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Abstract: The effect of antiviral therapy during Hepatitis C Virus (HCV) infection is the focus of this
study. HCV infection destroys healthy hepatocyte cells in the human liver, causing cirrhosis and
hepatocellular carcinoma. We introduce a cell-population model representing the long-term dynamics
of HCV infection in response to antiviral drug therapies. The proliferation of existing cells can create
hepatocyte cells in the system. Such models are based on the dynamics of susceptible hepatocytes,
infected hepatocytes and HCV with interactive dynamics, which can give a complete understanding
of the host dynamics of the system in the presence of antiviral drug therapy. Infection-free equilibrium
and endemic equilibrium are two equilibrium states in the absence of drugs. The existence and
stability conditions for both systems are presented. We also construct an optimal control system to
find the optimal control strategy. Numerical results show that the effects of the proliferation rate and
infection rate are critical for the changes in the dynamics of the model. The impact of different weight
factors on the optimal control problem is analysed through numerical simulation.

Keywords: HCV; hepatocyte cells; proliferation; basic reproduction number; optimal control system
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1. Introduction

The hepatitis C virus is a blood-borne virus and causes both acute and chronic hep-
atitis C infection, which gives rise to liver cirrhosis and liver cancer during long-term
dynamics [1]. HCV is a viral infection that spreads through contaminated blood. Globally,
approximately 58 million people have been suffering from chronic HCV infection, with an
estimated figure of 1.5 million new cases recorded each year [2]. In 2019, approximately
2.9 million people died due to HCV infection [2,3]. Though the diagnosis rate is low,
proper antiviral treatment in the early stages can cure more than 95% of the HCV-infected
individuals. At the EASL International Liver Congress 2022 in London, updated guidance
on hepatitis C (HCV) infection was published [3].

HCV cases are found in all regions of the world. However, the HCV rate is the highest
in the eastern Mediterranean and the European regions. More than 10 million people in
Southeast Asia and the western Pacific region are chronically infected [2]. The maturation
period of HCV ranges from 2 weeks to 6 months [3]. Among the infected individuals, 80%
do not exhibit any symptoms. Fever, nausea, vomiting, abdominal pain, dark urine and
pale faces are the main symptoms of HCV infection [3].

Mathematical modelling and its implications play a crucial role to study the micro and
macro level of infectious diseases and help to control the infection or disease transmission.
Proper micro-level mathematical modelling provides insight into the disease dynamics
and the immune response to virus determination [4–7]. The role of an antiviral drug in
HCV infectious disease modelling has been studied by several mathematicians. Nowak
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and Banghum [8] studied the virus burden and diversity and the effect of the immune
response on HCV infection. Zizmann discovered a decrease in intracellular HCV RNA and
extracellular virus concentration, as well as the possibility of continuing low-level HCV
RNA secretion as long as intracellular RNA is available [5].

Bonhoeffer et al. [9] studied the role of the immune system in HIV and HBV infection.
The effectiveness of the treatment with IFN-α therapy was analysed by Neumann et al. [10].
In 2007, Dahari et al. [11] extended the work of Neumann et al. by considering the term
“proliferation of hepatocytes”. Avenida et al. [12] considered four populations—susceptible
or healthy liver cells, infected liver cells, viruses and CTL responses—and studied the
resulting mathematical model. Wodarz [13] analysed the effect of lytic and nonlytic re-
sponses of immune cells. Dixit et al. [14] verified the function of antiviral treatment of HCV
infection and role of the interferon response. Zhao et al. [15] discussed the occurrence rate
of the virus model according to Beddington–DeAngelis functional responses.

Chatterjee and Basir [16] studied an HCV model to verify the role of immune re-
sponses. The effect of DAA therapy in HCV infection is studied by Chatterjee et al. in [17].
Mondal et al. [18] identified the effective role of SOF/VEL to control HCV infection [16].
These studies played a pivotal role in understanding the biological mechanism of HCV
infection [19,20]. The optimal control theoretic model has recently been analysed by dif-
ferent groups of mathematicians in order to develop the understanding of optimal drug
therapy [15,21,22].

Various strategies concerning the optimal treatment of HCV infection have been pro-
posed by different researchers [23,24]. Ahmed et al. [24] analysed a fractional order variant
of Perelson et al. [25] basic HCV model with an immune response effect. Guedj and Neu-
mann considered extracellular and intracellular types of HCV infection [26]. Chakraborty
and Joshi formulated a mathematical model to verify the effects of optimal control therapy
of the drugs interferon and Ribavirin to minimize the viral load as well as the side effect of
the drugs.

If the immune system of an individual is strong, then the new HCV infection does
not require treatment [10]. On the other hand, the chronic stage of HCV infection requires
treatment to cure the disease. Recently, the WHO recommended direct-acting antivirals
(DAAs) for HCV infection, and these play a pivotal role in curing the infection for all ages,
and the duration of the treatment is short (approximately 12 to 24 weeks) [27,28]. Sofosbuvir
and daclatasvir are the most commonly used drugs for pan-genotypic DAA therapy [27,28].
Access to HCV treatment is improving; however, it has certain limitations. To overcome
these limitations, mathematical modelling at the micro level plays a crucial role.

Direct-acting antivirals (DAA) play a crucial role in HCV treatment management.
DAAs also allow for admissibility and diminish the treatment period [17]. The main
agents of DAA are sofosbuvir (SOF) and velpatasvir (VEL) (Von Felden et al., 2018). SOF
mainly blocks the polymerase enzyme, which is essential for virus reproduction. It mainly
obstructs HCV NS5B (nonstructural protein 5B) RNA-dependent RNA polymerase [29].
VEL prevents viral replication by inhibiting nonstructural protein 5A (NS5A), a non-
enzymatic viral protein that plays a major role in HCV replication assembly [29]. It also
helps stimulate the immune system.

Von Felden et al. (2018) reported that SOF/VEL combined DAA treatment provided
more than a 95% sustained virological response (SVR). This treatment is a blend of two
pan-genotypes [30], and this antiviral combination is highly effective in controlling the
HCV infection. Ribavirin (Copegus, Rebetol and Ribasphere) is also used in combination
with SOF and VEL to treat chronic HCV-infected patients.

Notably, VEL has a significantly higher resistance barrier than the first-generation
NS5A inhibitors [31]. The SOF/VEL combination DAA treatment is used alone or with
ribavirin (Copegus, Rebetol and Ribasphere) to treat chronic hepatitis C patients. The
single pill of the SOF/VEL combination taken once a day improves adherence to the
therapy. Administration of SOF/VEL has shown a significant enhancement in the recovery
of patients [32].
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The objective of this article is to investigate the HCV interaction with liver cells
in the presence of liver cell proliferation. We also discuss antiviral therapy to control
the transmission and new virus replication from the infected cells. The optimal control
strategy with antiviral therapy is applied to investigate the decline in viral reproduction
and minimizing the side effects of antiviral therapy. We consider the time frame [0, T] as
an optimal control period. In Section 2, we formulate the mathematical model of HCV
infection.

Section 3 studies some basic properties, such as boundedness, existence condition, the
basic reproduction number (R0) of the system and stability analysis of the system. The
sensitivity index of the model parameters corresponding to R0 is examined in Section 4. An
optimal control model through an objective functional analysis with controls is formulated
and analysed in Section 5. In this section, the optimal control system is investigated using
numerical simulation to compare the analytical findings with the biological process of HCV
infection. In Sections 6 and 7, we discuss the results obtained in the previous sections and
reveal our conclusion on the basis of our overall findings.

2. Compartmental Model of HCV

Based on the characteristics of HCV viral dynamics, we propose a mathematical model
for liver cell infection caused by HCV. The total liver cells (H), considered to be in two
compartments, consist of the uninfected liver cells (HS) and the infected liver cells (HI).
The HCV concentration is dented by V. We consider the following postulation to formulate
the model.

a. All model variables and parameters are constants and positive.
b. Only one route of transmission from viral interaction with uninfected cells is considered.
c. The uninfected liver cell has constant production along with proliferation from the

existing cells.
d. The natural death rate is considered for all compartments.

Under the above assumptions, the proposed model can be expressed in terms of a
system of nonlinear differential equations:

dHS
dt

= λ + pHS

(
1− HS

HT

)
− µ1HS − βHSV,

dHI
dt

= βHSV − µ2HI

(
1− HI

HT

)
, (1)

dV
dt

= νHI − µ3V,

subject to the initial conditions:

HS(0) = ĤS ≥ 0, HI(0) = ĤI ≥ 0, V(0) = V̂ ≥ 0. (2)

In this model, λ is the constant production of healthy liver cells, p is the proliferation
rate at which the new cells are produced from the existing cells, HT is the maximum value
of liver cells at which proliferation stops, β is the rate of transmission, µ1 is the death rate
of uninfected liver cells, µ2 is the death rate of infected liver cells, ν is the production rate
of new virions, and µ3 is the removal rate of the virus. The schematic explanation of our
proposed model is displayed in Figure 1. The values of the parameters of model (1) are
given in Table 1.



Mathematics 2023, 11, 751 4 of 20

Table 1. List of parameters for the model (1).

Parameters Short Description Range of Value Value Taken

λ Growth rate of Hepatocyte cells 2–20 5
p Proliferation rate 0.1–0.6 0.2
β Rate of infection 0.00001–0.0019 0.0001

µ1 Natural death rate 0.12–0.35 0.189
uninfected Hepatocyte cells

µ2 Blanket death rate of 0.10–0.41 0.1
infected Hepatocyte cells

ν The simulation rate of virus 10 -140 70
µ3 Virus clearance rate 0.3–1 0.4
HT Total Hepatocyte number 100–1000 500

Figure 1. Schematic diagram of the infection process of the model (1).

3. Well-Posedness of the Model
3.1. Boundedness

We consider the positivity and boundedness of the system (1) with non-negative initial
conditions (HS(0), HI(0), V(0)) ∈ R3

+.

Theorem 1. The system (1) together with the condition (2) is invariant within R3
+.

Proof. By Lemma 1 in [25], the system (1) can be expressed in the following form:

dΨ
dt

= Θ(Ψ(t)), Ψ(0) = Ψ0 ≥ 0, (3)

Θ(Ψ(t)) = (Θ1(χ(t)), Θ2(χ(t)), Θ3(χ(t)))T .

Observe that

dHS
dt
|HS=0 = λ > 0,

dHI
dt
|HI=0 = βHSV ≥ 0,

dV
dt
|V=0 = νHI ≥ 0. (4)

Hence, the system (1) is an invariant set R3
+.

Theorem 2. The system (1) with the initial conditions (2) is bounded uniformly in the region Υ,
where the feasible region Υ is defined by

Υ =

{
(HS, HI , V) ∈ R3

+ : HS ≤
λ

µ1
, HS + HI ≤

λ

µ
, V ≤ νλ

µµ3

}
. (5)

Proof. Let

H = HS + HI , (6)
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which, in view of the system (1), takes the form:

dH
dt

=
dHS
dt

+
dHI
dt
≤ λ− µH, where µ = min{µ1, µ2}. (7)

Using the differential inequality from [23], we obtain

0 < H ≤ H(0)e−µt +
λ

µ
, (8)

where H(0) represents the initial value. As t→ ∞, we have

0 < HS + HI ≤
λ

µ
, (9)

which means that λ
µ is the maximum value of the total hepatocyte cells H at time t and thus

H(0) ≤ λ
µ . Therefore, H will decrease at the extreme level, and hence the hepatocyte cell

population is bounded in Υ.
In view of (9), we find

dV
dt

= νHI − µ3V ≤ ν
λ

µ
− µ3V,

which implies that

V ≤ V(0)e−µ3t +
νλ

µµ3
. (10)

In consequence, we deduce that νλ
µµ3

is the upper bound for V.

3.2. Existence Condition

The system (1) has two equilibrium states, which are given below.

(i) The infection-free equilibrium E0(H0
S, 0, 0) with

H0
S =

(p− µ1)±
√
(p− µ1)2 + 4pλ

HT

2 p
HT

. (11)

(ii) The endemic equilibrium E∗(H∗S , H∗I , V∗), where

H∗S =
µ2µ3

βp

(
1−

H∗I
HT

)
, (12)

V∗ =
νH∗I
µ3

,

and H∗I is defined as

a11H∗I
2 + a22H∗I − a33 = 0, (13)

with

a11 =
µ2

2µ2
3

pβ2H3
T
− µ2

HT
,

a22 = µ2 +
µ2µ3

pβ2H2
T
(βHT(p− µ1)− 2µ2µ3)), (14)

a33 = λ +
µ2µ3

pβ2HT
(βHT(p− µ1)− µ2µ3).
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If a11 > 0, a22 > 0, and a33 > 0, then H∗I has a unique positive root. The coefficient

a11 > 0 if p < µ2µ3
β2 H2

T
= p1 and a22 > 0 if p > µ2(2µ2µ3+µ1 HT)

HT(β2 HT+µ3)
= p′2 and a33 > 0 if

p > µ2µ3(µ2µ3+µ1βHT)
HT β(λβ+µ2µ3)

= p′′2

Basic Reproduction Number

The local stability of the system E0 is governed by the basic reproduction number
R0 < 1. The basic reproduction number is the average number of new secondary infections
in entirely susceptible hepatocyte cells produced by a single infected hepatocyte cell. With
the help of the next generation method [30], we can calculate the basic reproduction number.
For this method, we consider the model variables in such a manner that the compartments
reflect only infected individuals. By this assumption, we have y = (HS, HI , V), where
HI and V are the two infected compartments. Furthermore, YH denotes the set of all
infection-free states—that is,

YH = {y ≥ 0 : yi, i = 1, 2}. (15)

System (1) can be rewritten as

y′ i = hi(y) = Fi(y)− Gi(y), i = 1, 2, 3, (16)

where Fi(y) describes the rate of appearance of new infections in compartment i. Moreover,

Gi(y) = G−i (y)− G+i (y), (17)

G+i (y) is the transmission rate into the compartment i, and G−i (y) is the rate of transmission
out of this compartment. The subsequent norms are to be modelled.

(A1)Fi(y) ≥ 0, G−i (y) ≥ 0, G+i (y) ≥ 0 f or any y ≥ 0;

(A2) If yi = 0, then G−i = 0;

(A3)Fi = 0 for i = 3;

(A4) If y ∈ YH , then Fi(y) = 0 G+i (y) = 0 for i = 1, 2;

(A5)For the disease-free equilibrium (DFE) y0, the Jacobi matrix Dh(y0) constrained to the
subspace h = 0 has all negative eigenvalues.

To formulate the next generation matrix FG−1 [30] from matrices of partial derivatives
of Fi and Gi. Specifically,

F =

[
∂Fi(y0)

∂yj

]
, G =

[
∂Gi(y0)

∂yj

]
, (18)

where i, j = 1, 2. Here, F, G are two-dimensional squared matrices and R0 = $(FG−) ($
denotes a spectral radius of the matrix). For model (1), we have

F =

(
βHSV

0

)
, G =

(
µ2HI(1− HI

HT
)

−νHI + µ3V

)
. (19)

Next, we introduce a non-negative matrix F representing the entry of a new infection
and a non-singular Metzler matrix V representing the transmission of HCV infection
between the infection compartments as follows:
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F =

(
0 βHSV
0 0

)
, G =

(
µ2

(
1− 2HI

HT

)
0

−ν µ3

)
,

G−1
E0 =

(
1

µ2
0

ν
µ2µ3

1
µ3

)
.

Here, G−1 is a non-negative matrix, and therefore FG−1 is a non-negative next-
generation matrix representing the predictable number of new infections, which is given by

FG−1 =

[
0 βH0

S
0 0

]
×
[

1
µ2

0
ν

µ2µ3
1

µ3

]
,

=

[
βνH0

S
µ2µ3

βH0
S

µ3

0 0

]
. (20)

Using the spectral radius of the next-generation matrix [30,33], for the system (1), we
find the basic reproduction number R0, which is the largest eigenvalue of FG−1 at E0. Thus,

R0 =
βνH0

S
µ2µ3

(21)

Theorem 3. The system (1) describes the spreading kinetics of HCV infection, which has a threshold

parameter basic reproduction number R0 =
βνH0

S
µ2µ3

at E0. For R0 > 1, the system (1) has a unique
positive endemic steady state.

3.3. Stability of the System

Theorem 4. The infection-free equilibrium E0 for the system (1) with initial condition (2) is locally
asymptotically stable when R0 < 1, and the system is unstable for R0 > 1.

To verify the local stability of the system (1) at E0, the Jacobian matrix is given by

J =


p
(

1− 2HS
HT

)
− µ1 − βV 0 −βHS

βV −µ2

(
1− 2HI

HT

)
βHS

0 ν −µ3

. (22)

Now, at the infection-free equilibrium E0 of system (1), the Jacobian is

JE0 =

 p(1− 2H0
S

HT
)− µ1 0 −βH0

S
0 −µ2 βH0

S
0 ν −µ3

, (23)

and the characteristic equation for (23) is

ξ2 + ξ(µ2 + µ3) + (µ2µ3 − βpH0
S) = 0. (24)

We can rewrite Equation (24) as

a0ξ2 + a1ξ + a2 = 0, (25)

where

a0 = 1 > 0, a1 = µ2 + µ3 > 0, a2 = µ2µ3 − βpH0
S.
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Now, it is easy to note that a0 ≥ 0, and a1 > 0. If a0 > 0, then all the roots of
Equation (25) will be negative (Section 3.3 in [33]). If a2 > 0, then we have threshold criteria
to determine the stability condition at the infection-free point E0. We have the condition

µ1 + 2 pH0
S

HT
< p < µ2µ3

βHS
, which implies that R0 < 1 and results in the eradication of infection.

Hence, we find the following theorem.

Theorem 5. For R0 < 1, the infection-free equilibrium E0 is locally asymptotically stable and
unstable otherwise.

Remark 1. The infection-free state exists when R0 < 1, and the system switches to its infection-free
state if R0 > 1.

Theorem 6. The system (1) around E∗ is locally asymptotically stable (LAS) if R0 > 1.

Proof. We already established that the equilibrium E∗ is feasible when R0 > 1. Now, the
Jacobi matrix around E∗ is

|JE∗ − ξ| =

∣∣∣∣∣∣
a11 − ξ 0 a13

a21 a22 − ξ −a23
0 ν −µ3 − ξ

∣∣∣∣∣∣ = 0, (26)

where

a11 = pH∗S

(
1− 2

H∗S
HT

)
− µ1 − βV∗,

a13 = −βH∗S , a22 = −µ2

(
1−

2H∗I
HT

)
, (27)

a21 = βV∗, a23 = βH∗S .

At E∗, the characteristic equation is

ξ3 + b1ξ2 + b2ξ + b3 = 0, (28)

where

b1 = −a11 − a22 + µ3, b2 = −(a11µ3 − a11a22 + µ3a22), b3 = a11a22µ3 − pa13a21.

By the Routh–Hurwitz criteria at the endemic equilibrium E∗, the system is LAS if
R0 > 1.

3.4. Global Stability

Theorem 7. The system is globally asymptotically stable (GAS) when R0 < 1.

Proof. We consider the Lyapunov function as follows:

L1 = ξ1H1 + ξ2V. (29)

Differentiating the Lyapunov function L1 (29) with respect to t, we find
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dL1

dt
= ξ1

dHI
dt

+ ξ2
dV
dt

= ξ1

[
βHSV − µ2HI

(
1− HI

HT

)]
+ ξ2[νHI − µ3V] (30)

Choosing ξ1 =
ξ2ν

µ2
, we have,

dL1

dt
≤ ξ2µ3V

(
βνHS
µ2µ3

− 1
)

≤ ξ2µ3V(R0 − 1). (31)

When R0 < 1, we have dL1
dt < 0 and dL1

dt = 0 implies that V = 0. From the model (1),
we can say that HI = 0 when V = 0 in the limit t→ 0. Hence, according to the Lyapunov–
LaSalle theorem, the system is globally asymptotically stable when R0 < 1. This completes
the proof.

Theorem 8. The endemic equilibrium E∗ is globally asymptotically stable (GAS) if R0 > 1.

Proof. Let us consider the Dulac function:

D(HS, HI , V) =
1

HS HIV
, (32)

and denote the right-hand side of equations in the system (1) as

F1 = λ + pHS(1−
HS
HT

)− µ1HS − βHSV,

F2 = βHSV − µ2HI(1−
HI
HT

), (33)

F3 = νHI − µ3V.

Then, from (33), we have

∂

∂HS
(DF1) = − 1

H2
SHIV

[λ + pHS(1−
HS
HT

)− µ1HS − βHSV]

+
1

HSHIV
[p(1− 2

HS
HT

)− µ1 − βV], (34)

= −
λ +

pH2
S

HT

H2
SHIV

< 0,

∂

∂HI
(DF2) = − 1

HS H2
I V

[βHSV − µ2HI(1−
HI
HT

)]

+
1

HS HIV
[−µ2 + 2µ2

HI
HT

] (35)

= − 1
HS H2

I V
[βHSV − µ2

H2
I

HT
],
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∂

∂V
(DF3) = − 1

HS HIV2 (νHI − µ3V) +
1

HSHIV
(−µ3)

= − 1
HS HIV2 [νHI − µ3V + µ3V] (36)

= − 1
HS HIV2 (νHI) < 0.

From the inequalities (34)–(36), we find

∂

∂HS
(DF1) +

∂

∂HI
(DF2) +

∂

∂V
(DF3) < 0. (37)

Thus, every positive solution of the system (1) tends to the endemic equilibrium E∗

when R0 > 1. According to the Dulac–Bendixson theorem, there exists no periodic orbit
for (1), and hence the system is globally asymptotically stable for E∗.

4. Sensitivity Analysis

Sensitivity analysis is useful to explore the effect of fluctuations and relative changes
in the parameters associated with the basic reproduction number. Here, we perform a
sensitivity analysis to study the influence of model parameters on the basic reproduction
number in the transmission of HCV infection.

It is clear from the expression (21) of the threshold quantity (R0) of model (1) that it is a
combination of various epidemic parameters. We use a formula γα

R0
= α

R0

∂R0
∂α given in [33]

to calculate the sensitivity indices of every epidemic parameter to the disease transmission.
In this analysis, we can easily quantify the parameters that are more sensitive to disease
transmission and control by analysing a control mechanism program to eliminate the
infection from human livers.

Now, we proceed to give the forward sensitivity indices of R0 with respect to the
model parameters by considering the formula:

R0 =
νβH0

S
µ2µ3

=

βHT

[
(p− µ1) +

√
(p− µ1)2 + 4pλ

HT

]
µ2µ3

.

Using the above sensitivity index formula, we have
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γ
β
R0

=
∂R0

∂β
.

β

R0
= 1 > 0,

γ
p
R0

=
∂R0

∂p
.

p
R0

,

∂R0

∂p
=

βHT
µ2µ3

1 +
2(p− µ1) + 4 λ

HT

2
√
(p− µ1)2 + 4 pλ

HT

,

γ
µ1
R0

=
∂R0

∂µ1
.
µ1

R0
, (38)

∂R0

∂µ1
=

βHT
µ1µ2

−1 +
−2(p− µ1)

2
√
(p− µ1)2 + 4pλ

HT

,

γλ
R0

=
∂R0

∂λ
.

λ

R0
,

∂R0

∂λ
=

βHT
µ2µ3

 4p
HT

2
√
(p− µ1)2 + 4pλ

HT

,

γ
µ2
R0

= −1, γ
µ3
R0

= −1.

If the sensitivity index is positive, then R0 will increase with the increasing value of
the corresponding parameters. If R0 decreases with the increasing value of the parameter,
the sensitivity index of the corresponding parameter will also become negative. For
the parameters λ, β, µ1, µ2, µ3 and p, the sensitivity indices are plotted in Figure 2. The
sensitivity indices in Table 2 and Figure 2 suggest that HCV infection control can be
achieved by reducing the values of β. Furthermore, the parameters µ1, µ2, µ3, and λ have
an inverse effect on reducing the infection level.

Table 2. The parameters and the associated sensitivity indices along with the relative percentage
impact on the threshold quantity (R0).

Parameter Indices % Increase or Decrease Impact of R0

λ −0.3125 10 −3.125%
β +1 10 10%

µ1 −0.1423 10 −1.423%
µ2 −1 10 −10%
µ3 −1 10 −10%
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Figure 2. Graphical representation of the outcome in Table 2.
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Numerical Findings of the System (1)

In this subsection, the findings of the numerical simulation are performed for the cel-
lular level HCV model given in Equation (1). We tested the effect of the β, the transmission
rate (see Figure 3), and p, the proliferation rate (see Figure 4), using ode45. The parameter
values in Table 1 were used for the numerical simulation. The numerical simulation pro-
vides better comprehension of the effect of parameters on the system dynamics. Figure 3
shows that the basic reproduction number changes to R0 < 1 when β = 0.0003, and the
system becomes infection-free. If the value of β increases, the basic reproduction number
increases to R0 > 1, and the system moves to an endemic state. On the other hand, if the
proliferation rate p increases from 0.003 to 0.3, the system switches from an endemic state
to an infection-free state.

Time (days)

0 50 100

H
S

200

250

300

350

400

450

500

550

600

Time (days)

0 50 100

H
I

0

50

100

150

200

250

300

β=00003

β=0.00037

β=0.0004

Time (days)

0 50 100

V

0

100

200

300

400

500

600

700

Figure 3. The effect of the infection rate (β) on the system trajectories with β = 0.0003, 0.00037 and
0.0004; time t in days; and the values of the parameters as given in Table 1.

Biologically, it suggests that an increasing proliferation rate can only control the
infection rate to a certain extent. According to the simulation results, the basic reproduction
number increases as β increases, and a value of β > 0.0003 results in R0 > 1. Thus,
a reduced disease transmission rate must help to minimize the HCV infection and the
infection level moves to extinction if β decreases.
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Figure 4. The effect of infection rate (p) on system trajectories with p = 0.003, 0.07 and 0.3; time t in
days; and the values of the parameters as given in Table 1.

According to Figure 4, if the proliferation rate decreases, the infection cell level and
viral load increase, whereas the viral load and infected cell level decrease if p > 0.3, and
the system switches to its infection-free state as R0 < 1. Biologically, this suggests that
the HCV infection decreases whenever the liver cell proliferation rate increases, and the
infection is eradicated from the system whenever p > 0.3.

Figure 2 shows that the highest sensitivity indexes are β, µ2 and µ3 with sensitivity
indices of 10%, −10% and −10%. The sensitivity index of β suggests that the threshold
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quantity also rises by 10% as the parameter value grows by 10% as shown in Figure 2.
Similarly, increasing the values of µ2 and µ3 by 10% would decrease the threshold measure
by 10%. The sensitivity analysis and Figure 2 indicate that some mechanism is required to
control the parameter threshold values as much as possible.

Figure 5 depicts the mesh plot of R0 with respect to β and p (left panel) and R0 with
respect to λ and p (right panel). In this case, we can define a control model to optimize the
value of this quantity in light of the sensitivity analysis in the next section.
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Figure 5. The plots depict the sensitivity analysis of the threshold quantity (R0) and its relative
impact as various epidemic parameters vary. The left panel depicts how the value of the basic
reproduction number R0 changes when the disease transmission rate β and the proliferation rate p
vary concurrently. The right panel shows how R0 changes when the disease transmission rate (β)
and production rate (λ) vary at the same time. The values of the parameters are the same as given in
Table 1.

5. Optimal Control Problem

Optimal control theory is a useful technique to develop various control strategies
for the minimization of different infectious diseases [6,18,34]. Here, the major focus is on
reducing the viral load and the infected liver cell count. On the basis of the sensitivity
analysis of the threshold parameter, we modelled the control problem. The combination of
control inputs is defined as u(t) = {u1(t), u2(t)}. Physically or biologically, these control
measures represent the control of new infections and new virus production from infected
liver cells.

The control parameters or variables in the proposed model (1), lead to the following
control problem:

min J[u(t)] =
∫ T

0
[Au2

1 + Bu2
2 + CH2

I + DV2]dt, (39)

subject to the modified form of the system (1) given by

dHS
dt

= λ + pHS

(
1− HS

HT

)
− µ1HS − (1− u1)βHSV,

dHI
dt

= (1− u1)βHSV − µ2HI

(
1− HI

HT

)
, (40)

dV
dt

= (1− u2)νHI − µ3V,

complemented with the initial conditions:

HS(0) > 0, HI(0) ≥ 0, V(0) ≥ 0. (41)

In the objective functional described by (39), x = (HS, HI , V) and A, B, C and D are the
positive constants called as weight constants. The weight constants C and D are the relative
cost of infected and virus, while A and B are the weight constants measuring the associated
cost of the control variables u1(t) and u2(t), respectively. The goal of our control problem
(39) is to eradicate the disease on the basis of minimizing the infected population and
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reservoir and increasing the ratio of the recovered population by considering the control
measure cost. We find the control function represented by (u∗1 , u∗2) as

J(u∗1 , u∗2) = min{J(u1, u2), ui ∈ U , for i = 1, 2}, (42)

subject to the control system (39) and (40), where U denotes the set of control functions
described by the following equation

U = {(u1, u2)| ui is the Lebesgue measurable on [0, T], 0 ≤ ui(t) ≤ 1, i = 1, 2}.

We first show the existence of such control measure variables. Following the idea
demonstrated in [35] that the existence of solution for a system is subjected to the bounded-
ness of the controls as they are the Lebesgue measure and the non-negativity of the initial
data.Thus, the control problem can be expressed in the following form:

dX
dt

= AX + B(X), (43)

where X = (HS, HI , V)T and the matrices A and B(X), respectively, containing the linear
and nonlinear bounded coefficients are given by

A =

 p− µ1 0 0
0 −µ2 0
0 (1− u2)ν −µ3

, (44)

and

B(X) =

 λ− pH2
S

HT
− (1− u1)βHSV

(1− u1)βHSV +
µ2 H2

I
HT

0

. (45)

Setting L = AX + B(X) and noting that

|B(X1)− B(X2)| ≤ m1|HS1 − HS2 |+ m2|HI1 − HI2 |+ m3|V1 −V2| (46)

≤ M(|HS1 − HS2 |+ |HI1 − HI2 |+ |V1 −V2|),

whereM = max{m1, m2, m3} is free of the model state variables, we have

|L(X1)−L(X2)| ≤ N |X1 − X2|, (47)

with N = max(M, ||A||) < ∞, which shows that the function L is uniformly continuous
and Lipschitz. Clearly, HS(t), HI(t) and V(t) are all non-negative quantities and ensure
the existence of a solution for the model (40).

The following theorem deals with the existence of a solution to the control system
described by (40) and (41).

Theorem 9. There exists an optimal solution u∗ = (u∗1 , u∗2) ∈ U to the control problem (40).

Proof. Clearly, the state and control variables have non-negative values. Furthermore, the
set of control U is closed and convex. Moreover, the boundedness of the control system
leads to its compactness. The integral functional (39) is also convex. Therefore, optimal
controls exist.

5.1. Methodology

Let the control input u∗(t) denote the quantity of the drug dose at time t. The cost
function (39) subject to the system of ODE (40) represents the necessary conditions for
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which an optimal control and corresponding states must satisfy Pontryagin’s Maximum
Principle. To determine the optimal control u∗1(t) and u∗2(t), we use Pontryagin’s maximum
principle [36]. With the aid of this principle, we change the system (40) and the cost function
(39) into a minimizing problem by constructing the Hamiltonian function H with respect to
(u1(t), u2(t)).

We find the optimal values to the problem described by (39) subject to the control
system (40). For that, the Lagrangian, as well as the Hamiltonian associated with the control
problem, will be defined. Therefore, we take the state variable x and control variable u to
define the Lagrangian (L) as

L = Au2
1 + Bu2

2 + CH2
I + DV2. (48)

Using the adjoint variables together with the state variables, the Hamiltonian is
constructed as follows:

H = Au2
1 + Bu2

2 + CH2
I + DV2

+ξ1

[
λ + pHS

(
1− HS

HT

)
− µ1HS − (1− u1)βHSV

]
+ξ2

[
(1− u1)βHSV − µ2HI

(
1− HI

HT

)]
(49)

+ξ3[(1− u2)νHI − µ3V].

Here, ξi, i = 1, 2, 3 denote the adjoint variables, P and Q are the weight constants, and
A represents the penalty multiplier.

From (49), we have

∂H
∂HS

= ξ1

[
p− 2

pHS
HT
− µ1 − (1− u1)βV

]
+ ξ2[(1− u1)βV],

∂H
∂HI

= 2CHI + ξ2

[
−µ2 + 2

µ2HI
HT

]
+ ξ3[(1− u2)ν],

∂H
∂V

= 2DV + ξ1[−(1− u1)βHS] + ξ2[(1− u1)βHS] + ξ3[−µ3], (50)

∂H
∂u1

= 2Au1 + ξ1βHSV − ξ2βHSV,

∂H
∂u2

= 2Bu2 − ξ3νHI .

The adjoint system to be estimated for the control input (u1(t), u2(t)) associated with
the model state variables HS, HI , V is represented as

dξ1

dt
= −

(
ξ1

[
p− 2

pHS
HT
− µ1 − (1− u1)βV

]
+ ξ2[(1− u1)βV]

)
,

dξ2

dt
= −

(
2CHI + ξ2

[
−µ2 + 2

µ2HI
HT

]
+ ξ3[(1− u2)ν]

)
, (51)

dξ3

dt
= −(2DV + ξ1[−(1− u1)βHS] + ξ2[(1− u1)βHS] + ξ3[−µ3]).

Here, the transversality conditions are ξ1(T) = 0, ξ2(T) = 0, ξ3(T) = 0. According to
Pontryagin’s Maximum Principle [36], the optimal control u∗(t) = (u∗1(t), u∗2(t)) satisfies

∂H
∂u∗(t)

= 0. (52)

From the last two equations of (50), we have
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∂H
∂u1

= 2Au1 + ξ1βHSV − ξ2βHSV = 0,

∂H
∂u2

= 2Bu2 − ξ3νHI = 0. (53)

Solving (53) for u∗1(t) and u∗2(t), we obtain

u∗1(t) =
(ξ2 − ξ1)βHSV

2A
,

u∗2(t) =
ξ3νHI

2B
. (54)

Since the standard control is bounded, we conclude that

u∗1(t) =


0, (ξ2−ξ1)βHSV

2A < 0,
(ξ2−ξ1)βHSV

2A , 0 < (ξ2−ξ1)βHSV
2A < 1,

1, (ξ2−ξ1)βHSV
2A > 1,

(55)

u∗2(t) =


0, ξ3νHI

2B < 0,
ξ3νHI

2B , 0 < ξ3νHI
2B < 1,

1, ξ3νHI
2B > 1.

(56)

The compact form of u∗1(t) is

u∗1(t) = max
(

min
(

1,
(ξ2 − ξ1)βHSV

2A

)
, 0
)

. (57)

Similarly, the compact form of u∗2(t) is

u∗2(t) = max
(

min
(

1,
ξ3νHI

2B

)
, 0
)

. (58)

Considering (39) and (40), the state system together with the adjoint system and the
transversality conditions, we find the following optimal system:

dHS
dt

= λ + pHS

(
1− HS

HT

)
− µ1HS − (1− u1)βHSV,

dHI
dt

= (1− u1)βHSV − µ2HI

(
1− HI

HT

)
,

dV
dt

= (1− u2)νHI − µ3V, (59)

dξ1

dt
= −

(
ξ1

[
p− 2

pHS
HT
− µ1 − (1− u1)βV

]
+ ξ2[(1− u1)βV]

)
,

dξ2

dt
= −

(
2CHI + ξ2

[
−µ2 + 2

µ2HI
HT

]
+ ξ3[(1− u2)ν]

)
,

dξ3

dt
= −(2DV + ξ1[−(1− u1)βHS] + ξ2[(1− u1)βHS] + ξ3[−µ3]),

ξi(T) = 0, i = 1, 2, 3.

The graphical presentation of the application of the control analysis is better under-
stood than the corresponding analytic findings. Therefore, we proceed for the numerical
investigation of the control analysis in the next section.
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5.2. Numerical Findings of the Control System

We describe the application of our control strategies graphically by applying the
Runge–Kutta method of the fourth order for the numerical simulation. We assume the
numerical values given in Table 1. The adjoint and the state systems are solved with
the aid of the backward Runge–Kutta method of the fourth order with the transversality
conditions.

The obtained results are presented in Figures 6 and 7. The weight factors for Figures 6
and 7 are taken from the table. The graphics clearly show our target to reduce the infected
cell populations and viral load and the effect of control analysis. Thus, we conclude that
our control mechanism leads to avoiding the death case of HCV infection.
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Figure 6. The graphs represent the effect of control and the variation of optimal control variable with
the value of the fixed parameter taken from Table 1, and the weight constants are taken from Table 2.
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Figure 7. The graphs represent the effect of control and the variation of optimal control variable with
the value of the fixed parameters taken from Table 1, and the weight constants are taken from Table 2.

6. Discussion

In this study, we proposed a three-dimensional compartmental model for the cellular
dynamics of HCV infection with control measures for drug control. Both analytic and
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numerical studies of the HCV infection model were performed to evaluate the effect of
various controlling strategies on the dynamics of the disease. The analysis of our proposed
mathematical model contains theoretical as well as numerical findings. The infection-free
state exists when the basic reproduction number is less than unity. In this case, the endemic
equilibrium does not exist.

When the corresponding reproduction number R0 is less than unity, the infection-free
equilibrium point of the HCV infection model is shown to be globally asymptotically stable.
The infection-free equilibrium of the model is shown to be locally asymptotically stable
when the corresponding basic reproduction number is less than unity, and the endemic
equilibrium is shown to be locally asymptotically stable when the corresponding basic
reproduction number is greater than unity and unstable otherwise.

The sensitivity analysis of our model reveals that the HCV transmission rate β, the
death rate of infected liver cells µ2 and the removal rate of virus µ3 are more sensitive when
R0 is greater than unity and unstable otherwise. The numerical simulation shows that the
basic reproduction number R0 > 1 for β > 0.0003 when p < 0.3.

Increasing the value of β results in high HCV infection, while the increasing value of
p reduces HCV infection. Figures 6 and 7 show the system trajectories in the presence of
drug control. The simulation of the trajectories with various weight factors (see Table 3)
shows that the uninfected cell population increases, and the infected cell population along
with the viral load diminish for the effect of optimal drug control therapy.

Table 3. The numerical values of the weight constants and initial sizes of the compartmental
population.

Figure Weight Constant Values

A 0.875
Figure 6 B 0.5

C 10
D 10

A 0.875
Figure 7 B 0.75

C 20
D 20

7. Conclusions

We focused on the role of proliferation during HCV infection in our investigation.
Furthermore, the impact of antiviral drug control on the transmission dynamics of HCV
infection was studied. We observed that drug-control strategies led to the complete erad-
ication of the HCV viral loads in the system. We can extend this model by considering
the latent class of infected cells. Furthermore, the wild and mutant virus classes can be
considered to obtain a complete understanding of the infection process. Of course, we
cannot take into account all such considerations in order to avoid complexity. However, we
plan to consider these options in our future work.
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