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Abstract: In this work, we study a linear operator f on a pre-Euclidean space V by using properties
of a corresponding graph. Given a basis B of V , we present a decomposition of V as an orthogonal
direct sum of certain linear subspaces {Ui}i∈I , each one admitting a basis inherited from B, in such
way that f = ∑i∈I fi. Each fi is a linear operator satisfying certain conditions with respect to Ui.
Considering this new hypothesis, we assure the existence of an isomorphism between the graphs of f
relative to two different bases. We also study the minimality of V by using the graph of f relative
to B.
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1. Introduction

This paper is motivated by the following problem: If we consider a family { fi : Vi →
Vi}i∈I of linear operators, where any Vi is a pre-Euclidean space, then we can construct a
new linear operator in a natural way

f :⊥
i∈I

Vi →⊥
i∈I

Vi

as f = ∑i∈I fi, where V :=⊥i∈I Vi is the pre-Euclidean space defined by componentwise
operations. However, what about the converse? That is, if

f : V → V

is a linear operator in a pre-Euclidean space, could we find a family {Vi}i∈I of pre-Euclidean
spaces and a family of linear operators { fi : Vi → Vi}i∈I in such a way that the following
equations are true?

V =⊥
i∈I

Vi and f = ∑
i∈I

fi (1)

The aim of the present work is to study this problem by giving a positive answer. A
pre-Euclidean space is simply a linear space provided with a bilinear form, hence our work
covers a wide range of structures. As a tool for our study, we use the techniques of graphs.
This allows us to determine the decomposition (1) in an easy way, by looking at a graph
of f (and a fixed basis). This result gives us the opportunity to recover a (possible) large
linear operator f : V → V from a family of easier linear operators fi : Vi → Vi in a visual
and computable way, which we hope will be useful in dealing with linear operators in a
vector space endowed with a bilinear map. In recent years, the use of graphs has increased
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in order to apply them to other areas [1–5]. The application of graphs has been used for the
study of linear operators and algebras [6–12]. As some recently published articles show,
this topic is currently very active [13–22].

For a linear operator f : V → V in a pre-Euclidean space V with a fixed basis B, we
obtain its decomposition as the orthogonal direct sum of certain linear subspaces {Ui}i∈I ,
with each one admitting a basis inherited from B. This way, f is decomposed as f = ∑i∈I fi,
with each fi being a linear operator satisfying certain conditions relative to Ui. In addition,
for the linear operator f , we present conditions in order to guarantee the existence of an
isomorphism between the graphs of f relative to two different bases of V . Finally, we
analyze the minimality property for V by using the graph of f relative to B.

The paper is organized as follows. Section 2 contains basic notions needed for the
following sections. In Section 3, we associate a graph Γ( f ,B) to any linear operator f ,
defined in a pre-Euclidean space (V , 〈·, ·〉) with a fixed basis B. In addition, we introduce
the notion of f -indecomposable, in order to characterize it using the connectivity of Γ( f ,B).
In Section 4, we give a definition of f -equivalence, under which the graphs Γ( f ,B) and
Γ( f ,B′) are isomorphic for two different bases, B and B′ of V . Moreover, we relate these
properties with a definition of equivalent decomposition for f . In Section 5, we analyze the
minimality property for V by using Γ( f ,B), the graph of f relative to B. Finally, we present
our conclusions, where we critically highlight our contributions, and identify strengths and
weaknesses to propose paths for future research.

2. Basic Definitions

Throughout this paper, F denotes an arbitrary field and all vector spaces are assumed
to be arbitrary dimensional and over base field F.

Definition 1. A pre-Euclidean space is a pair (V , 〈·, ·〉), where V is an F-vector space and 〈·, ·〉 :
V × V → F is a bilinear form.

Example 1. R endowed with the bilinear form 〈·, ·〉 : R×R → R given as 〈x, y〉 := λxy, for
x, y ∈ R and fixed λ ∈ R is a pre-Euclidean space.

A pre-Euclidean space over the field R endowed with an scalar product is a pre-Hilbert
space. Therefore, the results in this paper apply to pre-Hilbert spaces. A pre-Euclidean
subspace of (V , 〈·, ·〉) is a linear subspace U of V endowed with the bilinear form 〈·, ·〉|U×U .
Additionally, given two pre-Euclidean spaces (V , 〈·, ·〉V ) and (W , 〈·, ·〉W ), a morphism from
V to W is a linear map φ : V → W , satisfying 〈x, y〉V = 〈φ(x), φ(y)〉W for x, y ∈ V .
An isomorphism is a bijective morphism from V to W . Moreover, an automorphism is an
isomorphism from V to itself.

Definition 2. Let (V , 〈·, ·〉) be a pre-Euclidean space.

i. We say that two elements, x, y ∈ V , are orthogonal if 〈x, y〉 = 0.
ii. The vector subspaces U and W of V are orthogonal if 〈u, w〉 = 0 for u ∈ U, w ∈W. In this

case, we denote it as 〈U, W〉 = {0}.
iii. V is an orthogonal direct sum of linear subspaces Ui of V , with i ∈ I, denoted as

V =⊥
i∈I

Ui,

if V decomposes as a direct sum V =
⊕

i∈I Ui of linear subspaces Ui, such that 〈Ui, Uj〉 = {0}
whenever i 6= j.

3. Linear Operator in a Pre-Euclidean Space and Graphs: Decomposition Theorem

We recall that a (directed) graph is a pair (V, E), where V is a set of vertices and
E ⊂ V ×V is a set of (directed) edges connecting the vertices.
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Definition 3. Let f : V → V be a linear operator in a pre-Euclidean space (V , 〈·, ·〉) with a fixed
basis B = {ei}i∈I . The directed graph of f relative to B is Γ( f ,B) := (V, E), where V := B and

E :=
{
(ei, ej) ∈ V ×V : {〈ei, ej〉, 〈ej, ei〉} 6= {0} or f (ei) = ∑

j
λjej for some 0 6= λj ∈ F

}
.

We say that Γ( f ,B) is the (directed) graph associated to f relative to basis B.

Example 2. Let (V , 〈·, ·〉) be the pre-Euclidean space over R with a fixed basis B = {e1, e2, . . . , e5},
such that 〈e2, e5〉 = 7 and the rest zero. Let f : V → V be the linear operator, defined as

f (e1) = f (e3) = f (e5) := e1 + 2e3 + e5, f (e2) = f (e4) := −e4.

Then, the associated graph Γ( f ,B) is:

e1 e5

e3

e2 e4

Example 3. Let (V , 〈·, ·〉) be the pre-Euclidean space over R with basis B := {v1, v2, v3, v4, v5}
and the bilinear form defined as

〈v4, v3〉 = 〈v1, v5〉 := 1, 〈v4, v2〉 = 〈v3, v5〉 := 3.

Let f : V → V be the linear operator, given as

f (v1) = f (v3) = f (v2) := 2v1 + 2v2 + v3, f (v4) = v4.

Thus, the graph Γ( f ,B) is:

v2

v3

v1

v4 v5

Given two vertices vi, vj ∈ V, an undirected path from vi to vj is a sequence of vertices
(vi1 , . . . , vin) with vi1 = vi, vin = vj, such that either (vir , vir+1) ∈ E or (vir+1 , vir ) ∈ E, for
1 ≤ r ≤ n− 1. We may introduce an equivalence relation in V: we say that vi is related to vj
in V, and denote vi ∼ vj if either vi = vj or there exists an undirected path from vi to vj. In
this case, we assert that vi and vj are connected and the equivalence class of vi, denoted by
[vi] ∈ V/ ∼, corresponds to a connected component C[vi ]

of the graph Γ( f ,B). Therefore,

Γ( f ,B) =
⋃̇

[vi ]∈V/∼
C[vi ]

. (2)
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To any C[vi ]
, we can associate the linear subspace

VC[vi ]
:= ⊥

vj∈[vi ]

Fvj. (3)

Definition 4. Let (V , 〈·, ·〉) be a pre-Euclidean space with basis B. A linear subspace U of V
admits a basis B′ inherited from B, if B′ is a basis of U satisfying B′ ⊂ B.

Definition 5. Let f : V → V be a linear operator on a pre-Euclidean space (V , 〈·, ·〉) with basis
B = {ei}i∈I . The space V is f -decomposable with respect to B if V = U1 ⊥ U2, being U1, U2
non-zero linear subspaces admitting a basis inherited from B and f (U1) ⊂ U1, f (U2) ⊂ U2.
Otherwise, V is said to be f -indecomposable with respect to B.

Example 4. The pre-Euclidean space over R of Example 2 is f -indecomposable with respect to B.

Example 5. Let V be the pre-Euclidean space defined by the 5-dimensional C-vector space with
basis B := {e1, e2, e3, e4, e5}, and the bilinear form defined as

〈e1, e3〉 := 4i, 〈e4, e5〉 := 2− 11i,

and the rest zero. We consider the linear operator f : V → V given as

f (e1) := 2e1 − e2, f (e2) := e3,

and zero on the rest. Then, by denoting U1, U2 as the C-linear subspaces of V with bases {e1, e2, e3},
{e4, e5}, respectively, we easily see that

V = U1 ⊥ U2

and V is f -decomposable with respect to B. The associated graph Γ( f ,B) is:

e1

e2 e3 e4 e5

A graph (V, E) is connected if any two vertices are connected. Equivalently, a graph is
connected if and only if for every partition of its vertices into two non-empty sets, there is
an edge with an endpoint in each set.

Theorem 1. Let f : V → V be a linear operator on a pre-Euclidean space (V , 〈·, ·〉) with basis
B = {ei}i∈I . Then, the following statements are equivalent.

i. The graph Γ( f ,B) is connected.
ii. V is f -indecomposable with respect to B.

Proof. First, we suppose that the graph Γ( f ,B) is connected. Let us assume that V is
f -decomposable with respect to B. Thus, V is the orthogonal direct sum

V = U1 ⊥ U2

of two linear subspaces U1 and U2, admitting each one a basis B1 := {ej : j ∈ J} and
B2 := {ek : k ∈ K}, respectively, inherited from B such that f (U1) ⊂ U1 and f (U2) ⊂ U2.
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Hence, B = B1 ∪̇ B2. Fix some ej ∈ B1 and ek ∈ B2. As the graph Γ( f ,B) is connected, it
follows that ej is connected to ek. Thus, there exists an undirected path

(ej, vi2 , . . . , vin−1 , ek)

from ej to ek. From here, there are e′ = vis ∈ B1 and e′′ = vis+1 ∈ B2, such that either
(e′, e′′) ∈ E or (e′′, e′) ∈ E. As 〈e′, e′′〉 = 〈e′′, e′〉 = 0, we have either PFe′′

(
f (e′)

)
6= 0 or

PFe′
(

f (e′′)
)
6= 0, where PU : V → U is the projection of V onto the linear subspace U.

Hence, we have either f (U1) 6⊂ U1 or f (U2) 6⊂ U2, where in both cases, it is a contradiction.
Therefore, V is f -indecomposable with respect to B.

Conversely, let us suppose that V is f -indecomposable with respect to B and Γ( f ,B)
is not connected. Then, there exists a partition B = B1 ∪̇ B2, such that both (x, y) and
(y, x) are not in E, for any x ∈ B1 or y ∈ B2. Set U1 :=

⊕
x∈B1

Fx and U2 :=
⊕

y∈B2
Fy.

Then, we have 〈x, y〉 = 〈y, x〉 = 0 for any x ∈ B1 and y ∈ B2. Moreover, f (U1) ⊂ U1 and
f (U2) ⊂ U2. Thus, V is the orthogonal direct sum

V = U1 ⊥ U2,

of two linear subspaces U1 and U2, admitting each one a basis B1 and B2, respectively,
inherited from B. Thus, V is f -decomposable with respect to B, which is a contradiction.

Corollary 1. Let f : V → V be a linear operator in a pre-Euclidean space (V , 〈·, ·〉) with the
basis B = {ei}i∈I . Then, for each [vi] ∈ V/ ∼, the linear subspace VC[vi ]

:=⊥vj∈[vi ]
Fvj of V is

f -indecomposable with respect to [vi].

We illustrate our results with a simple example.

Example 6. Let (V , 〈·, ·〉) be the pre-Euclidean space over R with a fixed basis B = {e1, e2, e3, e4},
such that 〈e1, e3〉 = −5, 〈e2, e4〉 = 1, and zero on the rest. Let f : V → V be the linear operator,
defined as

f (e1) = f (e3) := −2e3, f (e2) = f (e4) := 5e2 + e4.

Then, the associated graph Γ( f ,B) is:

e1 e3 e2 e4

We have V = U1 ⊥ U2, where U1, U2 are the subspaces with bases {e1, e3} and {e2, e4}, respec-
tively. As the graph Γ( f ,B) is not connected, we conclude that V is f -decomposable with respect to
B. However, U1 and U2 are f -indecomposable with respect to {e1, e3} and {e2, e4}, respectively.

Theorem 2. Let f : V → V be a linear operator in a pre-Euclidean space (V , 〈·, ·〉). Then, for a
fixed basis B := {ej}j∈J of V , it holds that

V =⊥
i∈I

Ui,

with each Ui being a linear subspace of V admitting B[i] := {ej : ej ∈ [ei]} as a basis inherited from
B. In addition, we have

f = ∑
i∈I

fi,

with each fi being a linear operator in the pre-Euclidean space (V , 〈·, ·〉), for i ∈ I, such that

fi|Ui = f |Ui , fi(Ui) ⊂ Ui, fi(⊥i 6=j Uj) = 0.

Further, for each i ∈ I, Ui is fi-indecomposable with respect to B[i].
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Proof. Let V/ ∼= {[ei]}i∈I . Then, from Equations (2) and (3), we can assert that V :=⊕
i∈I Ui is the direct sum of the family of linear subspaces Ui := VC[ei ]

, and B[i] = {ej :
ej ∈ [ei]} is the basis for Ui, with i ∈ I. Thus, if Ui 6= Uj then [ei] 6= [ej], and hence,
{〈x, y〉, 〈y, x〉} = {0} for any x ∈ [ei], y ∈ [ej]. From here, it follows that 〈Ui, Uj〉 =
〈Uj, Ui〉 = 0 for any i 6= j. That is, V =⊥i∈I Ui.

Assuming now that PUj( f (Ui)) 6= {0} for i 6= j, where PUj : V → Uj is the projection
of V onto Uj. Then, there exist e′ ∈ [ei] and e′′ ∈ [vj], such that PUj( f (e′)) = λe′′ + u with
λ ∈ F \ {0} and u ∈ ⊕e 6=e′′∈[ej ]

Fe ⊂ Uj. As λ 6= 0, we have (e′, e′′) ∈ E, and therefore,
e′ ∼ e′′, i.e. [e′] = [e′′]. As [ei] = [e′] and [ej] = [e′′], we have [ei] = [ej], and so, Ui = Uj,
which is a contradiction. Thus, P⊥i 6=jUj

(
f (Ui)

)
= 0, and we conclude that f (Ui) ⊂ Ui.

Consequently, each linear subspace Ui of V admits a basis B[i] inherited from B.
As V =⊥i∈I Ui, for each i ∈ I we define the linear operator fi : V → V as fi(Ui) :=

f (Ui) and fi(⊥i 6=j Uj) := {0}, so f = ∑i∈I fi.
Now, let us show that each Ui is fi-indecomposable with respect to B[i]. We assume that

Ui = U′1 ⊥ U′2,

where U′1 and U′2 are non-zero linear subspaces of Ui admitting the fi-basis B1 := {ej : j ∈
J} and B2 := {ek : k ∈ K}, inherited from B[i], respectively. That is,

B[i] = B1 ∪̇ B2.

Fix some ej ∈ B1 and ek ∈ B2. As ej is connected to ek, there exists an undirected path

(ej, vi2 , . . . , vin−1 , ek)

from ej to ek. From here, there are e′ = vis ∈ B1 and e′′ = vis+1 ∈ B2, such that either
(e′, e′′) ∈ E or (e′′, e′) ∈ E. As 〈e′, e′′〉 = 〈e′′, e′〉 = 0, we have either PFe′′( fi(e′)) 6= 0 or
PFe′( fi(e′′)) 6= 0. Therefore, we have either fi(U′1) 6⊂ U′1 or fi(U′2) 6⊂ U′2. In both cases, it is
a contradiction and the proof is completed.

Example 7. Let V , the 6-dimensional F-vector space with basis B := {e1, e2, . . . , e6}, and bilinear
form be defined as

〈e1, e2〉 := α, 〈e5, e6〉 := β,

and the rest zero, with α, β ∈ F \ {0}. We consider the linear operator f : V → V , given as

f (e1) := αe1, f (e3) := βe2, f (e4) := −βe4, f (e5) := −αe5 + αe6,

and zero on the rest, with α, β being the same previous scalars. By denoting U1, U2, and U3 as the
linear subspaces of V with bases B[1] := {e1, e2, e3}, B[2] := {e4}, B[3] := {e5, e6}, respectively,
we have V being f -decomposable with respect to B, as

V = U1 ⊥ U2 ⊥ U3.

The associated graph Γ( f ,B) is:

e1

e2 e3 e4 e5 e6
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Moreover, for i ∈ {1, 2, 3}, we define fi : V → V as f1(e1) := αe1, f1(e3) := βe2, f2(e4) := −βe4,
f3(e5) := −αe5 + αe6, and zero on the rest (α, β being the same previous non-zero scalars). We
show that

f = f1 + f2 + f3

satisfies the condition of Theorem 2, and then Ui is fi-indecomposable with respect to B[i], for
i ∈ {1, 2, 3}. Clearly, V is f -decomposable with respect to B.

To identify the components of the decomposition given in Theorem 2, we only need to
focus on the connected components of the associated graph.

4. Relating the Graphs Given by Different Choices of Bases

In general, for a linear operator f : V → V in a pre-Euclidean space (V , 〈·, ·〉), two
different bases of V determine associated graphs to be not isomorphic, which can give rise
to a different decomposition of f , as in Theorem 2. We recall that two graphs, (V, E) and
(V′, E′), are isomorphic if there exists a bijection φ : V → V′, such that (vi, vj) ∈ E if and
only if (φ(vi), φ(vj)) ∈ E′. This is shown in the next example.

Example 8. For the linear operator and pre-Euclidean space of Example 3, if we consider w1 :=
v1 + v2, w2 := v1 − v2, w3 := v4 + v5, w4 := v4 − v5, and w5 := v3 for the basis B′ :=
{w1, w2, w3, w4, w5}, we get

〈w1, w3〉 = −〈w1, w4〉 = 〈w2, w3〉 = −〈w2, w4〉 = 〈w3, w5〉 = 〈w4, w5〉 = 1,

〈w3, w1〉 = −〈w3, w2〉 = 〈w4, w1〉 = −〈w4, w2〉 = 〈w5, w3〉 = −〈w5, w4〉 = 3,

and also,

f (w1) = 4w1 + 2w5, f (w3) = f (w4) =
1
2

w3 +
1
2

w4, f (w5) = 2w1 + w5.

Thus, we obtain the associated graph Γ( f ,B′):

w1 w5 w2

w3 w4

Clearly, Γ( f ,B′) is not isomorphic to the associated graph Γ( f ,B), as stated in Example 3.

Next, we give a condition under which the graphs associated to a linear operator f :
V → V in a pre-Euclidean space (V , 〈·, ·〉), performed by two different bases, are isomorphic.
As a consequence, we establish a sufficient condition under which two decompositions of
f , induced by two different bases, are equivalent.

Definition 6. Let f : V → V be a linear operator in a pre-Euclidean space (V , 〈·, ·〉). Two bases,
B = {vi}i∈I and B′ = {wi}i∈I of V , are f -equivalent if there exists an automorphism φ : V → V
satisfying φ(B) = B′ and φ ◦ f = f ◦ φ.
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Lemma 1. Let f : V → V be a linear operator in a pre-Euclidean space (V , 〈·, ·〉) with the basis
B = {ei}i∈I . Consider the two bases B and B′ of V . If B and B′ are f -equivalent bases, then the
associated graphs Γ( f ,B) and Γ( f ,B′) are isomorphic.

Proof. Let us suppose that B = {vi}i∈I and B′ = {wi}i∈I are two f -equivalent bases of V .
Then, there exists an automorphism φ : V → V satisfying f ◦ φ = φ ◦ f and

〈x, y〉 = 〈φ(x), φ(y)〉 (4)

for x, y ∈ V , in such a way that for every vi ∈ B, there exists a unique wji ∈ B
′ verifying

φ(vi) = wji .
Let us denote by (V, E) and (V′, E′) the set of vertices and edges of Γ( f ,B) and

Γ( f ,B′), respectively. Taking into account that V = B and V′ = B′, and the fact φ(B) =
B′, we have that φ defines a bijection from V to V′. Given vi, vk ∈ V, we want to
show that (vi, vk) ∈ E if and only if (φ(vi), φ(vk)) = (wji , wjk ) ∈ E′. Supposing that
(vi, vk) ∈ E, either {〈vi, vk〉, 〈vk, vi〉} 6= {0} or f (vi) = ∑k λkvk for some 0 6= λk ∈ F. If
{〈vi, vk〉, 〈vk, vi〉} 6= {0}, then by Equation (4), we have {〈wji , wjk 〉, 〈wjk , wji 〉} 6= {0}. If
f (vi) = ∑k λkvk for some 0 6= λk ∈ F, applying φ to this relation, we would find that
f (wji ) = f (φ(vi)) = φ( f (vi)) = φ(∑k λkvk) = ∑k λkφ(vk) = ∑k λkwjk for some 0 6= λk ∈
F. Thus, (wji , wjk ) ∈ E′. The same argument using φ−1 shows that if (wji , wjk ) ∈ E′, then
(vi, vk) ∈ E, because φ−1 ◦ f = f ◦ φ−1. This fact concludes the proof that Γ( f ,B) and
Γ( f ,B′) are isomorphic via φ.

The following concept is borrowed from the theory of graded algebras (see [23] for
examples).

Definition 7. Let (V , 〈·, ·〉) be a pre-Euclidean space and let

Υ := V =⊥
i∈I

Vi and Υ′ := V =⊥
j∈J

V ′j

be two decompositions of V as the orthogonal direct sums of linear subspaces. It is said that Υ and
Υ′ are equivalent if there exists an automorphism φ : V → V , and a bijection σ : I → J, such that
φ(Vi) = V ′σ(i) for all i ∈ I.

Theorem 3. Let f : V → V be a linear operator in a pre-Euclidean space (V , 〈·, ·〉). Then, for the
two bases B := {vi}i∈I and B′ := {v′j}j∈J of V , consider the following assertions:

i. The bases B and B′ are f -equivalent.
ii. The graphs Γ( f ,B) and Γ( f ,B′) are isomorphic.
iii. The decomposition of the linear operator f : V → V with respect to B is

Υ := V = ⊥
[vi ]∈V/∼

VC[vi ]
,

given by
f = ∑

i∈I
fi,

with fi|VC[vi ]
= f |VC[vi ]

, fi(VC[vi ]
) ⊂ VC[vi ]

, fi(⊥i 6=k VC[vk ]
) = 0, and the decomposition of f

with respect to B′ being
Υ′ := V = ⊥

[v′j ]∈V′/∼
VC ′

[v′j ]
,

performed by
f = ∑

j∈J
f ′j
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with f ′j |VC′
[v′j ]

= f |VC′
[v′j ]

, f ′j (VC ′
[v′j ]

) ⊂ VC ′
[v′j ]

, f ′j (⊥i 6=k VC ′
[v′k ]

) = 0, are equivalent.

Then, i. implies ii. and iii.

Proof. The implication from i. to ii. was shown in Lemma 1. Let us prove the implication
from i. to iii. Suppose that φ : V → V is an automorphism satisfying φ(B) = B′ and φ ◦ f =
f ◦ φ. By the implication from i. to ii., we know that Γ( f ,B) and Γ( f ,B′) are isomorphic
via φ, and thus φ([v]) = [φ(v)] for all v ∈ V = B. It follows that φ(VC[v]) = VC[φ(v)] for
all [v] ∈ V/ ∼, which proves that the decomposition of V corresponding to B and B′
are equivalent.

Remark 1. In general, the implication of ii. to i. of Theorem 3 (as well the converse of Lemma 1)
is not valid. That is, the fact that the graphs associated with the two bases are isomorphic does
not imply that these two bases are f -equivalent. Let V be a pre-Euclidean space with the basis
B := {v1, v2, v3}, endowed with a bilinear form defined as

〈v1, v1〉 = 〈v2, v2〉 = 〈v3, v3〉 = 〈v1, v2〉 := 1

and zero on the rest. By denoting w1 := v1 + v2, w2 := v1 − v2, and w3 := v3, we consider the
basis B′ := {w1, w2, w3}; thus, we obtain

〈w1, w1〉 = 3, 〈w2, w2〉 = 〈w3, w3〉 = 〈w2, w1〉 = 1, 〈w1, w2〉 = −1.

Therefore, for a zero linear operator f , the associated graphs Γ( f ,B) and Γ( f ,B′) are isomorphic:

v3

v1 v2

w3

w1 w2

However, B and B′ are not f -equivalent. Indeed, if there exists an isomorphism φ : V → V , such
that φ(B) = B′, we get, for instance,

φ(v1) := w1, φ(v2) := w3, φ(v3) := w2,

but 0 = 〈v1, v3〉 6= 〈φ(v1), φ(v3)〉 = 〈w1, w2〉 = −1.

5. Characterization of the Minimality and Weak Symmetry

Let (V, E) be a graph. Given vi, vj ∈ V, we say that a directed path from vi to vj is a
sequence of vertices (vi1 , . . . , vin) satisfying vi1 = vi and vin = vj, such that (vir , vir+1) ∈ E,
for 1 ≤ r ≤ n− 1. We also say that (V, E) is symmetric if (vi, vj) ∈ E for all (vj, vi) ∈ E.
Thus, we present the next (weaker) concept in the following section.

Definition 8. A graph (V, E) is weakly symmetric if, for any (ej, ei) ∈ E, there exists a directed
path from ei to ej.

Of course, every symmetric graph is weakly symmetric.

Example 9. The following graphs are weakly symmetric:
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Definition 9. Let f : V → V be a linear operator in a pre-Euclidean space (V , 〈·, ·〉) with a basis
B. We say that V is minimal if the unique pre-Euclidean subspaces U admit an inherited basis from
B, such that f (U) ⊂ U are {0},V .

Theorem 4. Let f : V → V be a linear operator in a pre-Euclidean space (V , 〈·, ·〉) with the
basis B = {ei}i∈I . If V is minimal, then the associated graph Γ( f ,B) of f relative to B is
weakly symmetric.

Proof. If V is minimal, we know that V is the unique non-zero pre-Euclidean subspace that
satisfies f (V) ⊂ V . Let Γ( f ,B) := (V, E) be the associated graph and take some (ei, ej) ∈ E.
Therefore, either 〈ei, ej〉 6= 0 or 〈ej, ei〉 6= 0 or f (ei) = ∑j λjej for some 0 6= λj ∈ F. The first
two cases imply (ej, ei) ∈ E. In the last case, we have f 6= 0. Let us now define

Bj := {ek ∈ B : ek = ej or there exists a directed path from ej to ek}.

As ej ∈ Bj, we have Bj 6= ∅. Thus, let U be the space spanned by Bj. Let et ∈ Bj and
f (et) = ∑m λmem. If λm 6= 0, we get (et, em) ∈ E, and hence, there exists a directed path
from ej to em:

ej · · · · · · · · · et em

Thus, it implies em ∈ Bj, and therefore, f (U) ⊂ U. As Bj 6= ∅ and V is minimal, we have
U = V , so we conclude Bj = B and ei ∈ Bj. Thus, there exists a directed path from ej to ei,
as required.

Corollary 2. Let f : V → V be a linear operator in a pre-Euclidean space (V , 〈·, ·〉) with the basis
B = {ei}i∈I . If V is minimal, then the associated graph Γ( f ,B) of f relative to B is connected.

Proof. This is an immediate consequence of Corollary 1 and Theorems 1 and 2.

Remark 2. In general, the converse of the previous results are not valid. As a counterexample, let
(V , 〈·, ·〉) be the pre-Euclidean space over R, with the basis B := {e1, e2, e3, e4} and a bilinear form,
given as

〈e1, e2〉 = 〈e2, e3〉 = 〈e3, e4〉 = 〈e4, e1〉 := 1.

Let f : V → V be the linear operator, defined as f (ei) := ei for i ∈ {1, 2, 3, 4}. Then, V is not
minimal, as, for instance, the pre-Euclidean subspace U with inherited basis {e1} from B satisfies
f (U) ⊂ U. However, the associated graph Γ( f ,B) is clearly connected and weakly symmetric:
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e1

e2

e3

e4

6. Conclusions

We were motivated by the following situation: If we consider a family of linear operators

{ fi : Vi → Vi}i∈I ,

where any Vi is a pre-Euclidean space, we can then naturally construct a new linear operator

f :
⊕
i∈I
Vi →

⊕
i∈I
Vi

as f = ∑i∈I fi, where V :=
⊕

i∈I Vi is the pre-Euclidean space defined by componentwise
operations.

In this paper, our purpose was to study the converse problem, and we gave a positive
answer by proving in Theorem 2 that, given a linear operator f : V → V in a pre-Euclidean
space, it is possible to find a family of pre-Euclidean spaces {Vi}i∈I , and a family of linear
operators { fi : Vi → Vi}i∈I in such a way that V =⊥i∈I Vi and f = ∑i∈I fi. In order
to approach our question, we used the technique of graphs. This allowed us to obtain
the above decomposition of the pre-Euclidean space V and linear operator f in a very
practical way, by simply looking at the graph Γ(F,B) associated to f (and a fixed basis B).
In addition, the minimality of our structure was characterized in Theorem 4, which states
that, for a linear operator f : V → V in a minimal pre-Euclidean space (V , 〈·, ·〉) (with the
basis B = {ei}i∈I), then the associated graph Γ( f ,B) to f relative to B is weakly symmetric.

Finally, we would like to note that future research on this topic should work to
generalize this result for different classes of operators (not necessarily linear operators)
and consider operators on structures different from pre-Euclidean spaces (for instance,
Banach spaces).
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