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Abstract: The main objective of this work was to develop a tuning method for PID controllers suitable
for use in an industrial environment. Therefore, a computationally simple tuning method is presented
based on a simple experiment on the process without requiring any input from the user. Essentially,
the method matches the closed-loop response to the response obtained in the steady-state change
experiment. The proposed method requires no prior knowledge of the process and, in its basic
form, only the measurement of the change in the steady state of the process in the manually or
automatically performed experiment is needed, which is not limited to step-like process input signals.
The user does not need to provide any prior information about the process or any information about
the closed-loop behavior. Although the control loop dynamics is not defined by the user, it is still
known in advance because it is implicitly defined by the process open-loop response. Therefore,
no exaggerated control signal swings are expected when the reference signal changes, which is an
advantage in many industrial plants. The presented method was designed to be computationally
undemanding and can be easily implemented on less powerful hardware, such as lower-end PLC
controllers. The work has shown that the proposed model-free method is relatively insensitive to
process output noise. Another advantage of the proposed tuning method is that it automatically
handles the tuning of highly delayed processes, since the method discards the initial process response.
The simplicity and efficiency of the tuning method is demonstrated on several process models and
on a laboratory thermal system. The method was also compared to a tuning method based on a
similar closed-loop criterion. In addition, all necessary Matlab/Octave files for the calculation of the
controller parameters are provided online.

Keywords: PID controller; data-based tuning; VRFT; controller tuning

MSC: 47N70; 58E25

1. Introduction

The tuning of control systems has attracted the interest of researchers for eight decades.
It is, therefore, not surprising that the number of published tuning methods is very high.
All methods use some specific information from the process to achieve controller tuning.
Most tuning methods require the process model (or an estimated lower-order model), and
model quality is a key factor in successful controller tuning. The most commonly used
tuning methods in practice are those that require the least amount of information from the
process to achieve the desired control performance.

In general, controller tuning methods can be divided into those that require an explicit
process model and those that do not. The latter can be referred to as data-driven methods
because the tuning is based on input and output measurements of the process in the time
domain without identifying an explicit process model. Recently, data-driven methods have
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received increasing attention from researchers because the only information required from
the process is the input and output signals, which are usually available.

Some typical representatives of data-driven methods are Virtual Reference Feedback
Tuning (VRFT) [1–15], Fictitious Reference Iterative Tuning (FRIT) [16–20], Direct Adaptive
Controller (DIRAC) [21], Balanced method [22], model-free approaches with ultra-local
models [23–25], and Magnitude Optimum Multiple Integration (MOMI) tuning meth-
ods [26–30]. All these methods use the process input and output signals to calculate the
controller parameters.

In the VRFT method, the controller parameters are determined by comparing the
measured and calculated controller output signals after calculating the “virtual reference
signal” from the measured process output signal and the inverse of the desired closed-loop
transfer function. The controller parameters can be calculated by a regression method. The
VRFT method has been adapted for MIMO processes [2,12], for nonlinear processes [3,5],
and for IMC-based PID controllers [9,13,14].

The FRIT method is similar to the VRFT method except that it compares the measured
and desired process outputs. The “fictitious reference” is calculated from the measured
process input and output signals and the inverse of the controller’s transfer function. Some
of FRIT methods have been extended by improving robustness with desired maximum
sensitivity (MS) [16], using cascade control structures [18,19], and optimizing disturbance-
rejection performance [20].

DIRAC method [21] is similar to the VRFT method, where the discrete controller
parameters are calculated by a regression method by comparing the filtered process input
signal with the difference between the filtered and the original process output signal, where
filter is the desired closed-loop transfer function.

The Balanced method [22] is an iterative tuning method for PI controllers that cal-
culates the controller parameters by balancing the contribution of the proportional and
integral terms. This is achieved using an extended performance index ITAEX and a “sign
criterion” in the optimization loop.

Model-free approaches with ultra-local models are based on describing the process
with a very simple process model (e.g., integrator or double integrator), while considering
the rest of the process behavior is considered to be disturbance (compensated with closed-
loop inner control). By estimating the n-th derivative of the process output and the reference,
the controller parameters can be calculated. The user should select the desired closed-loop
speed [23].

The MOMI tuning method is based on multiple integrals of the process input and
output signals. These integrals are used to evaluate the process moments (areas), which
are then used to calculate the controller parameters (e.g., PID [26–28], higher-order con-
trollers [29], multivariable controllers [30], etc.).

One of the basic requirements for VRFT, FRIT, DIRAC and model-free methods is
the definition of the desired closed-loop transfer function or desired closed-loop speed.
However, it is not always easy to define this for an unknown process. The disadvantage of
the Balanced method is the iterative procedure required to determine the optimal balance
between the proportional and integral terms of the controller. The MOMI tuning method
does not require the desired closed-loop transfer function or an iterative procedure to
calculate the controller parameters. However, the calculation of repeated integrals on the
input and output signals of the process is prone to error if the process does not settle during
the experiment.

Therefore, we decided to propose a novel PID controller tuning method (but not
limited to the PID controllers), based on the VRFT method, which addresses most of the
mentioned shortcomings. The main advantages of the proposed method are the following:

- The tuning method requires only the measurement of the manually or automatically
controlled experiment on the process, where the process changes the steady state (the
process input signal is not limited to step-like signals).
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- The user does not need to provide any prior information about the process, such as the
process transfer function, the desired control loop transfer function or time constants.

- Although the closed-loop response is not defined by the user, it is implicitly defined
by the open-loop response. The advantage of matching the responses is that there
are no exaggerated swings of the controller output signal in response to the setpoint
change, which is often preferred by plant operators in many industrial plants.

- Because the tuning method discards the initial response of the process (e.g., during
process time delay of the process), the method slows the closed-loop response for
processes with larger time delays and therefore inherently stabilizes the closed-
loop response.

- Due to the regression method used, the proposed method is relatively insensitive to
process measurement noise.

- The proposed method is simple, does not require optimization, is not computationally
intensive, and therefore can be implemented on less powerful hardware, such as
lower-end PLC controllers.

- All scripts (Matlab/Octave) for calculating the controller parameters are available
online, allowing the user to immediately calculate the controller parameters for any
selected process model or from provided process input and output signals. The scripts
are open-source, can be copied and modified as needed.

- The method can be extended to include an additional velocity factor that speeds
up or slows down the closed-loop response compared to the open-loop response
accordingly. This extension requires an additional estimate of the process time delay
and process average residence time, which can be trivially determined from the
open-loop response.

Therefore, the proposed tuning method could be particularly welcome in indus-
trial environments.

The remainder of the paper is organized as follows. The VRFT method is described in
Section 2. The proposed equalization method based on an implicitly defined closed-loop
transfer function is described in Section 3. In Section 4, the effects of measurement noise at
the process output are tested. The generalization of the proposed method to obtain faster
or slower closed-loop responses than open-loop responses is explained in Section 5, while
examples on different process models and a laboratory temperature plant are given in
Section 6. A comparison with other tuning methods based on similar desired closed-loop
response is presented in Section 7. Some conclusions are drawn in the last section.

2. VRFT Method

The original VRFT method calculates the controller parameters using a “virtual ref-
erence signal” derived from the measured process output signal and the inverse of the
desired closed-loop transfer function. Figure 1 shows the main principle of the VFT tuning
method, where u and y represent the measured process input and output signals (from
any open-loop or closed-loop experiment), GCL

−1 is the inverse of the desired closed-loop
transfer function, and r* and e* are the fictitious reference and control error, respectively.
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The controller parameters (GC) can be calculated by regression from the following expression:

U = GC(R∗ −Y), (1)

where the fictitious reference r* is calculated from the process output measurement filtered
by the inverse of the desired closed-loop transfer function:

R∗ = G−1
CLY . (2)

The capital letters U, R* and Y denote the Laplace transforms of the signals u, r* and
y, respectively. The bias in the estimation of the controller parameters can be reduced
by additional filtering of the input and output signals of the process with the following
filters [7]:

YF(s) = F(s)Y(s)
Y′F(s) = F′(s)Y(s)
UF(s) = F(s)U(s),

(3)

where
F(s) = G∗CL(s)

(
1− G∗CL(s)

)
WLP(s)

F′(s) =
(
1− G∗CL(s)

)
WLP(s)

WLP(s) =
ωC

ωC+s .

(4)

Please note that ωC is a cutoff frequency of the low-pass filter WLP(s) and G*
CL is the

desired closed-loop transfer function without time delay. Therefore, the final equation used
by the regression method to calculate the controller parameters is as follows:

UF = GC
(
Y′F −YF

)
. (5)

As mentioned in the introduction, the VRFT method requires an explicit definition of
the desired closed-loop transfer function, which is not always an easy task. Therefore, the
solution proposed here is to avoid selecting the closed-loop transfer function by implicitly
using the measured process open-loop response, instead.

3. Equalization Method

The equalization method is based on two-degrees-of-freedom (2-DOF) controller
structure [31–33] as shown in Figure 2.
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Figure 2. 2-DOF controller structure used in equalization method.

The controller output (U) signal can be calculated as follows (assuming that the
disturbance signal is d = 0):

U = RGCR(s)−YGCY(s), (6)

where R and Y are the Laplace transforms of the reference signal and the process output,
respectively. The 2-DOF structure is defined by the feedforward (GCR) and feedback (GCY)
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transfer function blocks. Assume that the process is defined by the following unknown
transfer function:

GP(s) =
KPR

(
1 + b1s + b2s2 + · · ·

)
1 + a1s + a2s2 + · · · e−sTdelay , (7)

where KPR is the steady-state process gain, Tdelay is the time delay, and a1, a2, . . . , b1, b2,
. . . are the dynamic process parameters. The parameters of the 2-DOF controller can be
calculated from expression (6) when the reference signal R is calculated from the process
output signal and the desired closed-loop transfer function:

R = G−1
CLY . (8)

However, as mentioned above, selecting the desired closed-loop transfer function
is not always a simple task. To skip the calculation of the desired closed-loop transfer
function and simplify the derivation of the controller parameters, one can choose the
desired closed-loop transfer function similar to the process open-loop transfer function:

GCL =
GP

KPR
. (9)

Please note that the process transfer function is divided by the steady-state process
gain KPR, since the steady-state closed-loop gain must equal one. In this case, the reference
signal (8) becomes

R = KPRG−1
P Y = KPRU . (10)

Now, the calculation of the controller parameters is simplified significantly, since
expression (6), considering expression (10), becomes:

U ∼= KPRUGCR(s)−YGCY(s). (11)

Therefore, if the steady-state process gain is known, the controller parameters can be
calculated directly by regression from the measured input and output signals of the process.
Figure 3 shows typical process input and output signals during the steady-state change.
The steady-state process gain can be easily calculated as follows:

KPR =
∆y
∆u

. (12)
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Figure 3. Typical process input (u) and output (y) signals during the open-loop or closed-loop
steady-state change in the process, where r = KPR·u.
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The calculation of the controller parameters depends on the controller structure. When
choosing the following 2-DOF controller:

GCR = KP + KI
s

GCY = KP + KI
s + KDs

1+sTF
,

(13)

where KP, KI, KD and TF are the proportional, integral, and derivative gains of the controller
and the filter time constant of the controller, respectively. The chosen 2-DOF controller
structure is one of the most common structures in process control. Considering (13), the
expression (11) becomes:

KI IF(s) + KPEF(s) + KDYF(s) ∼= U, where
EF(s) = KPRU −Y, IF(s) =

KPRU−Y
s , YF(s) = − sY

1+sTF

(14)

The choice of the controller filter time constant TF depends on the desired high-
frequency gain of the controller, which corresponds to KD/TF. Similar to the VRFT method,
the process input and output signals can be additionally filtered (4) to reduce the bias in
noisy signals, as shown in Section 4.

The controller gains (KI, KP and KD) can be calculated using a regression or optimiza-
tion method. For process input and output signals, represented by n discrete measurements,
the regression matrix Ψ is as follows:

Ψ =


iF(1) eF(1) yF(1)
iF(2) eF(2) yF(2)

...
...

...
iF(n) eF(n) yF(n)

 , (15)

where iF, eF, and yF are time equivalents of the Laplace signals IF(s), EF(s) and YF(s),
respectively, which can be derived by filtering process signals as shown in Figure 4.
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Figure 4. Filtering process input (u) and output (y) signals to obtain the regression signals eF, iF and
yF, where r = KPR u.

The controller parameters are then calculated using the least-squares regression method:KI
KP
KD

 =
[
ΨTΨ

]−1
ΨTu , (16)

where u is the vector of the process input measurements:

u =


u(1)
u(2)

...
u(n)

 . (17)
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In practice, however, expression (14) is not perfectly satisfied. The largest differences
between the left and right sides of the above expression usually occur in the first moments
after the process input (u) changes. These differences are unavoidable, for example, in
delayed processes where the left side of the expression increases steadily (due to IF(s))
even though the process input signal is constant during the time delay. To alleviate the
mentioned problems, expression (14) should be considered only from the time when the
process output (y) starts to change (e.g., after reaching 10% of the total steady-state change),
as shown in Figure 5.
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Therefore, the weighted least-squares regression method should be used instead:KI
KP
KD

 =
[
ΨTWΨ

]−1
ΨTWu , (18)

where W is a square diagonal matrix whose diagonal elements are zero for samples 1 . . .
k − 1 (see Figure 5), where the change in process output is less than 10% of the total change
in steady state, and one for the remaining diagonal elements:

W =



w1 0
0 w2

· · · 0
· · · 0

· · · 0
· · · 0

... 0
0 0

. . . 0
0 wk

· · ·
...

0 0
...

...
0 0

· · · 0
· · · 0

. . .
...

· · · wn


, (19)

where w1 . . . wk−1 = 0 and wk . . . wn = 1.
As mentioned in the previous section, all signals used in regression methods should be

additionally filtered (4) if the process measurement noise is present. However, the problem
with this is that the additional filter (4) includes the desired closed-loop transfer function
GCL. The advantage of the proposed tuning method is that it does not require the definition
of the desired closed-loop transfer function. Fortunately, for the purposes of signal filtering,
the desired closed-loop transfer function need not be exact. In fact, it is sufficient to estimate
the desired closed-loop dynamics by the first-order transfer function with steady-state gain
1 without time delay:

G∗CL(s) =
1

1 + TCLs
, (20)
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where the desired closed-loop time constant TCL is equal to the process time constant TOL.
The latter can be estimated as the sum of the process time constants without pure time
delay, which, according to expression (7), is equivalent to:

TCL = TOL = a1 − b1 . (21)

In practice, the sum of the process time constants and the time delay corresponds
to the first process moment or the average residence time tar [34], which can be easily
calculated or estimated from the process step response as shown in Figure 6.
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Figure 6. The average residence time tar can be determined from the process open-loop response by
means of integrating the yellow area or by estimating the position of the vertical line tar so that the
shaded areas are equal.

The desired closed-loop time constant is thus:

TCL ≈ TOL = t∗ar = tar − tdelay . (22)

Once the closed-loop time constant is determined, the additional filter F(s) can be
calculated using expression (4). The only remaining parameter is the high-frequency filter,
whose cutoff frequency can be pragmatically set to the reciprocal of the controller filter
time constant:

ωC =
1

TF
. (23)

Thus, the additional signal filter is the following:

F(s) =
sTCL

(1 + sTCL)
2(1 + sTF)

. (24)

The controller parameters are then calculated using the following expression:KI
KP
KD

 =
[
ΨT

F WΨF

]−1
ΨT

F WuF , (25)

where the regression matrix ΨF contains additional filtered signals eF, iF, and yF, as shown
in Figure 7.
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Figure 7. Filtering of input (u) and output (y) signals to obtain additionally filtered regression signals
eF, iF and yF, where r = KPR u.

The signal vector uF contains the measured values of the filtered signal u:

uF = F(s)u (26)

Therefore, the signals eF, iF and yF in the regression matrix Ψ (15), including the
signal vector u should be additionally filtered with F(s) before calculating the controller
parameters by the regression method (25). This method will be referred to as Filtered WLS
(FWLS) method.

Remark 1. If the calculated derivative time constant TD = KD/KP is negative, the derivative gain
must be set to KD = 0. The last column (−yF) in the regression matrices Ψ (15) or ΨF (25) should
be deleted. Of course, the resulting controller vector in (18) and (25) reduces only to the integrating
(KI) and proportional (KP) gain.

Remark 2. When using the WLS and FLWS methods, all signals during process time delay,
including the time it takes for the process output to change by 10% (see Figure 5), are ignored in the
regression calculation. For highly delayed processes and/or higher-order processes with PID control,
this means that the process input signals are generally smaller than the open-loop input signals before
the process reaches 10% of the total steady-state change. Therefore, for highly delayed processes
or higher-order processes, slower closed-loop responses can be expected compared to open-loop
responses. This is an advantage, since such processes generally require slower closed-loop responses to
remain stable.

The entire procedure for calculating the controller parameters is as follows:

1. Measure the open-loop response of the process and obtain the process input (uOL) and
output (yOL) signals and subtract the initial steady-state values of the signals.

2. Estimate the process gain KPR from the steady-states values of the input and output
signals of the process.

3. Calculate the reference signal r from (10) or Figure 3 (can be calculated automatically).
4. If the measured signals have some process noise or the adaptive FWLS method is

needed, estimate the process time delay and the average residence time from the
process open-loop response (see Figure 6) and filter the signals with F(s) (24) as shown
in Figure 7.

5. Find the time when the process output has risen to 10% of the final steady-state value
(see Figure 5) and calculate the controller parameters from (18) or (25).

Please note that the calculation of the controller parameters can be automated using
Matlab/Octave scripts available online. These scripts are described in Section 6.

Example 1. Consider the following second-order delayed process:

GP(s) =
e−0.5s

(1 + s)2 . (27)
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Please note that the actual process transfer function is not known and only the input and
output measurements of the process are used to calculate the controller parameters. The process
open-loop response on the input step-change is shown in Figure 8 (blue solid lines).

The steady-state process gain KPR is then calculated from (12) and the signals iF, eF
and yF are then calculated according to Figure 4, where the filter time constant of the
controller is chosen to be TF = 0.1. The open-loop process output response reaches 10% of
the steady-state change at t = 2.3 s, so all diagonal elements of matrix W (19) are set to zero
prior to t = 2.3 s. The estimated time delay was tdelay = 0.5 and the average residence time
tar = 2.5, so the desired closed-loop time was TCL ≈ tar − tdelay = 2 s.

The calculated controller parameters, using the ordinary least-squares (LS) method (16),
the WLS method (18) and FWLS method (25) are given in Table 1.
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Table 1. The calculated PID controller parameters when using the LS, WLS and FWLS methods.

Method KP KI KD TF TCL

LS 0.850 0.401 0.497 0.1 0
WLS 0.762 0.400 0.325 0.1 0

FWLS 0.810 0.399 0.406 0.1 2

The closed-loop responses to a step-change in the reference signal (r) are shown in
Figure 8, where the dashed green lines correspond to the LS method, the dash-dotted red
lines to the WLS method and the solid cyan lines to the FWLS method. From this figure, it
can be seen that all three methods lead to a relatively close fitting between the open-loop
and the closed-loop responses. It should be noted that that, as expected, the LS method
leads to the largest overshoots in the process input signal, since the process contains a pure
time delay. Therefore, in the rest of the paper, the WLS and FWLS methods are used to
calculate the controller parameters.
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The presented method works well for noise-free processes. However, in practice, the
measurement noise may reduce the accuracy of the calculated controller parameters. The
noise sensitivity of the presented method is tested in Section 4.

4. Noise Sensitivity

Any tuning method is sensitive to process measurement noise. The influence of noise
is therefore important for the practical implementation of the method. With this in mind,
we decided to add a band-limited white noise with a power of 10−5 and a sampling time
of 0.01 s (the open-loop and closed-loop sampling time) to the process output using the
Simulink block “Band-limited white noise”. The same process as in Example 1 (27) was
used. The calculation of the controller parameters was repeated 100 times with different
values of the random generator. All 100 open-loop responses to the input step-change are
shown in Figure 9 (upper figure). As can be seen, the noise amplitude is about 0.1 (about
10% of the process steady-state change during the experiment). Therefore, the considered
samples by WLS and FWLS methods were the ones when the process output reached 20%
of the process steady-state change. The controller parameters are first calculated using
the WLS method for each noisy open-loop response as described in the previous section.
The histogram of the controller parameters for all 100 runs is shown in Figure 10. It is
obvious that the calculated controller gains (with the exception of KI) are far from the
values obtained with the undisturbed process signals (see red circles in the histograms).
The bias caused by the process measurement noise is particularly visible in the calculation
of the derivative gain KD, where all values were 0 (according to Remark 1, all originally
calculated KD were negative, so the KD parameter was fixed at 0 and the remaining two
controller parameters were recalculated).

Mathematics 2023, 11, x FOR PEER REVIEW 11 of 30 
 

 

4. Noise Sensitivity 

Any tuning method is sensitive to process measurement noise. The influence of noise 

is therefore important for the practical implementation of the method. With this in mind, 

we decided to add a band-limited white noise with a power of 10−5 and a sampling time 

of 0.01 s (the open-loop and closed-loop sampling time) to the process output using the 

Simulink block “Band-limited white noise”. The same process as in Example 1 (27) was 

used. The calculation of the controller parameters was repeated 100 times with different 

values of the random generator. All 100 open-loop responses to the input step-change are 

shown in Figure 9 (upper figure). As can be seen, the noise amplitude is about 0.1 (about 

10% of the process steady-state change during the experiment). Therefore, the considered 

samples by WLS and FWLS methods were the ones when the process output reached 20% 

of the process steady-state change. The controller parameters are first calculated using the 

WLS method for each noisy open-loop response as described in the previous section. The 

histogram of the controller parameters for all 100 runs is shown in Figure 10. It is obvious 

that the calculated controller gains (with the exception of KI) are far from the values ob-

tained with the undisturbed process signals (see red circles in the histograms). The bias 

caused by the process measurement noise is particularly visible in the calculation of the 

derivative gain KD, where all values were 0 (according to Remark 1, all originally calcu-

lated KD were negative, so the KD parameter was fixed at 0 and the remaining two control-

ler parameters were recalculated). 

The closed-loop process output responses using the calculated controller parameters, 

are shown in Figure 9 (bottom panel). Please note that no noise was added to the process 

output in the closed-loop configuration to more clearly show the effects of process noise. 

The dispersion of the closed-loop responses is relatively small, but all of the closed-loop 

responses exhibit some overshoot that was not present in the original response in the case 

without noise (see Figure 8). 

 

Figure 9. One hundred process open-loop responses with measurement noise (top figure) and 

closed-loop responses (bottom figure) using the WLS tuning method without additional noise (for 

clarity). 

Figure 9. One hundred process open-loop responses with measurement noise (top figure) and closed-
loop responses (bottom figure) using the WLS tuning method without additional noise (for clarity).

The closed-loop process output responses using the calculated controller parameters,
are shown in Figure 9 (bottom panel). Please note that no noise was added to the process
output in the closed-loop configuration to more clearly show the effects of process noise.
The dispersion of the closed-loop responses is relatively small, but all of the closed-loop
responses exhibit some overshoot that was not present in the original response in the case
without noise (see Figure 8).
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The controller parameters are then calculated using the FWLS method for each noisy
open-loop response. The histogram of the controller parameters for all 100 runs is shown
in Figure 11. The advantage of the additional signal filtering is more than obvious. The
obtained histograms of the controller parameters are now scattered around the values
obtained for the unperturbed process signals (indicated by red circles in the histograms).
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The closed-loop output responses of the process, using the controller parameters
calculated by the FWLS method are shown in Figure 12 (bottom panel). Again, note that
no noise was added to the process output in the closed-loop configuration to more clearly
show the effects of process noise. The scatter of the closed-loop responses is now even
lower than before, and all 100 closed-loop responses are very similar to the closed-loop
response obtained using the FWLS method in Figure 8 with no visible overshoots.
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loop responses (bottom figure) using FWLS tuning method without additional noise (for clarity).

Due to the significantly improved closed-loop responses in the presence of process
measurement noise, the FWLS method is used in the following derivations.

5. Adaptive Equalization Method

In the previous sections, the FWLS method was derived and tested, based on equating
the open-loop and closed-loop responses of the process. The remaining question is whether
the proposed equalization method is limited only to the closed-loop transfer functions that
are equal to the scaled open-loop process transfer functions. Indeed, in practice, a faster
or even slower closed-loop behavior is often required. On the other hand, the advantage
of the proposed method is that it does not require an explicit definition of the closed-loop
transfer function, since it is implicitly defined by the existing open-loop response. Thus, the
question arises whether it is possible to achieve faster or slower control response without
explicitly defining the desired control transfer function? The answer to this question is
positive, but with some limitations, as will be explained below.

One possible solution to change the closed-loop speed is to change the measured
signals u and y while keeping the already calculated reference signal r (10). Figure 13
illustrates the basic idea. Specifically, the input and output signals of the process can be
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accelerated (or slowed down) by applying appropriate filters. If the signals u* and y* are
used instead of the measured signals u and y, the closed-loop response of the process input
should be similar to that of u*. Therefore, the closed-loop response of the process output
should be similar to y*. Therefore, using a suitable filter, the closed-loop response can
become faster or slower than the open-loop response when the u and y signals are replaced
by y* and u*.
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Figure 13. Measured process input (u) and output (y) signals with artificially calculated reference
signal (r) (dashed line) represented by r = KPR·u and filtered process input (u*) and output (y*) signals
(solid green lines) during the open-loop experiment.

What kind of filter should be used? The simplest solution would be to filter the process
input and output signals with the following filter:

GF(s) =
GGL(s)
GP(s)

(28)

However, in this case, the process transfer function GP should be known and the
desired closed-loop transfer function GCL should be defined as in the VRFT method. There-
fore, all the advantages of the proposed equalization method would be lost. On the other
hand, the process transfer function could be approximated by the first-order process with
estimated time delay and average residence time tar (sum of process time constants), while
the desired closed-loop transfer function GCL could be defined similarly to the process
transfer function but with faster or slower time constant:

GP(s) ≈ e−sTdelay

1+t∗ars

GCL(s) ≈ e−sTdelay

1+ t∗ar
kS

s
,

(29)

where kS stands for speed factor (kS > 1 means that the closed-loop response is faster than
the open-loop response and vice versa) and t*

ar is given in (22). In this case, expression (28)
simplifies to:

GF(s) =
1 + t∗ars

1 + t∗ar
kS

s
. (30)
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The signals r, u* and y* can then be easily calculated as follows:

r = KPRu
u∗ = GF(s)u
y∗ = GF(s)y

(31)

corresponding to the desired speed factor kS. However, if the desired closed-loop response
is faster than the open-loop response (kS > 1), the high-frequency measurement noise in y
will be amplified by an additional factor kS when y* is calculated. This can be avoided by
filtering all three signals in (31) by the additional inverse filter GF

−1(s) = GF1(s):

r = GF1(s)KPRu
u∗ = u
y∗ = y

GF1(s) =
1+ t∗ar

kS
s

1+t∗ars

(32)

Therefore, only the reference signal (KPR·u) must be additionally filtered with GF1(s),
and the desired closed-loop speed can be modified according to the speed factor kS. The
new signal r is shown in Figure 14. The controller parameters are then calculated by first
filtering all three signals in (32) by (24), where the desired closed-loop time constant is:

TCL =
t∗ar
kS

(33)

and then apply the regression formula (25).
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Due to the approximated values for the average residence time and time delay, the
complexity of the actual process, and the fixed PID controller structure, the process input
closed-loop signal u*

CL:

u∗CL = ΨF

KI
KP
KD

 (34)

generally differ from the filtered actual process input signal uF (26). Increasing the closed-
loop speed factor kS generally increases the difference between the u*

CL and uF. Therefore,
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the speed factor kS should not be increased too much. The proposed method for automati-
cally determining the speed factor kS increases it until the difference between u*

CL (34) and
the filtered process input signal uF (26) becomes larger than a certain threshold:

σUR =
σ
(
u∗CL − uF

)
σ(uF)

≤ σURmax (35)

where σ denotes the standard deviation of the signal and σUR is a relative standard devia-
tion. The suggested value for σURmax is 0.1.

In addition to limiting the relative standard deviation of the signal difference, the
closed-loop process output should not have large overshoots for a step-like reference.
According to Figure 13, the maximum overshoot (oy) of the filtered process output signal
y* (31) should be limited:

oy =
max(y∗)

∆y
≤ oymax , (36)

where typical values are 0.02 ≤ oymax ≤ 0.1.
Therefore, an automatic procedure for determining the speed factor kS is to increase

it from the initial value kS = 1 until the relative standard deviation (35) exceeds the value
0.1 or the relative filtered overshoot y* (36) exceeds a certain value (e.g., 0.05). Of course,
the upper value of speed factor kS should also be limited to a maximum value (i.e., if the
closed-loop response should be up to 10-times faster than the open-loop response, the
maximum value of kS can be set to 10).

If the process already exceeds one of the set values at speed factor 1, the speed should
be reduced until both values, the deviation and the overshoot, are within the specified
limits (see flow chart in Figure 15). Again, the lowest value of the speed factor kS should be
set. In practice, the minimum value of kS should be set to 0.2. Please note that the limitation
of the factor kS is not explicitly shown in the flow chart (Figure 16).

The calculation of the controller parameters can be automated using Matlab/Octave
scripts, which are available online [35]. The link to the scripts opens the window shown
in Figure 16. The calculation of the controller parameters using the online scripts
proceeds as follows:

1. Select the appropriate Octave (MATLAB) script (FWLS_auto_01.m if you are calculating the
parameters from the process transfer function or FWLS_auto_measurements_01.m if you
are calculating the parameters directly from the measured process open-loop response).

2. Modify the process and the user-defined parameters.
3. Press the “Save” button, and
4. Press the “Run” button. The results will be displayed in the lower part of the right window.
5. If the script does not finish in time (display “!!! OUT OF TIME !!!” at the bottom of

the right window), click the “Run” button again and then click the “Add 15 s” link at
the bottom of the right window while the script is running. Click the “Add 15 s” link
several times if necessary.
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6. Examples and Experiments

The proposed FWLS method and the FWLS method with adaptive calculation of
controller parameters were tested on several, significantly different process models:

GP1(s) = 1
1+8s

GP2(s) = e−2s

(1+3s)2

GP3(s) = 1−2s
(1+3s)2

GP4(s) = e−2s

(1+s)6

GP5(s) = e−6s

(1+s)2

(37)

Thus, the studied process models cover a wide range of dynamics: first-order process,
second-order process with delay, non-minimum phase process, high-order process with
time delay and second-order process with high time delay.

The PID controller parameters were calculated from the processes open-loop responses
with a fixed filter time constant TF = 0.2, according to expressions (25) and Figure 16 or
directly using the Matlab/Octave script [35], as mentioned in the previous section.

The chosen maximum values of relative standard deviation (35) and overshoot (36) are
σURmax = 0.1 and oymax = 0.05, respectively. The obtained controller parameters are listed
in Table 2.

Table 2. PID controller parameters for considered models.

Process FWLS Adaptive FWLS

KI KP KD KI KP KD KS

GP1 0.125 1.00 0.03 1.23 9.85 0 9.85
GP2 0.124 0.779 1.26 0.179 1.119 1.77 1.77
GP3 0.125 0.734 1.02 0.166 0.918 1.49 1.33
GP4 0.12 0.583 0.89 0.113 0.532 0.808 0.9
GP5 0.0623 0.18 0.151 0.0887 0.286 0.239 0.39

Figures 17–21 show the closed-loop tracking and control responses. The step input
disturbance was added in the middle of the experiment. The response of the first-order
process GP1 (Figure 17) shows an ideal match between the open-loop and the closed-loop
tracking responses using the FWLS method. The adaptive method automatically increased
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the closed-loop response by a factor of KS = 9.85 since the maximum allowable speed factor
was 10.
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The response of the second-order process with delay GP2 (Figure 18) also shows an
almost ideal match between the open-loop and the closed-loop tracking response when
using the FWLS method. The adaptive FWLS method increased the closed-loop response
by a factor of KS = 1.61. A lower process output overshoot is observed, which is lower than
the prescribed limit (5%).

Similarly, the open-loop and the closed-loop responses of the phase non-minimum
process GP3 (Figure 19) are almost indistinguishable when the FWLS method is used. The
adaptive FWLS method slightly increases the closed-loop response by a factor of KS = 1.33.
Again, a smaller process output overshoot of less than 5% can be seen.

On the other hand, the closed-loop responses of the higher-order process GP4 (Figure 20)
is slower than the open-loop response when the FWLS method is used. This is consistent
with observations in Remark 2. Due to the larger difference (relative standard deviation)
between the process open-loop and the closed-loop signals, the adaptive FWLS method
slightly reduced the closed-loop speed by 10%.

The responses of the highly delayed second-order process GP5 are shown in Figure 21.
It can be seen that the closed-loop response with the FWLS method is much slower than
the process open-loop response. The adaptive FWLS method significantly improves the
closed-loop response without affecting the closed-loop stability.

In addition to the tests on the process models, the proposed tuning method was also
tested on a thermal laboratory process based on the Arduino platform The thermal process
was built by the first author of the paper to test SISO and MIMO thermal processes.

The image of the thermal process can be seen in Figure 22.
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The electronic scheme of the thermal process, connected to Arduino UNO development
board, is shown in Figure 23.
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Figure 23. The electronic scheme of the laboratory thermal process connected to Arduino UNO
development board.

The thermal process consists of two NPN transistors BD 441 connected to a 5 V power
supply from a separate USB charger. The actual current through the transistors, and thus
the power consumed at the transistors, is controlled by the PWM (pulse width modulation)
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outputs on the Arduino board. The PWM signals are also filtered by the first-order analog
filters on the thermal process board.

The thermal process communicates with the computer via the USB port and the GNU
Octave program. Communication between Arduino and GNU Octave is established by the
open-source library GNU “Arduino” (available at GNU Octave). The “Arduino” library
can also upload the required program (firmware) to the Arduino board.

The process input is the heating power of the power transistors (between 0 and 100% with
8-bit resolution) and the process outputs are the temperatures (in degrees Celsius) measured
by two temperature sensors with a resolution of about 0.1 degrees Celsius. In our case, the
process output was the first temperature sensor output. It was additionally filtered with a
first-order filter with a time constant of 20 s to make it more difficult for control.

First, the process open-loop step response was measured. The process input (heating
power) was changed from 0 to 80%. The selected sampling time was TS = 0.5 s. Figure 24
shows the open-loop response.

The response of the process is smooth because of the additional filtering. The open-loop
response is then used to calculate the controller parameters. Three sets of PID controller
parameters were calculated: (a) applying the FWLS method with kS = 1, (b) applying the
adaptive FWLS method with σURmax = 0.1 and oymax = 0.05, and (c) applying the adaptive
FWLS method with σURmax = 0.15 and oymax = 0.10. In the following text, cases (b) and (c)
will be referred to as “adaptive FWLS 1” and “adaptive FWLS 2”, respectively. In all cases,
the derivative filter TF = 2 s was chosen.

The calculated PID controller parameters for all 3 cases are listed in Table 3. It should be
noted that the automatic calculation of the PID controller parameters is also available online
as a Matlab/Octave script [35] by running the script “FWLS_auto_measurements_01.m”.
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Table 3. The closed-loop parameters for FWLS, adaptive FWLS 1 and adaptive FWLS 2 methods.

Method KS KP KI KD TF

FWLS 1 1.91 0.0115 0 2
Adaptive FWLS 1 3.45 5.11 0.0477 0 2
Adaptive FWLS 2 5.56 7.02 0.085 19.5 2

The closed-loop responses for all three cases, to the reference change from 35 ◦C to
45 ◦C at t = 1000 s and to the −10% process input disturbance at t = 2000 s, are shown in
Figure 25. The sampling time was TS = 0.5 s. It can be seen that the closed-loop response of
the original FWLS method (blue solid line) is virtually identical to the amplitude-scaled
process open-loop response (cyan dash-dotted line). The adaptive algorithms provide
significantly faster responses. The adaptive FWLS 1 response is slower than the adaptive
FWLS 2 response. On the other hand, the adaptive FWLS 1 method exhibits a smaller
overshoot (less than 5%) for a reference change, all according to the selected maximum
overshoot. The adaptive FWLS 2 method has the best disturbance-rejection performance.
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7. Comparison to Other Methods

The FWLS method is based entirely on measuring the input and output signals of the
open-loop process, with the desired closed-loop response implicitly defined by the open-
loop dynamics. As mentioned earlier, only the adaptive FLWS method and/or the presence
of measurement noise requires a rough estimate of the average open-loop residence time,
which can be easily obtained from the process open-loop response. To our knowledge,
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there are no other tuning methods based on a similar tuning procedure. The closest tuning
method seems to be the Balanced method [22], which leads to closed-loop dynamics similar
to the open-loop dynamics. However, as mentioned earlier, the Balanced method requires
iterative closed-loop experiments to compute the PI controller parameters.

Nevertheless, we decided to compare the proposed FWLS method and, for illustrative
purposes, the adaptive FWLS method with the Balanced method. The compared processes
were selected from the processes tested with the Balanced method [22]:

GP6(s) = e−s

(1+s)2

GP7(s) = 1
(1+s)4

GP8(s) = 1−s
(1+s)3

(38)

The parameters of the PID controller were calculated from the processes open-loop
responses with a fixed filter time constant TF = 0.1, according to the expressions (25) and
Figure 16 or directly using the Matlab/Octave script [35]. The chosen maximum values
of relative standard deviation (35) and overshoot (36) are σURmax = 0.1 and oymax = 0.05,
respectively. The obtained controller parameters are listed in Table 4. Please note that in
the Balanced method, PI controllers are used, so the derivative gain KD = 0.

Table 4. PID controller parameters for considered models.

Process FWLS Adaptive FWLS Balanced

KI KP KD KI KP KD KS KI KP

GP6 0.327 0.707 0.401 0.384 0.828 0.461 1.33 0.301 0.53
GP7 0.249 0.793 0.752 0.300 0.92 0.925 1.21 0.231 0.6
GP8 0.248 0.663 0.486 0.298 0.754 0.631 1.21 0.23 0.53

The closed-loop responses for all three methods are shown in Figures 26–28. It can be
seen that the Balanced method results in similar closed-loop responses to the open-loop
ones for all three processes considered. However, it can also be seen that the FWLS method
leads to much better fitting between the open-loop and closed-loop responses. As expected,
the process input responses are also closer to the process open-loop step responses when
using the FWLS. In all three cases, the adaptive FWLS method results in a slight increase in
closed-loop speed and a slight overshoot.

The values of the integral of the squared error (ISE) were calculated to quantify the
similarity between the open-loop (yOL) and closed-loop (yCL) responses during the reference
change (ISEy) and to measure the tracking and disturbance-rejection performance (ISEe):

ISEy =
∞∫
0
(yCL(t)− yOL(t))dt

ISEe =
∞∫
0
(r(t)− yCL(t))dt

(39)

ISEy values were, of course, calculated only for the FWLS and Balanced method, since
they are based on equating the open-loop and closed-loop responses. ISEe values were
calculated separately for tracking (ISEer) and disturbance rejection (ISEed). All ISE values
are listed in Table 5.
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Table 5. ISE values for tracking and disturbance rejection for considered models.

Process FWLS Adaptive FWLS Balanced

ISEy ISEer ISEed ISEy ISEer ISEed ISEy ISEer ISEed

GP6 0.0029 2.317 0.316 - 2.145 0.262 0.0325 2.529 0.410
GP7 0.0006 2.957 0.366 - 2.724 0.292 0.154 3.220 0.450
GP8 0.0036 3.340 0.492 - 3.184 0.416 0.221 3.617 0.598

As shown in Table 5, the FWLS responses, according to the ISEy values, fit the open-
loop responses better than the Balanced method. As can already be seen from Figures 26–28,
the adaptive FWLS method is superior in tracking and disturbance rejection. This is to
be expected, since the adaptive FWLS method can achieve faster closed-loop responses.
Although the FWLS and Balanced method are based on the same tuning criteria, the FWLS
method has better tracking and disturbance-rejection ISE values.

8. Conclusions

The main purpose of the proposed method was to develop a tuning method that
does not require any information from the user (about the process or the desired closed-
loop response), that is based on a simple experiment on the process where the process
input signal is not limited to step-like signals during the steady-state change, that is
computationally extremely simple, and that does not cause excessive kicks to the process
input when the reference signal is changed.

By cleverly manipulating some calculations, such as implicitly defining the closed-loop
response from the steady-state response, neglecting the initial process response (during the
time delay), and using additional filtering of the measured signals, we were able to solve
several problems associated with many other existing tuning methods.

The proposed method is based on a regression, similar to the VRFT method, where an
additional signal weighting is introduced to improve the closed-loop responses, especially
for highly delayed processes or higher-order processes.
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The closed-loop response could be additionally adjusted using the proposed adaptive
algorithm, which estimates the process input signal fitting and the process output overshoot.
The only parameters required from the user, besides the measured process open-loop time
responses, is a rough estimate of the time delay and the average residence time, which
can be easily estimated from the process open-loop response even by an untrained user.
The mentioned parameters are not required if the adaptive algorithm is not used and
the process noise is relatively low. The tuning results for noisy measurements showed a
relatively small influence of the noise.

The proposed FWLS and adaptive FWLS algorithms were tested on six different
process models, including lower- and higher-order processes, processes without minimum
phase, and highly delayed processes, as well as on a temperature laboratory plant. The
closed-loop responses obtained were smooth and stable. The method was also compared
with the Balanced method and the proposed method showed better agreement between
the open-loop and closed-loop responses.

We believe that the proposed method can be successfully applied in industrial practice
due to its advantageous properties.

The Matlab/Octave scripts for calculating the PID controller parameters are available
online, allowing users to immediately calculate the controller parameters either from the
steady-state measurements of the process or from the process transfer function (if available).
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