∗, j∗, Ĉi∗ ,j∗ ) cannot appear in ODec.

Indistinguishable simulation. Based on the setting of the simulation, the correctness and
randomness of the simulation hold, and we have the following scenarios:

• Cα
3 has been queried to OH3 before decryption query is asked: in this case, C4 is

uniquely determined after Cα
3 is queried toOH3 ; then, the decryption oracle is perfectly

simulated.
• Cα

3 has never been queried to OH3 when the decryption query is asked: in this case,
⊥ is returned by the decryption oracle if the simulation fails. The idealness of the
random oracle happens with probability 1/p.

E4 denotes the event that a valid ciphertext is refused in the simulation: then we have
Pr[E4] ≤ qD/p, which is negligible, so that B2 executes the decryption simulation correctly,
except with negligible probability. The simulation is indistinguishable from Game 2.4.

Probability of successful simulation. If the simulated game is not aborted, then the
probability of successful simulation is 1.

Analysis. As A′2 queries (Ĉ3)
α to OH2 with probability Pr[E′3], then B2 is able to solve

the CDH problem with probability Pr[E′3]. We have Pr[E′3] = AdvCDH
A . In addition, if

E2 does not occur, the simulated game is indistinguishable from Game 2.4. We have
Pr[E′3 | ¬E4] = Pr[E3].

Pr
[
E′3
]
= Pr

[
E′3 | E4

]
Pr[E4] + Pr

[
E′3 | ¬E4

]
Pr[¬E4]

≥ Pr
[
E′3 | ¬E4

]
Pr[¬E4] = Pr[E3](1− Pr[E4])

≥ Pr[E3]− Pr[E4].
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Therefore, according to AdvCDH
A ≥ Pr[E1]− qD/2l1+l2 , we have

Pr[E3] ≤ AdvCDH
A + qD/p, (9)

which is negligible. This completes the proof of Lemma 2.

6. Comparison and Performance Evaluation

In this section, we compare the theoretical analysis of our scheme with four other
schemes [13,16,19,20] and we analyze the performance evaluation of the scheme.

6.1. Comparison

We compare these schemes in terms of computational and storage overhead, and the
data details are shown as follows. The computational cost of an exponentiation and a
bilinear pairing operation are denoted by Exp and P, respectively. We show the efficiency
comparison and security comparison in Table 1.

According to Table 1, the computation cost in our scheme for Enc is 5Exp. Compared
with [16,19,20], we have less computation cost. In the Dec phase, although the computation
is slightly higher than other schemes, we need to do an integrity check on the message,
when decrypting, to guarantee the security of the user data. Finally, the computation cost
of the Test in our scheme is 2P + 4Exp lower than the scheme in [16]. In addition, regarding
security, as with [16,19,20], our scheme also satisfies OW-CCA and IND-CCA against the
adversary.

6.2. Performance Evaluation

To obtain the running time of the experiment in our scheme, we set up the following
environment. The host operating system was Windows 10 for 64 bit, with an Intel(R)
Core(TM) i7-10875H CPU@2.30 GHz CPU and 16 GB RAM. Java 1.8 was the execution
language. The public parameter data for the experiment was obtained from Charm. The
cycle group G was based on a non-supersingular elliptic curve over a finite field with a
512-bit length prime number.

Table 1. Comparison of Computational Cost.

Schemes Enc Dec Test Security

[13] 5Exp 3Exp 2P OW-CCA
[19] 6Exp 5Exp 2P + 2Exp OW/IND-CCA
[16] 1P + 5Exp 1P + 4Exp 4P + 2Exp OW/IND-CCA
[20] 6Exp 5Exp 2P + (6n − 2)Exp OW/IND-CCA

Ours 5Exp 1P + 2Exp 2P + 4Exp OW/IND-CCA

The experiment focused on evaluating the computing overheads, including encryption
time, decryption time, and equality test time.

Figure 3 shows the relationship between the number of the encrypted file and the
encryption time. Although it seemed to take longer to encrypt, we could use the offline
encryption method, where some encryption steps that were not related could be computed
beforehand. In this way, we could reduce the amount of time spent online. For this
simulation experiment, we performed a rigorous linear fit to the data, and derived a value
of linear K, K = 14.736.

Figure 4 shows the relationship between the size of the decryption file and the decryp-
tion time. As the recipient has to check the integrity of the encrypted data after retrieving it
from the cloud server, to ensure that it has not been tampered with, it is inevitably more
time-consuming than other solutions, but at the same time, we ensure the integrity of the
user’s data, so that the medical staff can make an accurate diagnosis. For this simulation
experiment, we performed a rigorous linear fit to the data, and derived a value of linear K,
K = 4.04.
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Figure 5 shows that the length of time for testing increased with the number of files.
For this simulation experiment, we performed a rigorous linear fit to the data, and derived
a value of linear K, K = 11.164.

Enc 5 250 89.28571429 Dec 5 198 79.2
4 10 476 170 10 235 94

15 645 230.3571429 15 270 114
20 845 301.7857143 20 338 135.2
25 1097 391.7857143 25 399 159.6

Figure 3. Encryption time according to messages.

Figure 4. Decryption time according to messages.
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Test 5 273 97.5
10 430 153.5714286
15 575 205.3571429
20 739 263.9285714
25 900 321.4285714

Figure 5. Test time according to messages.

7. Conclusions

In this paper, we propose the scheme named G-PKEET, to categorize patients’ EHRs
without privacy leakage, and to prove the computational and performance efficiency of this
scheme. Our scheme could apply to group scenarios: only a group trapdoor needs to be
generated and authorized to the cloud server for the equality test. We undertook a security
analysis. We proved that our scheme can resist a guessing attack not only from the storage
server but also from the group administrator. A performance evaluation demonstrated
our scheme’s lower overheads compared to other, related schemes. This paper combines
G-PKEET with Smart Healthcare; in real life, we can also apply this technology to private
set intersection (PSI), firewall filtering, mail system filtering, encrypted databases, etc.

Finally, users need to pay attention to the fact that the number of comparisons grew
with the number of ciphertexts in the two-comparison test, and that it took a lot of time to
compare a large number of ciphertexts. In the future, we will study how to use efficient
batch equality testing to improve testing efficiency.
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