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Abstract: The present study looks at the heat transfer and the unsteady thin film flow of Al2O3

water nanofluid past an inclined stretching sheet having a buoyancy force effect. The boundary
value problem solver (bvp4c) package in Matlab is utilized in solving the converted set of ordinary
differential equations (ODEs). The multi-shape Al2O3 nanoparticles’ impact with respect to the
flow as well as heat transfer characteristics are studied and visually displayed for certain governing
parameter values, which include the mixed convection, inclination angle, magnetic, slip, and Biot
number. Thus, the skin friction coefficient and the local Nusselt number are also determined. Here,
the platelet shape of Al2O3 nanoparticles possesses a high heat transfer and flow rate based on
the outcomes. In addition, increasing the slip and magnetic parameters improves the temperature,
whereas increasing the buoyancy and inclination angle parameters has reverse effects. The results
also show that increasing the unsteadiness parameter and the magnetic parameter reduces the
film thickness.

Keywords: thin film; nanofluid; inclined sheet; shape factor; unsteady flow; convective bound-
ary conditions

MSC: 76D10

1. Introduction

Over the last few decades, the topic of improving heat transfer in industrial applica-
tions has been of great relevance. The majority of applications use pure fluids, such as water,
oil, and ethylene, as cooling liquids. However, these fluids have low heat transfer rates. To
improve heat transfer rates, nanometer-sized particles are scattered into the base fluid to
improve its thermal performance and rate of heat transfer [1]. Choi and Eastman were the
first to refer to this combination as nanofluid [2]. The addition of nanoparticles into the
base fluid significantly improves the heat transfer and thermal conductivity of these fluids.
Since this research, nanofluids have been extensively employed in heating and cooling sys-
tems, nuclear applications, power generation, medicine, electronics, automobiles, and other
applications [3–6]. Consequently, numerous numerical and experimental studies have been
performed to investigate the nanofluids’ properties and behaviors in various aspects [7–13].
Sajjadi et al. [14] scrutinized the MHD natural convection flow of a nanofluid in a 3-D
cavity where the sinusoidal temperature is distributed on a side wall. They concluded
that the augmentation of the volumetric fraction of nanoparticles accelerates the rate of
heat transfer. Afterwards, Atashafrooz et al. [15] studied the entropy generation due to an
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inclined step using two types of nanofluids. According to the predictions, they found that
the Al2O3/water nanofluid is better suited for the hydrothermal system’s ideal design.

The boundary layer flow originated from a stretching sheet is of great significance
as a result of its critical role in industry and engineering. Crane [16] was the pioneer in
investigating the 2D boundary layer flow brought on by a stretching sheet. Furthermore,
Gupta and Gupta [17] extended earlier research by considering the case of stretching
surfaces under the effect of suction or blowing. Since then, several authors have been
working to solve the boundary layer flow issue with respect to a stretching surface by
considering various nanofluids under varied physical conditions, such as Sharma et al. [18],
Zokri et al. [19], Kho et al. [20], Daniel et al. [21], Ahmed et al. [22], Kho et al. [23], and
Ibrahim and Negera [24]. Numerical solutions of MHD Maxwell nanofluid flow induced
by stretching surface was scrutinized by Prasannakumara [25]. He reported that the surface
drag force is enhanced by increasing the volume fraction. Hazarika et al. [26] used a
numerical method to resolve the stretching sheet problem for three different types of
nanoparticles, including Ferrous Ferric Oxide (Fe3O4), Silver (Ag), and Copper (Cu). They
claimed that Fe3O4-water nanofluid always overshoots the velocity, followed by Cu and
Ag-water nanofluid, although the temperature profiles exhibit the opposite behaviours.

Furthermore, the horizontal and vertical positions of the flat plate have been utilized
in numerous research studies. The inclined flat plate, on the other hand, has received less
attention. Thus, it is beneficial to examine the fluid flow induced by an inclined flat plate at
diverse angles as are used in many engineering processes. In addition, Gupta et al. [27]
examined the radiation and chemical reactions on the laminar magnetohydrodynamics
(MHD) stagnation point flow, including heat transfer in a non-Newtonian nanofluid caused
by an inclined stretching surface. Usman et al. [28] investigated the combination effects of
thermal and velocity slips on Casson nanofluid flow past a permeable inclined stretching
cylinder. They discovered that the thermophoresis and Brownian motion impacts play a
prominent role in the concentration and thermal boundary layers. Moreover, the unsteady
MHD flow using Eyring-Powell nanofluid due to an inclined permeable stretching surface
was numerically examined by Kumar and Srinivas [29]. They considered the influences of
Joule heating and thermal radiation. Afterwards, a numerical computation of MHD hybrid
nanofluid flow driven by an inclined sheet was scrutinized by Soomro et al. [30] who found
that Al2O3-Cu/water hybrid nanofluid increased the heat transfer rate in contrast to the
basic Cu/water nanofluid.

Many scholars have recently become interested in problems with unsteady boundary
layers because of their significant role in a variety of engineering issues. Start-up processes,
for instance, denote the motions at rest in transit between one steady flow and another, as
well as periodic working fluid motion [31]. Because of the extra time-based factors that
impeded the separation of boundary layer and fluid motion pattern, unsteady boundary
layer flow activity seems to behave differently than a steady flow [32,33]. The unsteady
mixed convection flow, as well as heat transfer caused by a stretching vertical sheet, were
examined by Ishak et al. [34]. Moreover, Ishak et al. [35] then looked at how MHD affected
the unsteady flow, as well as heat transfer past a stretching surface, and deduced that the
rate of heat transfer rises with a rise of the unsteadiness parameter. In contrast, an increment
in the magnetic parameter results in a decrease in the heat transfer rate. Daniel et al. [36]
performed an investigation on the unsteady MHD natural convection flow problem with
respect to a viscous nanofluid due to a permeable shrinking surface which took into account
the influences of chemical reaction, electric field, thermal radiation, and viscous dissipation.
Dzulkifli et al. [37] also looked at the effect of slip on the unsteady stagnation-point flow
and heat transfer caused by a porous exponentially shrinking/stretching surface. They
claimed that there are dual solutions and noted that discovering the dual solutions in the
case of suction is much simpler than in the case of injection. In addition, Waini et al. [1]
examined the 2D unsteady heat transfer and hybrid nanofluid flow numerically concern-
ing a shrinking/stretching surface. Dual solutions were found for a given range of the
unsteadiness parameter. Thereafter, Waini et al. [38] employed a hybrid Al2O3-Cu/water
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nanofluid produced by a permeable rigid sheet to conduct a temporal stability analysis of
an unsteady stagnation point flow. A numerical analysis of the unsteady hybrid nanofluid
flow brought on by a permeable stretching/shrinking cylinder was also carried out by
Zainal et al. [39]. They stated that including the unsteadiness parameter significantly aided
in the heat transfer deterioration.

Given the vital uses in industry and engineering–for instance, paper manufacture,
polymer and foodstuff processing, wire thinning, crystal growth, and so on–the thin film
flow has recently been a demanding research issue. A thin layer of liquid flows past a
solid surface because of an external force acting on it, such as gravity, shear stress, or other
factors known as film flow. For example, Wang [40] was the first to investigate the thin film
flow problem due to an unsteady stretching surface. Later, Andersson et al. [41] improved
the previous work by considering the analysis of heat transfer. In addition, Khan et al. [42]
provided an analytical solution to the heat transfer problem and the second-grade fluid’s
thin film flow across a stretched surface in a porous medium. The effect of film thickness
was explored, and it was discovered that, when film thickness decreases, the skin friction
coefficient increases. In addition, Naganthran [43] reported the impacts of injection and
thermocapillarity on the Carreau thin film flow, including heat transfer in relation to an
unsteady stretching surface. It has been demonstrated that increasing the injection intensity
and unsteadiness parameter reduces the film thickness, resulting in a rise in the convective
heat transfer rate and skin friction coefficient. Afterwards, Naganthran [44] performed
an investigation on the flow of the Carreau thin hybrid nanofluid film caused by an
accelerating surface together with the melting heat transfer influence. They concluded that
melting heat transfer slows the pace of heat transfer rate while having no effect on the liquid
film thickness. Moreover, Ali et al. [45] utilized Al2O3 nanofluid past a stretching sheet
with convective boundary conditions in examining the unsteady thin film flow dynamic
and heat transfer.

A fair amount of substantial analysis on the thin film flow due to a stretching sheet has
been carried out by researchers. However, the thin film flow on an inclined stretching plate
is rarely examined, motivating the current research to investigate the thin film flow on an
inclined stretching surface. Under the multi-shape nanoparticles’ effect, the primary goal
of this research is to investigate the unsteady thin film flow as well as heat transfer with
respect to the inclined stretching sheet in Al2O3/water nanofluid. Moreover, the convective
boundary conditions and buoyancy force effects have also been considered. By employing
the similarity transformation, the provided system is transformed to a system of ordinary
differential equations (ODEs) which are later numerically solved using the boundary value
problem solver (bvp4c) available in Matlab software. This research has investigated the
impacts of the distinct factors with regard to the temperature fields as well as the velocity
fields. In addition, the acquired numerical findings and the published results available
in the literature have been compared for the purpose of validation. The above literature
review reveals that no studies of this kind have been performed by any other researchers.

2. Mathematical Formulation

Consider a thin film flow and heat transfer in a nanofluid across an unsteady stretching
sheet. Here, the matching physical model is portrayed in Figure 1, with the x-axis parallel to
the plate and the y-axis perpendicular to it. Also, the current study examines the effects of
four different nanoparticle shapes, including the platelet, cylinder, brick, and sphere-shaped
nanoparticles. It is assumed that the base fluid and the multi-shape nanoparticles are in
thermal equilibrium. Further, Uw = bx

1−at represents the stretching surface velocity in the x
direction, where t is time and a, b are dimensional constants. The uniform magnetic field is
assumed as B(t) = B0√

1−at
, and the temperature distribution at the wall is represented by

Tw = T∞ + T0(
x

(1−at)2 ), where T∞ and T0 are ambient temperature and constant reference

temperature, see Ref. [45].
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From all of the considerations above and using the nanofluid model introduced by
Tiwari and Das [46], the boundary layer governing equations for the present problem are
given by [45,47].

∂u
∂x

+
∂v
∂y

= 0, (1)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
µn f

ρn f

∂2u
∂y2 −

σn f

ρn f
B(t)2u +

(ρβ∗)n f

ρn f
g(T − T∞)cos α, (2)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
kn f

(ρcp)n f

∂2T
∂y2 , (3)

subject to the boundary conditions [45].

y = 0 : u = Uw + Aν f
∂u
∂y , v = 0, −k ∂T

∂y = h f [T0 − T],
y = h(t) : ∂u

∂y = 0, ∂T
∂y = 0, v = dh

dt .
(4)

Here, the nanofluid velocity components along x and y directions are represented by u
and v, respectively. Moreover, T is the fluid temperature, g is the gravitational acceleration,
α is the inclination angle, h(t) is the thickness of the film, A = A0

√
1− at represent the

velocity slip factor with constant A0, and h f =
h0√
1−at

denotes the convective heat transfer
with h0 being constant. Furthermore, ρn f , µn f , σn f , (ρβ∗)n f , kn f , and (ρcp)n f denote the
density, dynamic viscosity, electrical conductivity, diffusivity, thermal expansion coefficient,
thermal conductivity, and the heat capacity of the nanofluid, respectively, which are defined
as the following [45,48]:

ρn f = (1− ϕ)ρ f + ϕρs, (ρcp)n f = (1− ϕ)(ρcp) f + ϕ(ρcp)s,

µn f = µ f (1 + A1 ϕ + A2 ϕ2), σn f = σf (1− ϕ) + ϕσs,

(ρβ∗)n f = (1− ϕ)(ρβ∗) f + ϕ(ρβ∗)s,
kn f
k f

=
ks+(m−1)k f +(m−1)(ks−k f )ϕ

ks(m−1)k f−(ks−k f )ϕ
,

(5)

where ϕ is the volume fraction of the nanoparticle, and the viscosity enhancement heat
capacitance coefficients are symbolized by A1 and A2. Meanwhile, the base fluid, nanofluid
and nanoparticles are signified as the subscripts f , n f and s, respectively, while m implies
the shape factor. Furthermore, it is important to note that the convective heat transfer
property of nanofluids depends on the thermophysical characteristics of the suspended
particles and the base fluid; the flow structure and pattern; the dimensions and shape of
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nanoparticles; and the volumetric fraction of nanoparticles. The thermophysical properties,
shape factor of various geometry in this study, and coefficients of viscosity for Al2O3
nanoparticles along with water are presented in Tables 1 and 2 [49–51].

Table 1. Thermophysical properties of Al2O3 and water.

Physical Properties Al2O3 H2O

ρ(kgm−3) 3970 997.1
k(W m−1K−1) 40 0.613
cp(J kg−1K−1) 765 4179

σ(s m−1) 16.5 5.50
β∗ × 10−5(K−1) 0.85 21

Table 2. Viscosity and shape factor values of nanoparticles.

Parameters

Nanoparticle Shapes Platelets
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Next, the following similarity transformations are employed [45]:

θ(η) =
T − T∞

Tw − T∞
, η =

√
b

ν f (1− at)
y, ψ =

√
bν f

1− at
x f (η), (6)

where ψ indicates the stream function which is defined as u = ∂ψ
∂y , and v = − ∂ψ

∂x , ν f denotes
the kinematic viscosity and β is the dimensionless film thickness, expressed as

β =

√
b

ν f (1− at)
h(t) (7)

which will eventually result in

dh
dt

= − aβ

2

√
ν f

b(1− at)
, (8)

implying that in the similarity variables (6) in Equations (1)–(4), Equation (1) is identically
fulfilled while the remaining equations become

ε1 f ′′′ (η)−Mε3 f ′(η)− S
[

f ′(η) +
η

2
f ′′ (η)

]
− f ′2(η) + f (η) f ′′ (η) + ε4λθcos α = 0, (9)

ε2

Pr
θ′′ (η)− S

2
(4θ(η) + ηθ′(η))− θ(η) f ′(η) + θ′(η) f (η) = 0, (10)

with the transformed boundary conditions:

η = 0 : f (0) = 0, f ′(0) = 1 + K f ′′ (0), θ′(0) = − k f
kn f

Bi(1− θ(0)),

η = β : f (β) = Sβ
2 , f ′′ (β) = 0, θ′(β) = 0.

(11)
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Here, M is the magnetic parameter, S is the unsteadiness parameter, Pr is the Prandtl
number, K is the slip parameter, Bi is the Biot number, and λ is the buoyancy or mixed
convection parameter, which are defined as

M =
σf B2

0
ρn f b , S = a

b , Pr =
(ρcp) f ν f

k f
, K = A

√
ν f Uw

x = A0

√
ν f b,

Bi =
h f
k f

√
xν f
Uw

= h0
k f

√
ν f
b , λ = Gr

Re2
x
=

T0gβ∗f
b2 ,

(12)

where Gr =
gβ∗f (Tw−T∞)x3

ν2
f

and Rex = Uwx
ν f

represent, respectively, the Grashof number and

the local Reynold number [52]. Notice that λ > 0 and λ < 0 respectively refer to the
assisting and opposing flows. Further, ε1, ε2, ε3, and ε4 are constants and are given by

ε1 =
1 + A1 ϕ + A2 ϕ2

1− ϕ + ϕ
(

ρs
ρ f

) , ε2 =

kn f
k f

1− ϕ + ϕ
(ρcp)s
(ρcp) f

, ε3 =
1− ϕ + ϕ

(
σs
σf

)
1− ϕ + ϕ

(
ρs
ρ f

) , ε4 =
(1− ϕ)(ρβ∗) f + ϕ(ρβ∗)s

((1− ϕ)ρ f + ϕρs)β∗f
. (13)

The skin friction coefficient and the Nusselt number are the physical quantities of
interest which can be respectively expressed as

C f =
τw

ρ f U2
w

, Nu =
qwx

k f (Tw − T∞)
, (14)

where

τw = µn f

(
∂u
∂y

)
y=0

, qw = −kn f

(
∂T
∂y

)
y=0

. (15)

By using (5) and inserting (15) into (14), the following relations are obtained:

C f Re1/2 = (1 + A1 ϕ + A2 ϕ2) f ′′ (0), NuRe−1/2 = −
kn f

k f
θ′(0). (16)

3. Numerical Method

The package bvp4c in Matlab is utilized for solving the Equations (9) and (10) with the
boundary conditions (11), numerically. The bvp4c solver, discussed by Shampine et al. [53],
is based on the finite-difference method which uses the 3-stage Lobatto IIIa formula. Lobatto
IIIa is a Runge-Kutta method that uses collocation and implicit trapezoidal rules. As a result,
the collocation method is indicated by the bvp4c solver, which produces a C1-continuous
solution with fourth-order accuracy uniformly in the interval in which the function is
integrated. To begin using the bvp4c method, Equations (9) and (10) must be reduced
to a set of first-order ordinary differential equations (ODEs), along with their boundary
conditions (11), as follows:

f = y(1), f ′ = y(2), f ′′ = y(3), θ = y(4), θ′ = y(5),

f ′′′ = 1
ε1

(
µε3y(2) + S

[
y(2) + η

2 y(3)
]
+ y(2)y(2)− y(1)y(3)− ε4λy(4)cosα

)
,

(17)

θ′′ =
Pr
ε2

(
S
2
(3y(4) + ηy(5)) + 2y(2)y(4)− y(1)y(5)

)
. (18)

The boundary conditions (11) become

ya(1), ya(2)− 1− Kya(3), ya(5) +
k

kn f
Bi(1− ya(4)), yb(1)− sβ

2
, yb(3), yb(5). (19)

Equations (17) and (18) form a set of five first-order ODEs together with six boundary
conditions (19). Here, the crucial parameters are highlighted: S the unsteadiness parameter
and β the film thickness parameter. There is a relationship between β and S that can lead to
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the reduction of the six boundary conditions to five. To find the relationship of β and S,
Equations (17) and (19) are solved first, and the initial guess value for β is provided by the
bvp4c function in Matlab. The value of β is adjusted so that the condition f (β) = Sβ

2 holds.
It is achieved using trial-and-error processes. Equations (17)–(19) are solved utilizing the
bvp4c solver for known values of S and β.

4. Findings and Discussion

The boundary value problem solver (bvp4c) in Matlab software was applied in solving
the mathematical model given in Equations (9)–(11) numerically for the chosen values of the
inclination angle parameter α, magnetic parameter M, slip parameter K, mixed convection
parameter λ, and Biot number Bi. It is essential to note that the range with respect to
multi-shape nanoparticles in a thin film past a stretching surface of Al2O3/water nanofluid
affects both temperature profiles and velocity. The parameters’ impact is depicted in tables
and graphs. A comparative study of the results obtained by Abel et al. [54] and Ali et al. [45]
are given in Table 3. The outcome shows a favorable agreement and ensures that the bvp4c
scheme is highly accurate and effective. Moreover, the skin friction coefficient Re1/2C f for
multi-shape nanoparticles is depicted in Table 4. The table demonstrates that, as the mixed
convection parameter λ and slip parameter K increase, the skin friction Re1/2C f decreases.
However, when the volume fraction parameter ϕ and magnetic parameter M increase, the
skin friction Re1/2C f increases. In addition, the heat transfer rate Re−1/2Nu is determined
and presented in Table 5. Furthermore, it may also be noted that Re−1/2Nu rises with
the rising values of the inclination angle, Biot number, and mixed convection parameters.
Meanwhile, the rising values of the slip and magnetic parameters tend to reduce the values
of Nusselt number Re−1/2Nu.

Table 3. Comparison of numerical results when M = K = ϕ = 0.

Abel et al. [54] Ali et al. [45] Present Result

S β f”(0) β f”(0) β f”(0)

0.4 4.981455 −1.134098 4.981468 −1.1340957 4.981466 −1.1340953
0.6 3.131710 −1.195128 3.131711 −1.1951252 3.131662 −1.1951202
0.8 2.151990 −1.245805 2.152021 −1.2458064 2.152011 −1.2458089
1.0 1.543617 −1.277769 1.543615 −1.2777693 1.543456 −1.2777079
1.2 1.1227780 −1.279171 1.127779 −1.2791718 1.127490 −1.2789750
1.4 0.8221033 −1.233545 0.8210317 −1.2335453 0.821016 −1.2335280
1.6 0.576176 −1.114941 0.5761743 −1.1149368 0.576061 −1.1147574
1.8 0.356390 −0.867416 0.3563871 −0.86741049 0.356236 −0.8670686

Table 4. Numerical values of skin-friction coefficient of multi-shape nanoparticles.

Physical Parameters Platelets Cylinder Brick Sphere

K ϕ M λ −Re1/2Cf

0.3 0.02 1.0 −2.0 1.681268266 1.489536298 1.247831761 1.133526940
0.5 − − − 1.433346676 1.258667526 1.039679801 0.937343360
0.7 − − − 1.253631522 1.093801740 0.893877800 0.802628774
0.5 0.02 1.0 −2.0 1.433346676 1.258667526 1.039679801 0.937343360
− 0.04 − − 2.089089107 1.898450286 1.378306537 0.986750837
− 0.06 − − 2.818098130 2.694112995 1.851288272 1.039162880
0.5 0.02 0.0 −2.0 1.163871057 1.028890432 0.859696435 0.778968598
− − 0.5 − 1.318507553 1.161161807 0.961312098 0.869720683
− − 1.0 − 1.433346676 1.258667526 1.039679801 0.937343360
0.5 0.02 1.0 −2.0 1.433346676 1.258667526 1.039679801 0.937343360
− − − 0.0 1.336031466 1.165473257 0.952085341 0.853015117
− − − 2.0 1.243847795 1.078097824 0.871460777 0.776276122
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Table 5. Numerical values of Nusselt number for multi-shape nanoparticles.

Physical Parameters Platelets Cylinder Brick Sphere

Bi α K M λ Re−1/2Nu

2.0 π/4 0.5 1.0 −2.0 1.471184404 1.433486292 1.384283501 1.353043680
2.5 − − − − 1.670669380 1.628171211 1.572161775 1.536832098
3.0 − − − − 1.836441722 1.789956021 1.728163960 1.689397686
3.0 π/6 0.5 1.0 −2.0 1.833310838 1.786265359 1.723415633 1.683998156
− π/4 − − − 1.836441722 1.789956021 1.728163960 1.689397686
− π/3 − − − 1.840419312 1.794618692 1.734099222 1.696099546
3.0 π/4 0.3 1.0 −2.0 1.878381703 1.833316358 1.773533127 1.735593784
− − 0.5 − − 1.836441722 1.789956021 1.728163960 1.689397686
− − 0.7 − − 1.802096137 1.754817989 1.692274249 1.652735779
3.0 π/4 0.5 0.0 −2.0 1.875238410 1.830120581 1.770130660 1.732319575
− − − 0.5 − 1.853305927 1.807347347 1.746879653 1.708144155
− − − 1.0 − 1.836441722 1.789956021 1.728163960 1.689397686
3.0 π/4 0.5 1.0 −2.0 1.836441722 1.789956021 1.728163960 1.689397686
− − − − 0.0 1.849584549 1.805260139 1.747406942 1.710956457
− − − − 2.0 1.861624634 1.819046955 1.764227314 1.729451205

Figure 2 illustrates the effect of multi-shape nanoparticles with respect to the film
thickness β of Al2O3 nanofluids. In this case, the remaining physical parameters remain
constant. Provided that the nanoparticles’ shape changes, the film thickness also drastically
changes. Furthermore, the velocity profile f ′(η) and film thickness β accelerate for the
platelet-shaped nanoparticles and decelerate for the brick, cylinder, and sphere-shaped
nanoparticles. Figure 3 shows the impact of the slip parameter K on the temperature profile
θ(η) for multi-shape nanoparticles. The temperature profile θ(η) for each multi-shape
nanoparticle increases as the slip parameter K rises. The enhancement of the slip parameter
has resulted in acceleration of the fluid within the boundary layer. Additionally, the current
study’s reflection of the convective heating effect, which controls the temperature of the
stretched surface, may have contributed to this phenomenon. In reality, increased convec-
tion causes higher surface temperatures, allowing the thermal impact to go deeper into the
nanofluid. Next, Figure 4 illustrates the magnetic parameter M effect on the temperature
profile θ(η). Having higher levels of the magnetic parameter M, the temperature θ(η)
becomes greater for all types of nanoparticle shapes. The Lorentz force, which acts as a
reverse force when magnetic effect is present, causes this. This force increases the fluid’s
friction by opposing the fluid’s motion. It is a resistive force; hence, fluid friction causes
the temperature to rise. Figure 5 illustrates the effect with respect to the mixed convection
parameter λ towards the temperature profile θ(η). Furthermore, note that the tempera-
ture θ(η) reduces provided the buoyancy parameter boosts (from opposing to assisting).
However, it is important to point out that, for platelet and cylinder shapes, the temperature
receives less impact. Near the wall, the assisting flow has a lower temperature than the
opposing flow. The assisting flow, in theory, transfers heat from the hot plate to the cool
fluid, eventually bringing the wall temperature down.
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constant. Provided that the nanoparticles’ shape changes, the film thickness also drasti-
cally changes. Furthermore, the velocity profile 𝑓ᇱ(𝜂) and film thickness 𝛽 accelerate for 
the platelet-shaped nanoparticles and decelerate for the brick, cylinder, and sphere-
shaped nanoparticles. Figure 3 shows the impact of the slip parameter 𝐾 on the tempera-
ture profile 𝜃(𝜂)  for multi-shape nanoparticles. The temperature profile 𝜃(𝜂)  for each 
multi-shape nanoparticle increases as the slip parameter 𝐾 rises. The enhancement of the 
slip parameter has resulted in acceleration of the fluid within the boundary layer. Addi-
tionally, the current study’s reflection of the convective heating effect, which controls the 
temperature of the stretched surface, may have contributed to this phenomenon. In real-
ity, increased convection causes higher surface temperatures, allowing the thermal impact 
to go deeper into the nanofluid. Next, Figure 4 illustrates the magnetic parameter 𝑀 effect 
on the temperature profile 𝜃(𝜂). Having higher levels of the magnetic parameter 𝑀, the 
temperature 𝜃(𝜂) becomes greater for all types of nanoparticle shapes. The Lorentz force, 
which acts as a reverse force when magnetic effect is present, causes this. This force in-
creases the fluid’s friction by opposing the fluid’s motion. It is a resistive force; hence, 
fluid friction causes the temperature to rise. Figure 5 illustrates the effect with respect to 
the mixed convection parameter 𝜆 towards the temperature profile 𝜃(𝜂). Furthermore, 
note that the temperature 𝜃(𝜂) reduces provided the buoyancy parameter boosts (from 
opposing to assisting). However, it is important to point out that, for platelet and cylinder 
shapes, the temperature receives less impact. Near the wall, the assisting flow has a lower 
temperature than the opposing flow. The assisting flow, in theory, transfers heat from the 
hot plate to the cool fluid, eventually bringing the wall temperature down. 
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when the sheet is oriented vertically, the strongest gravitational forces have an impact on 
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Figure 4. Impact of the magnetic parameter M on the temperature profile for S = 0.4, K = 0.5, ϕ = 0.02,
Bi = 3.0, λ = −2.0, α = π/4 and Pr = 8.0.
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Figure 5. Impact of the mixed convection parameter λ on the temperature profile for S = 0.4, K = 0.5,
ϕ = 0.02, M = 1.0, Bi = 3.0, α = π/4 and Pr = 8.0.
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The temperature profile θ(η) behavior for different inclination angle parameters α
values are shown in Figure 6. It is discovered that, as the angle of inclination parameter
α increases, the temperature θ(η) for all multi-shape nanosize particles decreases. The
buoyancy force increases when the inclination to the horizontal increases. Physically, when
the sheet is oriented vertically, the strongest gravitational forces have an impact on the
flow. However, if the plate is turned from vertical to horizontal (and as the value of α
increases), the buoyancy force increases. Thus, the thermal boundary layer reduces. It is
noticed that the problem is reduced to the vertical plate if α = 0

◦
, whereas when α = 90

◦
the

problem is lowered to the horizontal plate. It is noted that for α = 30
◦
, 45

◦
, 60

◦
, the problem

reduces to the inclined plate. Figure 7 shows the Biot number Bi effect on the temperature
profile θ(η). Moreover, it is discovered that raising Bi increases the fluid temperature.
Additionally, Bi is calculated by dividing convection at the surface by conduction inside
the body surface. Convection will become more potent near the surface as a consequence
of the increase in Bi, leading to an increase in the thickness of the thermal boundary layer.
Additionally, as illustrated in Figure 8, the temperature rises as the film’s thickness reduces
as the shape of the nanoparticles shifts from platelet to spherical. It should be noted that
the shape factor has a greater impact on platelet shape than other factors. In Figure 9,
the magnetic parameter M and unsteadiness parameter S impacts on the film thickness β
are depicted. The decreasing trends in film thickness β are shown in this figure for every
multi-shape nanoparticle when the unsteadiness parameter S increases, coupled with a rise
in the magnetic parameter M. Also, when S→ 0, as shown in Figure 9, it represents the
liquid film thickness of an infinite thickness ( β→ ∞ ). For the particular values S0 of S, no
solutions can be obtained, while S→ S0 represents the case of an infinitesimal thick fluid
layer ( β→ 0 ).
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5. Conclusions

A numerical study has been done on the unsteady thin film flow and the heat transfer
of Al2O3/water nanofluid steered by an inclined stretching sheet. Applying similarity
transformation, the governing partial differential equations (PDEs) are reduced to a set of
ordinary differential equations (ODEs), which are then numerically solved via the boundary
value problem solver (bvp4c) in the Matlab software. The findings are listed below:

• Provided that the magnetic parameter M and the slip parameter K rise, the film
thickness β reduces.

• The temperature θ(η) enhances as the Biot number Bi boosts. For platelet-shaped
particles, the film thickness is high, whereas, for cylinder, brick, and sphere-shaped
nanoparticles, it ultimately diminishes.

• On the platelet and sphere shape nanoparticles, the velocity of Al2O3 nanofluid
achieves its maximum and minimum, whereas a different pattern can be seen in
the temperature.

• The skin friction coefficient lessens when the slip and mixed convection parameters
rise. In contrast, incrementally the volume fraction and magnetic parameters increase
the skin friction coefficient.

• The local Nusselt number increases as the Biot number Bi, inclination angle, and mixed
convection parameters increase, while it declines with an augmentation in the slip and
magnetic parameters.

• The assisting buoyancy flow (λ > 0) appears to have a greater local Nusselt num-
ber than the opposing buoyancy flow (λ < 0), despite the fact that the skin friction
coefficient produces the opposite outcome.
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• A decrease in film thickness is produced by a rise in the unsteadiness parameter, as
well as the magnetic parameter.
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Nomenclature

a : b dimensional constants (s−1)

Bi Biot number
B0 uniform magnetic field
cp specific heat of the fluid (J kg−1K−1)

g acceleration due to gravity (m s−2)

Gr Grashof number
h(t) film thickness (m)

k thermal conductivity of the fluid (W m−1K−1)

M magnetic parameter
Nu Nusselt number
Pr Prandtl number
Re Reynolds number
S unsteadiness parameter
t time (s)
T fluid temperature (K)

Tw surface temperature at the wall (K)

T0 reference temperature (K)

T∞ ambient temperature (K)

Uw surface velocity (m s−1)

u, v velocity components in the x and y directions (m s−1)

x, y Cartesian coordinates (m)

Greek symbols
α inclination angle
β dimensionless film thickness
β∗ thermal expansion coefficient of the fluid (K−1)

η similarity variable
λ mixed convection parameter
µ dynamic viscosity of the fluid (kg m−1s−1)

ν kinematic viscosity of the fluid (m2 s−1)

ϕ dimensionless nanoparticle volume fraction
ψ stream function (m2 s−1)

ρ density of the fluid (kg m−3)

(ρcp) heat capacity of the fluid (J K−1m−3)

σ electrical conductivity of the fluid (s m−1)

θ dimensionless temperature
Subscripts
f base fluid
n f Nanofluid
s solid nanoparticle
w condition at the wall
Superscript
′ differentiation with respect to η
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