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Abstract: Advances in information technology have led to the proliferation of data in the fields
of finance, energy, and economics. Unforeseen elements can cause data to be contaminated by
noise and outliers. In this study, a robust online support vector regression algorithm based on a
non-convex asymmetric loss function is developed to handle the regression of noisy dynamic data
streams. Inspired by pinball loss, a truncated ε-insensitive pinball loss (TIPL) is proposed to solve
the problems caused by heavy noise and outliers. A TIPL-based online support vector regression
algorithm (TIPOSVR) is constructed under the regularization framework, and the online gradient
descent algorithm is implemented to execute it. Experiments are performed using synthetic datasets,
UCI datasets, and real datasets. The results of the investigation show that in the majority of cases,
the proposed algorithm is comparable, or even superior, to the comparison algorithms in terms of
accuracy and robustness on datasets with different types of noise.
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1. Introduction

Machine learning-based techniques attempt to investigate the patterns in the data and
the reasoning behind it. Researchers in the field of machine learning field have shown
significant interest in support vector regression (SVR) algorithms owing to the strong
theoretical basis and excellent generalization ability. SVR has proven to be a reliable
method for regression and has been widely used in several applications, such as wind
speed forecasting [1,2], solar radiation forecasting [3], financial time series forecasting [4,5],
travel time forecasting [6], among others.

Classic SVR is a powerful regression method. It works by minimizing the empirical risk
loss and the structural risk, which are defined by the loss function and the regularization
term, respectively. Given a training dataset T = {(Xi, yi) | Xi ∈ Rm, yi ∈ R, i = 1, 2, . . . , N},
SVR aims to find a linear function f (X) = WTX + b, W ∈ Rm, b ∈ R or a nonlinear
function f (X) = WTφ(X) + b in feature space, to reveal the patterns and trends in the data.
The minimal problem is described as follows:

min
1
2
‖ f ‖2

H + C
N

∑
i=1

L( f (Xi)− yi) (1)

C is the regularization parameter used to adjust the model complexity and training error.
The loss function L(·) measures the difference between the predicted and observed values,
which is used to define empirical risk loss. The regularization term makes f (x) as flat as
possible to avoid overfitting. The regression estimator is obtained by solving a convex
optimization problem where all the local minima are also global.

The loss function is of significant importance for SVR. It should accurately reflect
the noise characteristics present in the training data. In recent years, researchers have
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developed various loss functions. The most commonly used loss functions are the squared
loss, linear loss, Huber loss, and ε-insensitive loss [7]. Squared loss [8,9] is a metric that
assesses the discrepancy between the predicted and actual values by calculating the mean
squared error. It is a smooth function which can be solved quickly and accurately by
convex optimization methods. However, it is sensitive to large errors, making it less robust
than other techniques. Linear loss [10,11] is a general loss function applicable to several
problems. It is less sensitive to large errors than the squared loss because it is designed
by absolute errors. Huber loss [12] is a combination of linear and squared losses and is
designed to simultaneously provide robustness and smoothness by using squared loss for
the smaller errors and linear loss for the larger errors. The combination of the two loss
functions allows for a more sophisticated understanding of the data. The ε-insensitive
loss [10,11] augments the linear loss by introducing an insensitive band to the data, which
promotes sparsity.

In the current era of data abundance, accurately analyzing dynamic data with noise
and outliers using SVR is a challenging but essential task.

One of the problems is that the loss function is not sufficiently resilient to general
noise in the data and can be adversely affected by outliers. Data collection processes are
influenced by various external factors, resulting in noise and outliers in the data. Across
numerous fields, including finance, economy, and energy, data are regularly accompa-
nied by a considerable amount of asymmetric noise. Further, noise has several forms and
is difficult to identify and remove. For example, asymmetric heavy-tailed noise that is
predominantly positive is typically found in automobile insurance claims [13]. The energy-
load data contain non-Gaussian noise with a heavy-tailed distribution [14]. The popular
loss functions mentioned above are usually symmetric, which means that the loss incurred
is the same degree regardless of the direction of the prediction error. They have proven
themselves in situations where the noise is symmetric, such as the Gaussian noise and Uni-
form noise. However, they are not as robust as dealing with asymmetric noise, including
heavy-tailed noise and outliers. This was demonstrated in a previous study [7,15,16]. In ad-
dition, comparing the predicted value to the target value, there may be different impacts
of over-estimation and under-estimation [7,14]. Take the energy market as an example,
hedging contracts between retailers and suppliers are commonly used to stabilize the cost
of goods in short term, thus reducing economic risk. Over-prediction and under-prediction
both result in economic losses, albeit of different magnitudes. Over-forecasting may incur
the cost of disposing of unused orders, while under-forecasting may cause retailers to
pay a higher price for energy loads than the contract price. Developing a more accurate
regression model requires consideration of the various penalties for over-estimation and
under-estimation.

To handle the asymmetric noise while considering the distinct effects of positive and
negative errors, two asymmetric loss functions have been proposed: quantile loss and
pinball loss [15,17,18]. These loss functions differ in terms of different penalty weights for
positive and negative errors, thus making them more robust to asymmetric noise.

Moreover, outliers have a severe impact on the accuracy of the model. The presence of
outliers skews the data and causes large deviations from the expected results. It is crucial
to consider the presence of outlier when constructing and evaluating a model. Given the
under-forecasting in dealing with general noise and outliers, there is a need for designing
a broader range of loss functions to address these issues. Researchers have developed
non-convex loss functions to handle outliers, such as correlated entropy loss [16,19] and
truncated loss functions [8,18,20,21]. These two strategies limit the outlier loss to a specific
range, thereby reducing the impact of outliers on the regression function. The asymmetric
loss function and the truncated loss functions have proven to be viable strategies for im-
proving the robustness of regression models.

Another problem is that the batch learning framework used by a typical SVR is unsuit-
able for the data flow environment. Traditional SVRs involve batch learning, which can be
challenging when dealing with large datasets owing to the increased storage requirements
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and computational complexity. Researchers have proposed various solutions to address
this problem, such as the convex optimization technique outlined in [9,15] and online
learning algorithms based on the stochastic approximation theory [22–24]. The online SVR
presented in [9] and the Canal loss-based online regression algorithm described in [22] are
used as examples. Therefore, despite the efficiency of the proposed online learning algo-
rithms for handling regression problems in data streams, other solutions may be required
when noise and outliers are present.

The current study aims to present an online learning regression algorithm based on
truncated asymmetric loss functions, which can effectively address the regression problem
in noisy data streams. We propose a novel online SVR, termed TIPOSVR, established within
the regularization framework of SVR and solved by the online gradient descent (OGD)
algorithm. TIPOSVR uses an innovative loss function. The main contributions of this study
are as follows:

(1) TIPL function proposed is a bounded, non-convex and asymmetric loss function.
Asymmetricity helps in dealing with problems arising due to the presence of asym-
metric noise, and truncation is used to reduce the effect of outliers. Additionally,
the inclusion of an insensitive band increases the sparsity of the model. It is possible
to effectively deal with the general noise and reduce the sensitivity to outliers.

(2) An online SVR (TIPOSVR), based on the TIPL function, is developed to address the
issue of the data dynamics problem. The algorithm is solved using the OGD approach.

(3) Computational experiments are performed on the synthetic, benchmark, and real
datasets. Results of the experiments indicate that TIPOSVR proposed in this study is
more accurate than the comparison algorithms in most scenarios. It has been shown
that the TIPOSVR has a high degree of robustness and generalizability.

The remainder of this paper is organized as follows. Section 2 of this paper provides a
literature review, while Section 3 presents the regularization framework and the robust loss
function of SVR. Section 4 proposes an online SVR based on the TIPL function. To validate
the performance of the proposed algorithm, Section 5 presents numerical experiments
on the synthetic, UCI benchmark, and real datasets which compare TIPOSVR with some
classical and advanced SVRs. Finally, Section 6 summarizes the main findings, limitations,
and prospects for future work of this paper.

2. Literature Review

SVR has been widely used and implemented in various fields as a powerful machine
learning algorithm. This section provides an overview of the recent advances in robust loss
functions and online learning algorithms.

2.1. Robust Loss Function

Noise is generally classified into two categories: characteristic noise and outliers. It
has been reported [21,25] that the ε-insensitive loss function is more effective for dealing
with uniform noise datasets, whereas the squared loss function is more effective in deal-
ing with Gaussian noise datasets. Aside from Gaussian and Uniform noise, asymmetric
noise, especially heavy-tail noise, also significantly affects the accuracy of a regression
model. Studies have shown that an asymmetric loss function can be used to solve the
asymmetric noise problem [15,17,18]. The quantile regression theory provides the basis for
deriving an asymmetric loss function [15]. Assigning different penalty weights to positive
and negative errors allows for a wider range of noise distributions. Quantile regression
has been increasingly used since the 1970s. Refs. [26,27] have adopted the quantile loss
function, incorporating an adjustment term νε and C(ντ(1− τ)ε), to adjust the asymmet-
ric insensitive region within the regularization framework, as expressed in optimization
problem Equation (1). The introduction of the parameter ν to control the width of the
asymmetric ε-insensitive area ensures that a certain percentage of the samples are situated
in this area and classified as support vectors. Consequently, an insensitive band that can
accommodate the necessary amount of samples is outputted to address the sampling issue,
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thereby facilitating the automated control of accuracy. The pinball loss is developed based
on quantile regression [15,18]. Extensive research on pinball loss has been conducted,
leading to the development and application of the sparse ε-insensitive pinball loss [16] and
the twin pinball SVR [28].

Several studies have been conducted to address the outlier problem, with a focus
on developing a non-convex loss function. The correlation entropy loss [16,19] is a loss
function derived from the correlation entropy theory based on the Gaussian or Laplacian
kernel. As the error moves away from zero in either direction, the loss value eventually
increases to a constant. Another type of non-convex loss function is horizontal truncated
loss. In this case, the loss value of the outlier is a constant. As described in [22], Canal
loss is a ε-insensitive loss with horizontal truncation. Ref. [29] construct a non-convex loss
function by subtracting two ε-insensitive loss functions, which yield a linear loss with
horizontal truncation. A non-convex least square loss function, proposed in [8], is based
on the horizontal truncation and squared loss. Experimental evidence suggests that these
loss functions successfully reduce the impact of outliers. The aforementioned methods
produce bounded loss functions that help reduce the sensitivity of the model to outliers by
maintaining the loss of outliers within a certain limit.

For a dataset containing noise and outliers, a combination of the asymmetric loss function
and truncated loss function is proposed to improve the robustness of the regression model,
because such a combination covers a more comprehensive range of noise distributions.

Most of the analysis uses batch learning SVR. Batch algorithms assume that data can
be collected and used via a single step process, ignoring any changes that may occur over
time. This is not the case in today’s era of the Big Data age, where the data are constantly
in flux [23,30,31]. Batch algorithms are faced with memory and computational problems
because of the considerable amount of data needed by these algorithms. Researchers have
now focused on investigating online learning algorithms to improve the performance of
regression strategies in the face of data flow.

2.2. Online Learning Algorithm

A regression algorithm should be designed to easily integrate new data into the
existing model to address the storage and computational issues caused by a large amount
of data. Online learning algorithms have been discussed and implemented in previous
studies [23,24,32,33]. A kernel-based online extreme learning machine is proposed by [34].
An online sparse SVR method is introduced in [35].

Nevertheless, these techniques are formulated in the context of convex optimization,
which is unsuitable for non-convex optimization problems. The online learning approach
is further improved according to the theory of pseudo-convex function optimization the-
ory [33]. Studies on online learning algorithms for non-convex loss functions have been
performed, including the online SVR [22] and a variable selection [36] based on Canal loss.

This study presents an online SVR that contains a bounded and non-convex loss
function. The algorithm is designed to be noise-resilient and sparse while being capable of
capturing the various data characteristics.

3. Related Work
3.1. Robust Loss Function

The loss function plays a key role in any regression model. The sensitivity of a model
to asymmetric noise is reduced using the pinball loss function, which is an asymmetric loss
function. Further, the truncated loss function reduces the effect of outliers.

3.1.1. Pinball Loss

The pinball loss is derived from quantile regression, which is more effective for dealing
with different forms of noise than linear loss. Pinball loss is defined as follows:

Lτ(u) =

{
u, u > 0
−τu, u ≤ 0

(2)
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where τ is an asymmetry parameter. By adjusting the value of τ, we can address the
problems of over and under-prediction to different degrees, making it suitable for datasets
with different noise distributions. Cross-validation is the preferred method to determine
the best value of τ. When τ = 1, the pinball loss is equivalent to a linear loss.

Incorporating a ε-insensitive band into the pinball loss enables the pinball loss to be
sparser and resilient to minor errors. ε-insensitive pinball loss is defined as:

Lε,τ(u) =


u− ε u > ε

0 −ε/τ ≤ u ≤ ε

−τu− ε u < −ε/τ

(3)

Pinball loss and ε-insensitive pinball loss present a potential solution to counteract
the asymmetric distribution of noise. These two convex loss functions are particularly
susceptible to severe noise and outliers owing to the lack of an upper bound.

3.1.2. Truncated ε-Insensitive Loss

The horizontal truncation technique provides an efficient approach to dealing with
outliers. The truncated ε-insensitive loss is a variant of the ε-insensitive loss that includes
a horizontal truncation, as shown in Figure 1. As suggested by [22], the truncated ε-
insensitive loss known as Canal loss promotes sparsity and robustness. It is defined
as follows:

LCanal (u) =


|u| − ε, ε < |u| < δ

0, |u| ≤ ε

δ− ε, |u| ≥ δ

(4)

Figure 1. Loss functions.

By limiting the loss of outliers to a predetermined value δ− ε, the impact of outliers
on the model is limited, thereby increasing the robustness of the model. The ε-insensitive
band and the area |u| ≥ δ contribute to the sparse solution of the algorithm.

3.2. Online SVR

Online learning algorithms integrate new arrival data into the historical model and
adjust the model through the parameter update strategy. When constructing a model,
the instantaneous risk is used instead of empirical risk. Online SVR is expressed as an
instantaneous risk minimization problem under the regularization framework. It is defined
as follows:

min Rinst[ f , Xi, yi] =
1
2
‖ f ‖2

H + C · L( f (Xi − yi)) (5)

The objective function consists of two components: a regularization term 1
2‖ f ‖2

H and
a loss function L(·) representing the instantaneous risk. The regularization parameter C is



Mathematics 2023, 11, 709 6 of 22

typically set by cross-validation. The model can be updated using the latest information
and previous support vector data patterns by incorporating the instantaneous risk. Conse-
quently, the memory requirements and the number of calculations are lower than those of
the batch algorithm.

4. Online SVR Based on Truncated ε-Insensitive Pinball Loss Function

In this section, we present a modified version of the pinball loss function, called TIPL,
which is a non-convex and asymmetric loss function. In addition, an online SVR for the
TIPL is designed and solved using the OGD.

4.1. Truncated ε-Insensitive Pinball Loss Function (TIPL) and Its Properties
4.1.1. Truncated ε-Insensitive Pinball Loss Function

Inspired by the pinball loss function, TIPL is developed, which is defined as follows:

LTIP(u) =



δ− ε, u ≥ δ

u− ε, ε ≤ u < δ

0, −ε/τ ≤ u < ε

−τu− ε, −δ/τ ≤ u < −ε/τ

δ− ε, u < −δ/τ

(6)

where τ is an asymmetric parameter, ε is an insensitive parameter, and δ is the truncation
parameter. TIPL is divided into five parts, as shown in Figure 1. If the error u is within
the specified tolerance range [−ε/τ, ε) as ε-insensitive area, the loss is zero. The loss is
u− ε for u ∈ [ε, δ), and −τu− ε for u ∈ [−δ/τ,−ε/τ). Except in the above cases, when
u ∈ (−∞,−δ/τ) or u ∈ [δ, ∞), the loss is fixed as a constant δ− ε.

TIPL is an improved version of the pinball loss that offers improved resistance to noise
and outliers, and produces a sparser representation of the solution. The ε-insensitive band
promotes sparsity and thus saves computing resources. Applying horizontal truncation
limits the impact of outliers on the loss value and increases the algorithm’s robustness to
large disturbances and outliers. The asymmetric feature makes the model more versatile
and applicable to a wide range of noise types.

TIPL is expressed in an equivalent form:

min{δ− ε, max{−τu− ε, u− ε, 0}} (7)

4.1.2. Properties of the TIPL Function

Property 1. LTIP(u) is a non-negative, asymmetric, and bounded function.

Proof. (1) For ∀u ∈ R, LTIP(u) ≥ 0. TIPL is non-negative.
(2) From Equation (6), LTIP(u) = −τu− ε if u ∈ [−δ/τ,−ε/τ). LTIP(u) = u− ε, if the

error u ∈ [ε, δ). Obviously, LTIP(u) 6= LTIP(−u) if τ 6= 1. LTIP(u) is not symmetrical.
(3) From Equation (6), LTIP(u) ≤ δ− ε, so LTIP(u) is bounded.

Property 2. LTIP(u) includes and extends both ε-insensitive loss function and truncated ε-
insensitive loss function.

Proof. From Equation (6),
When δ = ∞, LTIP(u) reduces to the ε-insensitive pinball loss function.
When τ = 1, LTIP(u) is equivalent to the truncated ε-insensitive loss function.
By inheriting the asymmetry of pinball losses and the immunity to outliers of truncated

ε-insensitive loss, TIPL achieves a higher level of resilience. TIPL differs from the ε-
insensitive pinball loss in that the former incorporates horizontal truncation, which limits
the loss of outliers to some extent and makes the model more robust. Unlike truncated ε-
insensitive loss, TIPL loss takes advantage of asymmetric functions. It assigns different
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penalty weights to positive and negative errors, enabling it to deal with general noise
distributions. δ and τ are determined using a data-driven process.

Property 3. The derivative of LTIP(u) is discontinuous.

Proof.

L′TIP(u) =


−τ, −δ/τ ≤ u < −ε/τ

0, otherwise
1, ε ≤ u < δ

(8)

As can be seen from Equation (8),
lim

u→−ε/τ−
L′TIP(u) = −τ 6= lim

u→−ε/τ+
L′TIPL (u) = 0,

lim
u→−δ/τ−

L′TIP (u) = 0 6= lim
u→−δ/τ+

L′TIP (u) = −τ,

lim
u→ε−

L′TIP (u) = 0 6= lim
u→ε+

L′TIP (u) = 1,

lim
u→δ−

L′TIP (u) = 1 6= lim
u→δ+

L′TIP (u) = 0.

The derivative of LTIP(u) is discontinuous, which precludes using a convex optimiza-
tion to solve it.

4.2. Online SVR Based on the Truncated ε-Insensitive Pinball Loss Function

Within the regularization framework of SVR, the online SVR model with TIPL is
derived by incorporating the loss function LTIP(·) into Equation (5), which is defined as:

min
1
2
|| f ||2H + C · LTIP( f k−1(Xk)− yk) (9)

We chose the OGD to solve the non-convex optimization problem presented by the
TIPL loss function. The online algorithm updates the regression function by incorporating
the initial decision function f k and the new sample (Xk, yk).

The learning process involves generating a series of decision functions( f 0, f 1, . . ., f N),
with the initial hypothesis f 0 and the updated regression function f k. When a new sample
(Xk, yk) arrives, the predicted value f k−1(Xk) is calculated by the historical decision function
f k−1, and the loss value LTIP( f k−1(Xk)− yk) is determined by combining f k−1(Xk) with
the actual label yk.

The update process of f k is defined as follows:

f k = f k−1 − γk · zk (10)

where γk > 0 is the learning rate; zk = C·∂ f LTIP( f k−1(Xk)− yk)| f= f k−1 + f k−1. ∂ f LTIP( f k−1

(Xk) − yk) is determined by the renewable nucleus, i.e., ∂ f LTIP( f k−1(Xk) − yk) = L′TIP
( f k−1(Xk)− yk)·κ(Xk, ·). With uk = ( f k−1(Xk)− yk), zk is expressed as follows:

zk =


C · k(Xk, ·) + f k−1 ε ≤ uk < δ

f k−1 otherwise
−C · τk(Xk, ·) + f k−1 −δ/τ ≤ uk < −ε/τ

(11)

Combining Equations (10) and (11), the iterations for the decision function is de-
fined as:

zk =


(1− γk) f k−1 − γkC · k(Xk, ·) ε ≤ uk < δ

(1− γk) f k−1 otherwise
(1− γk) f k−1 + γkC · τk(Xk, ·) −δ/τ ≤ uk < −ε/τ

(12)

The sample is not a support vector if uk ∈ [−ε/τ, ε) or (−∞, −δ/τ) ∪ [δ, +∞). The two
regions are ε-insensitive or outlier regions, in which the samples from these regions are not
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considered during the update process. The proposed SVR model not only preserves the
sparsity of ε-insensitive loss but also increases the sparsity by eliminating outliers.

Algorithm 1 details the proposed TIPOSVR algorithm.

Algorithm 1: Online support vector regression algorithm based on the truncated
ε-insensitive Pinball loss function.

Input: Initial assumption (decision function) f 0, hyperparameter γ > 0, λ > 0,
τ > 0, ε > 0, δ > 0, C > 0, k > 0. Data sample (Xi, yi), i = 1, 2, · · · · · · ,

Output: sequence of decision functions
(

f 0, f 1, · · · · · · , f N)
1: for k = 1, 2, · · · · · · do
2: Receive data Xk

3: Predict f k−1(Xk)

4: Receive true label yk

5: Compute uk = f k−1(Xk)− yk

6: if ε ≤ uk < δ

7: fk ← (1− γk) f k−1 − γkC · k(Xk, ·)
8: elif −δ/τ ≤ uk < −ε/τ

9: fk ← (1− γk) f k−1 + γkC · τ · k(Xk, ·)
10: else
11: fk ← (1− γk) f k−1

12: end if
13: end for

4.3. Convergence of TIPOSVR

In the research of the regularized instantaneous risk minimization with Canal loss,
Ref. [22] reveals that the regularized Canal loss satisfies an inequality analogous to that
of a convex function on R, apart from two small, unidentifiable intervals. Strong pseudo-
convexity is defined based on this representation, and the convergence performance of
NROR is analyzed using online convex optimization theory. It has been demonstrated that
if the prediction deviation sequence does not fall into the unrecognizable region of Canal
loss, the average instantaneous risk will converge to the minimum regularization risk at a
rate of o

(
T−1/2

)
.

Drawing inspiration from [22], this section illustrates the strong pseudo-convexity of
the regularization TIPL loss, and concludes TIPOSVR’s convergence rate of the average
instantaneous risk to the minimum regularization risk. Definitions and propositions of
strong pseudo-convexity in this section are taken from [22].

Definition 1 ([22] Strong pseudo-convexity). A function f : χ → R is said to be strongly
pseudo-convex (SPC) on χ1 ⊂ χ with respect to x ∈ χ, if

f (x)− f (x) ≤ K〈 f ′(x), x− x〉 (13)

holds for all x ∈ χ1, with f ′(x) a Clarke subgradient of f at x, K > 0 is a contant. If the Inequality
Equation (13) holds with respect to any x ∈ χ1, f is called SPC on χ1 ⊂ χ. The collection of SPC
functions on χ1 with K > 0 are denoted asWK(χ1).

When k = 1, a strongly pseudo-convex function is equivalent to a convex function.
In order to understand the strong pseudo-convexity of the regularized TIPL’s loss, which is
a piecewise convex function, further analysis is required. Propositions 1 and Propositions
2 [22] enable us to verify the strong pseudo-convexity of TIPL loss.
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Proposition 1 ([22]). Let f : R → R be a univariate continuous function. Assume that on
each interval of (−∞, a], (a, b), [b, ∞), f (x) is convex, and f ′−(a) < 0, f ′+(b) > 0, f ′+(a) 6=
0, f ′−(b) 6= 0. Then we have that the Inequality (13) holds for any fixed x ∈ R and x ∈ R with

K = max
{

1,
f ′−(a)
f ′+(a)

,
f ′+(a)
f ′−(a)

,
f ′−(b)
f ′+(b)

,
f ′+(b)
f ′−(b)

,
f ′−(a)
f ′+(b)

,
f ′+(b)
f ′−(a)

}
(14)

Proposition 2 ([22]). Let f : R → R be a univariate continuous function. Let a0 < a1 <
· · · < am be the real numbers, a0 = −∞ and am = +∞. On each interval of [ai, ai+1], f (x) is
convex, and i = 0, 1, ..., m− 1. Let S be the set of the minimum points of f on R. Suppose that
the optimal solution set S ∈ [aq, aq+1]. With q ∈ [0, · · · , m− 1]. Moreover, suppose that f (x) is
strictly decreasing when X ≤ In f S and strictly increasing when X ≥ SupS. Then, for any fixed
x ∈ [a0, am] and x ∈ [a0, am]. Inequality (13) holds with

K =max

{
1,

f ′+
(
aµ

)
f ′−(av+1)

,
f ′−(ai)

f ′+
(
aj
) | q ∈ [0, .., m− 1], µ ∈ [v + 1, .., q]

v ∈ [0, .., q− 1], i ∈ [q + 1, .., j], j ∈ [q + 1, .., m− 1]}
(15)

It is evident from Proposition 1 and Proposition 2 that the parameter K of strong
pseudo-convexity is associated with the directional derivatives at the end of the intervals.
The strong pseudo-convexity of regularized TIPL loss is obtained from Lemma 1 and
Lemma 2. The proof of lemmas and theorems can be found in the supplementary material.

Lemma 1. Denote Ω0 = [t0 − δ/τ − C|β|, t0 − δ/τ]∪ [t0 + δ, t0 + δ + C|β|], suppose 0 /∈ Ω0,
f (t) = 1

2 t2 + C · LTIP(β(t− t0)) is SPC with K = max
{

2, 1 + C·τ2X2

δ , 1 + C·τX2

δ·τ−ε

}
on R\Ω0.

Lemma 2. Let the sequence instance (Xt, yt) satisfy k(Xt, Xt) ≤ X2. For a fixed g ∈ H

ut =
(

f t − g
)
/
∥∥ f t − g

∥∥, t0 = yt − g(Xt) + ut(Xt) ·
〈
ut, g

〉
,

Ω0 =
[
−δ/τ −

(
ut(Xt)

)2,−δ/τ
]
∪
[
δ, δ +

(
ut(Xt)

)2
]

Assuming t0 /∈ Ω0, ξt = f t(Xt)− yt /∈ Ω0, we have

Rinst
[

f t, Xt, yt
]
− Rinst[g, Xt, yt] ≤ K ·

〈
∂ f Rinst

[
f t, Xt, yt

]∣∣∣
f= f t

, f t − g
〉
H

with

K = max
{

2, 1 +
C · τ2X2

δ
, 1 +

C · τX2

δ · τ − ε

}
. (16)

Lemma 2 demonstrates that, under the given assumptions, f and g of instantaneous
loss satisfy the inequality of strong pseudo-convexity. Subsequently, we can employ online
convex optimization technology to analyze the convergence performance of TIPOSVR.
The theorem provides the rate measure of TIPOSVR convergence to minimize risk.

Theorem 1. Set example sequence S = {(Xt, yt)}T
t=0 be k(Xt, Xt) ≤ X2 holds for all t.

(
f 0, · · · , f T)

represents a hypothetical sequence produced by TIPOSVR, Rinst[g, S] = 1
T ∑T

t=1 Rinst[g, Xt, yt],
and ĝ = arg ming∈H Rinst[g, S]. Fix C, ε > 0, 0 < η < C and set the learning rate ηt = η · t−1/2.
We assume that each hypothesis f t generated by TIPOSVR satisfies the hypothesis stated in Lemma
2, for t = 0, 1, 2 · · · T, and then we have the following expression

1
T

T

∑
t−1

Rinst
[

f t, Xt, yt
]
≤ Rinst[ĝ, S] + αT−1/2 + o

(
T−1/2

)
(17)
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Among them, α = 2KX2

η + 4KX2η, K = max
{

2, 1 + C·τ2X2

δ , 1 + C·τX2

δ·τ−ε

}
.

In Theorem 1, we get an o
(

T−1/2
)

regret boundary. For each t, f t−1(Xt)− yt /∈ Ω0,

Ω0 is the union of two intervals with length u2(Xt) ≤ X2. For f t exceeding this hypothesis
in practice, the prediction error f t(Xt)− yt may fall within the zone Ω0, where losses are
flat. In this case, sample (Xt, yt) is identified as a non support vector by TIPOSVR.

5. Numerical Experiments

We performed experiments on multiple datasets with noise and outliers to evaluate the
effectiveness of the TIPOSVR. The performance of our model is then compared with those
of other online SVR models. The datasets adopted consist of synthetic datasets, benchmark
datasets, and real datasets. The artificial dataset evaluates performance under specific
fluctuations, while the benchmark and real-world datasets allow for assessing performance
in realistic environments. In the experimental part, three comparison algorithms are used
in the experiment: ε-SVR (SVR with ε-insensitive loss), SVQR (SVR with ε-insensitive
pinball loss), and NROR (SVR with truncated ε-insensitive loss), as shown in Table 1. Batch
algorithms are not included in the comparison algorithms because they are inappropriate
for training with large datasets.

Table 1. Loss functions.

Loss Function Definition

Linear ε-Insensitive loss max{0, |u| − ε}
ε-Insensitive Pinball loss max{−τu− ε, u− ε, 0}

Canal loss min{δ− ε, max{0, |u| − ε}}

Experiments are carried out using Python 3.8 on a PC with an Intel i7-5500U CPU
2.40 GHz.

To ensure the accuracy and effectiveness of the assessment, we chose absolute mean
error (MAE), root mean square error (RMSE), and time to run (TIME) as the assessment
metrics. Details of the evaluation criteria are presented in Table 2.

Table 2. Table of evaluation criteria.

Evaluation Criteria Definition

MAE 1
n ∑n

t=1

∣∣∣ f̂ t−1(xt)− yt

∣∣∣
RMSE

√
1
n ∑n

t=1

(
f̂ t−1(xt)− yt

)2

MAE is the average of the absolute errors. RMSE is the square root of the mean square
error, which provides the standard deviation of the errors. MAE is not as sensitive to
outliers as RMSE, which puts more emphasis on large error values.

Samples from the dataset are randomly selected to form the training and test sets,
with outliers and noise added to the training set. A grid search method was used to identify
the optimal values of the parameters. The Gaussian kernel k(x, x′) = exp

(
−κ‖x− x′‖2)

was selected as the kernel in the work. TIPOSVR includes hyperparameters such as
the insensitivity coefficient ε, the asymmetry parameter τ, the truncation parameter δ,
the regularization parameter C, the learning rate γ and the kernel parameter κ. To negate
the effects of the kernel and regularization parameters, the most effective values of C and
κ were identified through ε-SVR, and the same values were then used for the other three
models. Grid search and five-fold cross-validation were performed on the training set for
each dataset to obtain the highest accuracy. C was taken from {0.1, 0.5} while κ choosen
from {0.5, 1, 2, 4, 8, 16}. The NROR algorithm was employed to determine the truncation
parameter δ from {0.4, 0.8, 1.6}. Cross-validation and grid search methods in TIPOSVR
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were used to select the asymmetric parameter τ from {0.4, 0.8, 1, 1.2, 1.4}. The insensitivity
parameter was set to 0.04 for simplicity.

5.1. Synthetic Datasets

The synthetic dataset is generated by a bivariate function defined as follows:

f (x1, x2) =
(5− x2)

2 + (6− x1)
2

(5− x1)
2 + (5− x2)

2 (18)

where x1 and x2 are input features of the sample with uniform distribution U[0, 10], x1 ∈
[0, 10], x2 ∈ [0, 10] and (x1, x2) 6= (5, 5). The output features are generated by Equation (18),
which is shown in Figure 2.

Figure 2. Function for synthetic dataset.

Different types of noises are added to the dataset to evaluate the effectiveness of the
proposed algorithm. Consider the label of the training sample ỹi to be of the form ỹi =
yi + ζi, where ζi is noise sampled according to the noise distribution. The synthetic dataset
is affected by five different types of noise: symmetric homoscedastic noise, symmetric
heteroscedastic noise, asymmetric homoscedastic noise, asymmetric and heteroscedastic,
and asymmetric heteroscedastic noise that varies with the independent variable. Samples
generated by the bivariate function are polluted with noise. Five noisy training datasets are
generated as follows:

Type I.
ỹ(1)i = yi + ζ

(1)
i (19)

ζ
(1)
i is the Gaussian noise with a normal distribution N(0, 2), whereas ỹ(1)i is the data

label that contains symmetric homoscedastic noise.
Type II.

ỹ(2)i = yi + ζ
(2)
i (20)

ζ
(2)
i is the Gaussian noise whose distribution obeys N(0, 2), where σ2 is a random num-

ber on the interval [0, 6], ỹ(2)i is the data label containing symmetric heteroscedastic noise.
Type III.

ỹ(3)i = yi + ζ
(3)
i (21)

ζ
(3)
i is the Chi square noise whose distribution obeys χ2(1). ỹ(3)i is the data label

containing asymmetric and homoscedastic noise.
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Type IV.
ỹ(4)i = yi + ζ

(4)
i (22)

ζ
(4)
i is the Chi square noise with a Chi square distribution χ2(n), where n is the

random number on the interval [1, 4]. ỹ(4)i is the data label containing asymmetric and
heteroscedastic noise.

Type V.
ỹ(5)i = yi + xi · ζ

(1)
i (23)

ỹ(5)i is the data label containing asymmetric and heteroscedastic noise where the noise

varies xi · ζ
(1)
i significantly with the independent variable x.

The probability density function of Gaussian distribution N(0, 2) is shown in Figure 3.
The mean is zero and the variance is 2. The skewness of Gaussian distribution N(0, 2) is 0.
This distribution is symmetric.

The probability density function of δχ2 − 4 is shown in Figure 4. The mean of δχ2 − 4
is zero and the variance of δχ2 − 4 is 8. The skewness of δχ2 − 4 is

√
2. This distribution

is asymmetric.

Figure 3. The probability density function of Gaussian distribution N(0, 2).

Figure 4. The probability density function of Chi square distribution δχ2 − 4.

The noise level is determined by the ratio of noisy data in the training set, which
are set to 0%, 5%, 20%, 40%, 50%, or 60%. The training set consists of 5000 samples with
noise, and the test set consists of 5000 samples without noise. The experimental results are
listed in Tables 3–7. The performance of TIPOSVR demonstrates its effectiveness in making
accurate predictions across diverse datasets.
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Table 3 lists the accuracy and learning time of algorithms for the symmetric homovari-
ance noise dataset. The most outstanding results of each indicator are in bold font. At a
low noise level, the performance of the various algorithms is comparable, yet TIPOSVR’s
running time is significantly longer than the other comparison algorithms. The benefits
of TIPOSVR are not particularly noticeable in datasets that are symmetric and have a
low level of noise. However, when the noise level is high, TIPOSVR outperforms the
comparison algorithm.

Table 3. Operation results of algorithms under the influence of noise type I for synthetic dataset.

Noise Rate Loss Function MAE RMSE TIME (S)

0

NROR 0.081 0.136 7.70
ε-SVR 0.073 0.116 8.41
SVQR 0.098 0.134 8.49

TIPOSVR 0.071 0.098 8.53

0.05

NROR 0.083 0.140 7.36
ε-SVR 0.084 0.145 7.69
SVQR 0.077 0.106 8.18

TIPOSVR 0.073 0.105 8.25

0.2

NROR 0.091 0.158 6.56
ε-SVR 0.115 0.171 8.60
SVQR 0.087 0.122 7.24

TIPOSVR 0.084 0.116 6.21

0.4

NROR 0.094 0.155 5.54
ε-SVR 0.150 0.208 8.97
SVQR 0.095 0.124 5.98

TIPOSVR 0.086 0.120 3.94

0.5

NROR 0.103 0.164 4.42
ε-SVR 0.159 0.209 8.92
SVQR 0.079 0.135 4.95

TIPOSVR 0.091 0.145 5.17

0.6

NROR 0.193 0.280 3.82
ε-SVR 0.195 0.247 8.92
SVQR 0.146 0.219 3.68

TIPOSVR 0.096 0.131 2.85

The accuracy and learning time of various algorithms for symmetric heteroscedastic
noise datasets are summarized in Table 4. The MAE and RMSE of the TIPOSVR are
lowest when the noise rate is 5%, 40%, 50%, and 60%, showing that the TIPOSVR has
achieved an excellent matching effect. TIPOSVR is trained with the minimum time when
the noise rates are 50% and 60%, indicating that it provides accurate predictions while
saving computational resources. TIPOSVR shows the best accuracy and is followed by
NROR and SVQR. ε-insensitive loss provides the worst accuracy for datasets corrupted
by heteroscedastic noise. The performance of asymmetric ε-insensitive loss and truncated
asymmetric ε-insensitive loss is superior to that of symmetric loss, indicating that the
ability to deal with heteroscedastic noise can be significantly enhanced by adjusting the
asymmetric parameters.
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Table 4. Operation results of algorithms under the influence of noise typeII for synthetic dataset.

Noise Rate Loss Function MAE RMSE TIME (S)

0

NROR 0.080 0.125 8.90
ε-SVR 0.060 0.099 7.88
SVQR 0.074 0.098 8.21

TIPOSVR 0.082 0.119 7.95

0.05

NROR 0.081 0.136 7.70
ε-SVR 0.093 0.139 8.04
SVQR 0.076 0.104 7.69

TIPOSVR 0.070 0.101 7.71

0.2

NROR 0.074 0.115 6.00
ε-SVR 0.089 0.120 8.16
SVQR 0.081 0.111 6.69

TIPOSVR 0.082 0.117 6.97

0.4

NROR 0.076 0.131 5.35
ε-SVR 0.136 0.177 8.38
SVQR 0.092 0.134 5.09

TIPOSVR 0.073 0.113 5.62

0.5

NROR 0.095 0.148 5.35
ε-SVR 0.132 0.172 8.38
SVQR 0.094 0.122 4.49

TIPOSVR 0.069 0.111 3.52

0.6

NROR 0.160 0.272 5.28
ε-SVR 0.180 0.250 8.15
SVQR 0.104 0.153 4.06

TIPOSVR 0.096 0.142 3.39

Results of different algorithms on asymmetric homoscedastic noise are tabulated in
Table 5. In the absence of noise, the time and accuracy performance of SVQR is clearly
superior to other methods. The evidence indicates that truncation has no effect on data
regression when there is no noise, however, it will cause a longer running time. As the
noise rate increases, the superiority of TIPOSVR becomes more and more apparent, espe-
cially when the noise rate is 40%, 50%, and 60%, where it attains the best accuracy. The
results show that TIPOSVR can achieve the highest accuracy in a relatively short time for
asymmetric noise.

Simulation results of algorithms for asymmetric heteroscedastic noise datasets are
presented in Table 6. The experimental results show that TIPOSVR achieves the best MAE
performance at overall noise levels. It yields the lowest RMSE when the noise rate is 0%,
20%, 50%, and 60%. TIPOSVR performs better than NROR. The comparison between
NROR and TIPOSVR, in terms of both truncated losses, reveals that asymmetric truncated
loss is more effective than symmetric loss for heteroscedastic noise. The asymmetric feature
diminishes the influence of asymmetric noise on the regression function. The results
confirm the theoretical analysis.

The test accuracy and learning time of different algorithms, as the noise value varies
with the independent variable, are shown in Table 7. This dataset presents a more intricate
situation. The noise in the dataset depends on the independent variable. More noise and
outliers are likely to appear. The results show that all algorithms are sensitive to noise level.
TIPOSVR is still significantly more accurate than the comparison algorithms and shows its
proficiency in dealing with general noise and outliers.
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Table 5. Operation results of algorithms under the influence of noise type III for synthetic dataset.

Noise Rate Loss Function MAE RMSE TIME (S)

0

NROR 0.075 0.107 8.55
ε-SVR 0.076 0.111 8.61
SVQR 0.068 0.095 8.84

TIPOSVR 0.072 0.103 9.02

0.05

NROR 0.068 0.105 8.55
ε-SVR 0.065 0.102 8.82
SVQR 0.071 0.118 8.12

TIPOSVR 0.065 0.096 6.96

0.2

NROR 0.077 0.134 7.60
ε-SVR 0.087 0.125 9.09
SVQR 0.088 0.139 7.79

TIPOSVR 0.077 0.118 7.79

0.4

NROR 0.083 0.143 7.60
ε-SVR 0.124 0.151 9.22
SVQR 0.088 0.119 7.55

TIPOSVR 0.075 0.118 7.22

0.5

NROR 0.103 0.159 6.46
ε-SVR 0.125 0.185 8.67
SVQR 0.111 0.174 6.87

TIPOSVR 0.098 0.164 5.62

0.6

NROR 0.099 0.143 5.29
ε-SVR 0.129 0.188 8.23
SVQR 0.234 0.351 5.75

TIPOSVR 0.087 0.112 4.47

Table 6. Operation results of algorithms under the influence of noise typeIV for synthetic dataset.

Noise Rate Loss Function MAE RMSE TIME (S)

0

NROR 0.077 0.115 8.28
ε-SVR 0.089 0.118 7.83
SVQR 0.084 0.129 7.94

TIPOSVR 0.072 0.101 8.12

0.05

NROR 0.074 0.107 6.23
ε-SVR 0.074 0.106 7.97
SVQR 0.080 0.120 7.86

TIPOSVR 0.070 0111 8.13

0.2

NROR 0.078 0.148 7.04
ε-SVR 0.092 0.120 8.09
SVQR 0.081 0.109 6.46

TIPOSVR 0.071 0.097 6.41

0.4

NROR 0.174 0.285 7.04
ε-SVR 0.094 0.149 7.81
SVQR 0.083 0.113 4.67

TIPOSVR 0.077 0.134 4.30

0.5

NROR 0.133 0.237 3.42
ε-SVR 0.249 0.366 7.19
SVQR 0.174 0.225 7.24

TIPOSVR 0.107 0.152 7.75

0.6

NROR 0.220 0.286 3.84
ε-SVR 0.232 0.288 9.01
SVQR 0.230 0.277 7.96

TIPOSVR 0.126 0.165 5.00
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Table 7. Operation results of algorithms under the influence of noise type V for synthetic dataset.

Noise Rate Loss Function MAE RMSE TIME (S)

0

NROR 0.081 0.124 8.61
ε-SVR 0.086 0.118 8.05
SVQR 0.078 0.113 8.19

TIPOSVR 0.069 0.100 7.94

0.05

NROR 0.088 0.118 8.28
ε-SVR 0.077 0.113 8.31
SVQR 0.086 0.120 8.11

TIPOSVR 0.069 0.101 8.17

0.2

NROR 0.089 0.127 7.78
ε-SVR 0.101 0.134 8.44
SVQR 0.087 0.127 7.71

TIPOSVR 0.079 0.113 7.68

0.4

NROR 0.102 0.148 7.11
ε-SVR 0.107 0.160 8.43
SVQR 0.101 0.138 6.79

TIPOSVR 0.083 0.124 6.39

0.5

NROR 0.101 0.141 7.11
ε-SVR 0.166 0.228 8.45
SVQR 0.099 0.145 5.87

TIPOSVR 0.090 0.130 5.59

0.6

NROR 0.147 0.233 3.71
ε-SVR 0.127 0.194 8.64
SVQR 0.172 0.265 6.41

TIPOSVR 0.085 0.115 6.76

In summary, the study indicates that TIPOSVR is effective when applied to datasets
with different types of noise. In particular, at high noise levels (when the noise rate reaches
50% and 60%), TIPOSVR provides accurate predictions in a timely manner. This algorithm
shows excellent robustness and generalizability.

5.2. Benchmark Datasets

In this section, four datasets are selected from the UCI benchmark dataset, including
the Dry Bean dataset (DB), the Grid Stability Simulation dataset (EGSSD), the Abalone
dataset, and the Gas Turbine Generation (CCPP). To evaluate the results, three benchmark
algorithms are employed: ε-SVR, NROR, and SVQR. Table 8 provides an overview of the
attributes and sample numbers of the UCI benchmark datasets.

Table 8. Benchmark datasets description.

Tag Dataset Samples Attributes

A CCPP 9568 4
B DB 13,611 17
C EGSSD 10,000 12
D Abalone 4177 8

The data from the datasets are normalized and split equally into training and test
datasets. Research is conducted using datasets with symmetric noise characterized by
homogeneous and heteroscedastic variances. The performance of TIPOSVR is evaluated
and compared with that of the comparison algorithms on the four benchmark datasets.
The selection of the hyperparameters follows the same approach as that used for the
synthetic datasets.
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Figures 5 and 6 shows the MAE and RMSE values obtained from TIPOSVR and the
comparison algorithms for the UCI benchmark datasets with homogeneous Gaussian noise
added. No remarkable disparity is observed in the performance of the four methods without
noise when analyzing the A dataset. The performance of ε-SVR and SVQR vary significantly
as the noise rate increases. When the noise rate reaches 40%, 50% and 60%, TIPOSVR and
NROR demonstrate superior performance compared to the other two methods. In the
majority of cases, TIPOSVR has been found to be the most effective. When the noise
rate reaches 60%, it is only inferior to NROR. On dataset B, TIPOSVR, NROR and ε-SVR
demonstrate the same level of performance with no noise present. As the noise rate
increases, both ε-SVR and SVQR display more variations. The variation of both TIPOSVR
and NROR are less than that of the two methods mentioned above. At noise rates of 40%
and 50%, TIPOSVR proves to be more effective than NROR. At a noise rate of 60%, TIPOSVR
and NROR demonstrate comparable results. In comparison to SVQR, the performance of
TIPOSVR, NROR and ε-SVR on the C dataset are superior when the noise level is 0, 5%, 20%
and 40%. At noise rates of 50% and 60%, NROR and TIPOSVR show superior performance
compared to the other two methods, with TIPOSVR exhibiting the best results. For the D
dataset, NROR and TIPOSVR demonstrate the same level of performance, regardless of
the noise rate, which is superior to the other two methods. In terms of noise, the RMSE of
TIPOSVR is smaller than that of NROR.

The data indicate that TIPOSVR does not excel in symmetric homogeneity datasets
at low noise rate, and may even be inferior to NROR. At a high noise rate, TIPOSVR’s
performance is equivalent to NROR, surpassing the other two comparison algorithms,
and even surpassing NROR in some cases. TIPOSVR has been found to be successful in
dealing with regression problems that have a high noise level.

Figure 5. MAE for Gaussian noise of homogeneity on (A) CCPP, (B) DB, (C) EGSSD, (D) Abalone.
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Figure 6. RMSE for noise of homogeneity on (A) CCPP, (B) DB, (C) EGSSD, (D) Abalone.

The bar graph in Figures 7 and 8 illustrate the MAE and RMSE of each algorithm
for the benchmark datasets with heteroscedastic noise added. If the noise rate is not
more than 40% for datasets A and C, there is no significant distinction between the four
methods. At noise rates of 40%, 50% and 60%, NROR and TIPOSVR demonstrate superior
performance compared to ε-SVR and SVQR, with TIPOSVR displaying the best results
at 60%. At a noise rate of 20%, NROR and TIPOSVR prove to be more effective than
SVQR and ε-SVR when applied to dataset B. Furthermore, when the noise rate increases to
50% and 60%, TIPOSVR outperforms NROR. In the D dataset, TIPOSVR and NROR have
consistently demonstrated better performance than SVQR and ε-SVR. TIPOSVR and NROR
demonstrated an equivalent level of performance.

It is observable that in the dataset with heteroscedasticity noise, when the noise rate is
high, TIPOSVR and NROR have comparable performance, and TIPOSVR are usually more
effective than NROR. The loss function that accounts for asymmetry exhibits improved per-
formance.
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Figure 7. MAE for noise of heteroscedasticity on (A) CCPP, (B) DB, (C) EGSSD, (D) Abalone.

Figure 8. RMSE for noise of heteroscedasticity on (A) CCPP, (B) DB, (C) EGSSD, (D) Abalone.
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5.3. Real Datasets

We perform an experiment using actual data from the gas consumption dataset [37].
The dataset consists of 18 features: minimum temperature (minT), average temperature (aveT),
maximum temperature (maxT), minimum dew point (minD), average dew point (aveD), maxi-
mum dew point (maxD), minimum humidity (minH), average humidity (aveH), maximum
humidity (maxH), minimum visibility (minV), average visibility (aveV), maximum visibility
(maxV), minimum air pressure (minA), average air pressure (aveA), maximum air pressure
(maxA), minimum wind speed (minW), average wind speed (aveW) and maximum wind speed
(maxW), and the prediction label is Natural Gas Consumption (NGC).

No noise is added to the data labels on the real datasets. The training set and the
test set are divided into equal parts. The parameters and comparison algorithms settings
remain the same as before, and the calculation results are presented in Table 9.

Table 9. Evaluation table based on real dataset experimental result.

Loss Function MAE RMSE TIME (S)

NROR 0.066 0.103 2.11
ε–SVR 0.096 0.121 2.30
SVQR 0.094 0.130 2.30

TIPOSVR 0.059 0.102 2.14

Table 9 illustrates the performance of various algorithms on an actual dataset. In
Table 9, TIPOSVR is shown to perform optimally with an MAE of 0.059 and an RMSE of
0.102, indicating its ability to provide a reliable estimate of the real datasets. TIPOSVR re-
mains a viable option compared to other algorithms when dealing with real-world problems.

In summary, all datasets show the effectiveness of TIPOSVR. It is still possible to
accurately represent the data distribution even though it is corrupted by noise or outliers.
This indicates that the algorithm is advantageous in handling noisy data and lends itself to
regression in the data flow.

6. Conclusions

In this paper, we review the progress of SVR and find that the existing regression
algorithms are insufficient to effectively predict dynamic data streams containing noise and
outliers effectively.

This study introduces TIPL to assess instantaneous risk in the SVR model. This new
loss function is a combination of asymmetry loss and truncated non-convex loss function
that offers a variety of advantages. TIPL adjusts the weights of the penalties for both
positive and negative errors using asymmetric parameters τ. τ allows us to partition the
fixed width of the ε-insensitive area without sacrificing its sparsity. Horizontal truncation
is used to deal with large noise and outliers. TIPL incorporates and extends the pinball loss,
ε-insensitive loss, and truncated ε-insensitive loss.

Within the regularization framework, a TIPL-based online SVR algorithm is developed
to perform robust regression in a data flow context. Given the non-convexity of the
proposed model, an online gradient descent algorithm is chosen to solve the problem.

Experiments are performed on synthetic datasets, UCI datasets, and real datasets
corrupted by Gaussian, heteroscedastic, asymmetric, and outlier noise. Our model has
been found to be more resilient to noise and outliers than some classical and advanced
methods. It also has better prediction performance and faster learning speed. The proposed
model is therefore expected to provide more accurate predictions in the dynamic flow of
data while consuming fewer computational resources than the batch learning approach.

The main disadvantage of this model lies in the use of multiple hyperparameters.
Choosing the appropriate parameter values is essential for the algorithm to achieve optimal
performance. In our ongoing research, we aim to develop techniques for determining the
optimal hyperparameters for a given training set.
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