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Abstract: Depression symptoms are comparable to Parkinson’s disease symptoms, including attention
deficit, fatigue, and sleep disruption, as well as symptoms of dementia such as apathy. As a result,
it is difficult for Parkinson’s disease caregivers to diagnose depression early. We examined a LIME-
based stacking ensemble model to predict the depression of patients with Parkinson’s disease.
This study used the epidemiologic data of Parkinson’s disease dementia patients (EPD) from the
Korea Disease Control and Prevention Agency’s National Biobank, which included 526 patients’
information. We used Logistic Regression (LR) as the meta-model, and five base models, including
LightGBM (LGBM), K-nearest Neighbors (KNN), Random Forest (RF), Extra Trees (ET), and AdaBoost.
After cleansing the data, the stacking ensemble model was trained using 261 participants’ data and
10 variables. According to the research, the best combination of the stacking ensemble model is
ET + LGBM + RF + LR, a harmonious model. In order to achieve model prediction explainability, we
also combined the stacking ensemble model with a LIME-based explainable model. This explainable
stacking ensemble model can help identify the patients and start treatment on them early in a way
that medical professionals can comprehend.
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1. Introduction

Machine learning techniques have been extensively applied in recent years for a
wide range of medical applications, including detecting and predicting cancer, predicting
diabetes and liver illnesses, personalizing treatments, imaging, and many more. Such
techniques use massive datasets and statistical tools to reveal intricate correlations between
patient medical features and outcomes. Diagnosis and outcome prediction are two impor-
tant areas of medicine that now use machine learning. Specifically, machine learning can
be an extremely effective tool for detecting individuals at high risk of health decline.

Meanwhile, Parkinson’s disease (PD) is recognized in primary care as the second
most common senile degenerative disease after Alzheimer’s disease [1]. Considering that
South Korea has the oldest population growth rate in the world, it stands to reason that the
incidence of PD will continue to soar [2]. Two groups of symptoms are associated with PD:
non-motor symptoms such as cognitive impairment and motor symptoms such as stiffness
and tremor. Depression is the most common non-motor symptom in Parkinson’s patients,
affecting one out of every two patients [3,4].

Even though depression in Patients with Parkinson’s disease (PWPD) was regularly
observed, only 1% of them admitted to having it, according to the Global Parkinson’s
Disease Survey Steering Committee’s 2002 [5] findings. To make matters worse, depression
symptoms are comparable to PD symptoms, including attention deficit, fatigue, and sleep
disruption, as well as symptoms of dementia such as apathy. As a result, it is difficult
for PD caregivers to diagnose depression early. Therefore, it is crucial for primary care
providers to recognize and treat depression in PWPD without delay.
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PD risk factors have recently been identified using machine learning methods such
as the support vector machine and random forest [6–8]. One such method is the stacking
ensemble machine, which combines various individual machine learning models with a
meta-model to achieve greater accuracy [9]. Furthermore, it has been demonstrated that its
accuracy in predicting outcome variables is higher [9].

However, ensemble learning models are typically criticized as “black-box” models
due to their intricacy. Consequently, even when a model performs well, this does not
always guarantee that its predictions are accurate all the time. As a result, when using AI
to assist in clinical choices, medical professionals frequently ask: “Why should we trust
the predictions of black-box models?” Consequently, it is necessary to solve the problem of
model interpretability, which refers to the intuition underlying the model’s predictions, i.e.,
the links between inputs and outputs.

Actually, there are not enough studies that employ the stacking ensemble machine
and medical data to predict disease. The objectives of the present study were to develop
the stacking ensemble and local interpretable model-agnostic explanation (LIME) model to
investigate major factors that could predict depression in PWPD.

2. Materials and Methods
2.1. Materials

The epidemiologic data of Parkinson’s disease dementia patients (EPD) from the Korea
Disease Control and Prevention Agency’s National Biobank were used in this study. Details
of the data source are presented in Byeon [10]. Briefly, from January to December 2015, data
were collected from 14 tertiary medical institutions across the country under the supervision
of the Korea Centers for Disease Control and Prevention (CDC). Computer-assisted personal
interviews were used to conduct a health survey (CAPI). Before receiving and analyzing
the data, we obtained approval from the Korea Disease Control and Prevention Agency’s
Research Ethics Review Committee (No. KBN-2019-005) and the National Biobank Korea’s
Lotting-out Committee (No. KBN-2019-1327).

2.2. Data Prepocessing

Before the model could be fitted, the dataset needed to be preprocessed. The raw
dataset contains data on 526 patients in total, with 57 columns of characteristic information.
Initially, we removed six unnecessary columns related to the ID number and date. Due
to the inclusion of patients with Alzheimer’s disease in this dataset, rows containing
information on these patients had to be removed. Categorical variables in the dataset were
encoded using ordinal number encoding. The column “DEM DEPRESSION”, which stands
for “dementia patient’s depression”, was chosen as the target feature in this study.

In order to handle missing values, columns with 50% null values and rows with missing val-
ues on “DEM DEPRESSION” were eliminated from the dataset. Because this dataset contained
both numerical and categorical variables, we decided to use the forwarding fill (ffill) method to
replace the remaining null values with data from the previous column or row. After removing
pointless columns and handling missing values, the dataset was condensed to 261 patients
with 35 variables and the target feature. Categorical variables were then encoded by ordinal
encoding. Table 1 provides information on the dataset’s 35 variables and the target feature.

2.3. Splitting Dataset

The preprocessed dataset involved 261 patients with 35 variables and the target feature.
Subsequently, 80% of the samples (208 patients) were randomly selected as the training set
for model construction and feature selection. The remaining 20% (53 patients) served as
the validation set.

2.4. Feature Selection

Feature selection is considered important data before implementing machine learning
algorithms [11,12]. The main advantages of employing feature selection approaches are
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that they are used to discover and choose the most essential and highly ranked attributes
through the dataset. In our paper, Recursive feature elimination with cross-validation
(RFECV) with Random Forest was utilized to determine the importance of each feature.

Table 1. Variables and their description.

Variables Description Field Type

DEM_SEX Gender Categorical: Male (1), Female (2)
DEM_AGE Age Continuous: ( ) years old
DEM_EDU Training period Continuous: ( ) years
DEM_HAND Dominant hand Categorical: Right (1), Left (2), Both (3)

DEM_SMOKE Smoking experience Categorical: No (1), Smoking in the
past (2), Smoking in the current (3)

DEM_COFFEE Whether or not drink coffee Categorical: No (1), Drinking in the
past (2), Drinking in the current (3)

DEM_AGRICULCHEM Pesticide exposure Categorical: No (1), Exposure in the
past (2), Exposure in the current (3)

DEM_COINTOXI Carbon monoxide poisoning Categorical: No (1), Yes (2)
DEM_MN Manganese poisoning Categorical: No (1), Yes (2)
DEM_HEADINJ Head injury Categorical: No (1), Yes (2)
DEM_CVA Stroke Categorical: No (1), Yes (2)
DEM_DM Diabetes Categorical: No (1), Yes (2)
DEM_HT Hypertension Categorical: No (1), Yes (2)
DEM_LP Hyperlipidemia Categorical: No (1), Yes (2)
DEM_AF Atrial fibrillation Categorical: No (1), Yes (2)

DEM_PATIENT_TY Patient type

Categorical: Parkinson disease with
dementia, PD-D (1), Parkinson disease
with mild cognitive impairment,
PD-MCI (2), Parkinson disease with
normal cognition, PD-NC

DEM_DISEASEACC Comorbidities Categorical: No (1), Yes (2)
DEM_ADPD_AGE First diagnosis age Continuous: ( ) years old
DEM_PD_DMCI_AGE PD-D or PD-MCI first diagnosis age Continuous: ( ) years old
DEM_PDFAM Family history of PD Categorical: No (1), Yes (2)
DEM_ADDEMFAM Family history of Dementia Categorical: No (1), Yes (2)
DEM_TREMOR Tremor Categorical: No (1), Yes (2)
DEM_RIGIDITY Rigidity Categorical: No (1), Yes (2)
DEM_AKBK Bradykinesia/Akinesia Categorical: No (1), Yes (2)
DEM_PI Postural instability (PI) Categorical: No (1), Yes (2)
DEM_LMC Late motor complications Categorical: No (1), Yes (2)

DEM_RBD Rapid eye movement (REM) sleep
behavior disorders Categorical: No (1), Yes (2)

DEM_KMMSE_SCR Korean mini mental state examination Continuous: _ points/30 points
DEM_KMOCA_SCR Korean montreal cognitive assessment Continuous: _points/30 points

DEM_CDR_GSCR Global Clinical dementia rating (CDR)
score Continuous: ( ) points/5 points

DEM_CDR_SSCR Clinical dementia rating score (sum of
boxes) Continuous: ( ) points/5 points

DEM_DEMENTIA
Dementia based on DSM-IV
(Diagnostic and statistical manual of
mental disorders IV)

Categorical: No (1), Dementia (2)

DEM_KIADL_SCR Korean instrumental activities of daily
living score Continuous: ( ) points/5 points

DEM_UPDRS_MSCR Motor Untitled Parkinson disease
rating scale (UPDRS) score Continuous: ( ) points/108 points

DEM_HYSTAG_SCR Hoehn and Yahr staging score Continuous: ( ) points/5 points

DEM_DEPRESSION
Depression determined by BDI (Beck’s
Depression Inventory) or GDS
(Geriatric Depression Score)

Categorical: Yes (0), No (1)

The training data were randomly divided into ten folds for cross-validation in the first
step of RFECV. This method allowed the validation data to be an entirely new collection
of data used to evaluate the final model [13]. Next, for each subset, a Random Forest
model’s performance was evaluated, and each feature’s importance was computed. The
least significant components were eliminated. Finally, the Random Forest model was
rebuilt, and importance scores were calculated again [14].
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2.5. Development of Stacking Ensemble Model

In this study, we employed a stacking ensemble model using Light Gradient Boosting
Machine, K-Nearest Neighbors, Random Forest, Extra Trees, and AdaBoosts as the base
model and Logistic Regression as the meta-model. This approach’s initial objective was
to examine the prediction performance of a single machine learning model (base model)
that attempted to predict diseases. The following objective was to investigate the stacking
model with the highest prediction performance by stacking several base models with the
meta-model.

2.5.1. Base Model: Light Gradient Boosting Machine (LGBM)

In order to find the optimal segmentation point, certain boosting algorithms, such as the
eXtreme Gradient Boosting (XGBoost) and Gradient Boosting Decision Tree (GBDT), scan
every sample point for every feature. This is exceedingly time-consuming and computa-
tionally costly to satisfy current demands. To lower the expense of the experiment, LGBM is
utilized as one of the base classification models [15,16]. LGBM consists of two fundamental
algorithms: Gradient-Based One-Side Sampling (GOSS) and Exclusive Feature Bundling
(EFB). All instances with big gradients are retained by GOSS, whereas instances with small
gradients are selected randomly. The EFB method may combine a large number of exclusive
characteristics into a smaller number of dense characteristics, hence drastically reducing
the number of redundant calculations for zero feature values.

2.5.2. Base Model: K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a “lazy” learner family member. It is memory-based
and does not require a model fit. All training samples are kept in memory. A new pattern is
predicted by identifying its KNN using a specified distance measure and assigning it to the
class to which the majority of its nearest neighbors belong. The available measurements
are Mahalobins distance, Euclidean, City block, Cosine, Chebychev, Correlation, Jaccard,
Hamming, Minkowski, Semclidean, and Spearman. Despite its simplicity, KNN has been
effectively implemented in several real-world applications. It is able to estimate very
irregular class borders, which are unavoidable when classifying classes with a high degree
of overlap. The selection of k is critical and crucial since it determines the bias-variance
tradeoff of the approach. A small number of neighbors results in low bias and high
variation, whereas large values of k tend to minimize variance while increasing bias. The
pseudocode for KNN training is represented by Algorithm 1.

Algorithm 1: Pseudocode for KNN training

Require: Initialize k, func, target, data
Require: Initialize neighbors = []

Train first weak decision tree model
for Each observation data do

distance = Euclidean distance (data[: −1], target)
calculate Euclidean distance
append neighbors

end for
pick the top K closest training data
take the most common label of these labels
return labels

2.5.3. Base Model: Random Forest

Random Forest (RF) [17,18] is an ensemble of decision tree predictors, as its name
indicates. Due to the “wisdom of crowds” phenomenon, whereby a group of individually
poor predictors can collectively operate as a significantly superior predictor, the individual
trees are intended to be sufficiently stochastically diverse from one another for the resulting
forest to benefit [19]. The dataset used to build each tree contains a sample of N out of N
data items; however, the sample is chosen via replacement, meaning that certain items may
only appear once, at various intervals, or not at all. An additional source of randomization
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is the fact that only a subset of the possible features is made accessible to define the split at
each node of the tree, with the best split selected from the subset.

2.5.4. Base Model: Extra Trees

An alternative to Random Forest is Extra Trees (Extremely Randomized Trees, ET),
which differs in the following ways. First, a tree is constructed using the original sample
of N elements without selection. Second, despite being chosen by a random sampling of
characteristics, the split at each node is not completely optimized. Instead, each descriptor
has a random cut-off point, and any further optimization is limited to picking one of these
divisions [20].

2.5.5. Base Model: AdaBoost

Freund and Schapire first introduced the AdaBoost method for ensemble learning in
1995. AdaBoost is incredibly effective. It was employed to improve the performance of a
category of weak learners. This was achieved by fusing several weak classifiers’ features
in an effort to create a robust classifier. AdaBoost ordinarily combines all weak classifiers
while considering the weight distribution of training data to guarantee that greater weight
is given to the data misclassified in earlier rounds. A weighted combination of weak
classifiers followed by a threshold is the only thing the ultimate strong classifier needs
to achieve the perception form [21]. Equation (1) presents the concept of the AdaBoost
algorithm:

Given: (x1, y1), . . . ., (xm, ym) where xi ∈ X , yi ∈ {−1, 1}.
Initialize: D1(i) = 1

m f or i = 1, . . . ., m.
For t = 1, . . . ., T:

• Train weak learner using distribution Dt
• Get weak hypothesis ht : X → {−1, 1}
• Aim: select ht with low weighted error:

εt = Pri−Dt [ht(xi) 6= yi]

• Choose αt =
1
2 ln

(
1−εt

εt

)
• Update, for i = 1, . . . , m:

Dt+1(i) =
D1(i)exp(−αtyiht(xi))

Zt

where Zt is a normalization factor (chosen so that Dt + 1 will be a distribution).
Output the final hypothesis:

H(x) = sign(∑T
t=1 αtht(x)) (1)

2.5.6. Meta Model: Logistic Regression

Strong generalization abilities are required of the meta-learner for the second layer in
order to rectify the bias of various learning algorithms toward the training set and prevent
the over-fitting impact through aggregation. As a result, we developed a second level
meta-learner that uses a Logistic Regression (LR) model. In reality, LR calculates the log
odds of the true marker (Y* ∈ {0,1}) using the predictions made by the linear regression
model. Its discriminant function fθ , is denoted by the Equation (2), which attempts to
predict the probability that a particular sample will belong to the positive class. The bias is
represented by b, and θ is the weight vector. The loss function specified in (3) calculates the
performance of a given fθ for each training sample x and applies the L2 penalty for regular-
ization. The sample set is represented by X, and µ is the penalty coefficient. Although LR’s
classification accuracy is less accurate than certain non-parametric intelligence algorithms,
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it is known to deliver good results for binary classification due to its easy operation and
strong stability [22].

P(y = 1|x) = fθ(x) =
1

1 + exp(−θTx− b)
(2)

(θ, b) = arg min
θ,b

∑
x∈X
−(y ln( fθ(x)) + (1− y) ln(1− fθ(x))) + µ||θ||2 (3)

In this study, c = 1, penalty = ‘l2’, solver = ‘lbfgs’, tol = 0.0001 were used as hyperpa-
rameters of LR. Finally, this study developed five base models and ten stacking ensemble
models ((1) ET + LR, (2) LGBM + LR, (3) RF + LR, (4) AdaBoost + LR, (5) KNN + LR,
(6) ET + LGBM + LR, (7) ET + LGBM + RF + LR, (8) ET + LGBM + RF + AdaBoost + LR,
(9) ET + LGBM + RF + KNN + LR and (10) ET + LGBM + RF + AdaBoost + KNN + LR) to
predict depression in PWPD (Figure 1).

Figure 1. Process flow diagram for predictive models.

2.6. Model Evaluation

Ten-fold cross-validation was applied to verify the prediction performance of the nine
machine learning models that were built. In order to assess the prediction performance,
this study employed the indices accuracy, precision, recall, and F1-score. The computation
formula for each evaluation index is shown below:

Accuracy = (Truepositive + Truenegative)/(Truepositive + Truenegative + Falsepositive + Falsenegative)

Precision = Truepositive/(Truepositive + Falsepositive)

Recall = Truepositive/(Truepositive + Falsenegative)

F1 score = 2 * (Precision * Recall) * (Precision + Recall).

Our study used the assumption that a model with the highest F1-score has the best
prediction ability. The model with the highest recall was regarded as the best model if the F1-
score remained constant. Python 3.11.0 was used for all analyses (https://www.python.org,
accessed on 23 November 2022).

2.7. Hyperparameters Fine-Tuning by Sckit-Optimize Library

Hyperparameter optimization is the process of conducting a search to identify the set
of particular model configuration arguments that provide the model’s optimal performance
on a given dataset. Although there are several approaches to hyperparameter optimization,
contemporary techniques such as Bayesian Optimization are quick and efficient. An open-

https://www.python.org
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source Python library called Scikit-Optimize (version 0.8.1) offers a Bayesian optimization
implementation that may be used to fine-tune the hyperparameters of machine learning
models from the scikit-learn Python library.

2.8. Local Interpretable Model-Agnostic Explanations (LIME)

In order to explain the outcomes of a machine learning system, it is necessary to
make a relationship between the inputs to the system and the outputs in a manner that
people can understand. The topic has become increasingly relevant in recent years [23,24].
Modern machine learning systems use highly parametric designs that make it difficult
to comprehend the models’ findings. In our study, Local Interpretable Model-Agnostic
Explanations (LIME) were used to develop explanations for the model’s output, which
indicated the correlation between depression and other variables.

To provide an explanation for each prediction made by a black-box model, Ribeiro et al. [25]
introduced LIME, a perturbation-based technique for its concrete implementation using
local surrogate models. By combining perturbed inputs and the appropriate black-box
model outputs, this method creates a new dataset that is weighted around the instance
under investigation. The extra data points are then given a weight based on the original
data point by the algorithm. Finally, a surrogate model, such as linear regression, is fitted
to the dataset using the sample weights. The trained explanation model may then be
used to explain each raw data piece. Formally, we define an explanation as a model
g ∈ G, where G is a class of potentially interpretable models. More precisely, we let Ω(g)
represent a complexity metric. In classification, f (x) represents the probability (or binary
indicator) that x belongs to a certain class. In order to determine the locality around x, we
further use πx(z) as a closeness measure between an instance z to x. Let L(f, g, πx) be a
measure of how inaccurately g approximates f in the locale denoted by πx. We need to keep
Ω(g) low enough to be interpretable by people while minimizing L(f, g, πx) to guarantee
local fidelity and interpretability. As a result of the following, LIME’s explanation is
obtained: ξ(x) = argming L( f , g, πx) + Ω(g). This formulation can be used with different
explanation families G, fidelity functions L, and complexity measures Ω [25].

3. Results
3.1. Selected Features Assessment

In this study, REFCV selected features by using 5-fold cross-validation and accuracy as
a measure-score. As a result, only 10 features were chosen from a total of 35 variables. RE-
FCV features included DEM_AGE, DEM_EDU, DEM_ADPD_AGE, DEM_PD_DMCI_AGE,
DEM_KMMSE_SCR, DEM_KMOCA_SCR, DEM_CDR_SSCR, DEM_KIADL_SCR,
DEM_UPDRS_MSCR, and DEM_HYSTAG_SCR. When total variables were used, the
base models were ranked in ordinal: LGBM, KNN, ET, RF, and AdaBoost. LGBM per-
formed the best in this instance, with 0.7155 accuracy, 0.8045 recall, 0.7394 precision, and
a 0.7658 F1-score. Meanwhile, for the features of REFCV, the ranking of the base models
was slightly altered to LGBM, RF, ET, AdaBoost, and KNN. With accuracy, recall, precision,
and F1-scores of 0.7400, 0.8199, 0.7606, and 0.7858, respectively, LGBM also demonstrated
the best performance. The findings demonstrate that the REFCV feature selection method
improved base models’ performance in this study dataset. Table 2 details the performance
of the base models when using either all features or REFCV’s features.

3.2. Hyperparameters Tuned Models Comparison

To further boost model performance before stacking, we also fine-tuned the hyper-
parameters of each base model. By using Bayesian Optimization wrapped in the Scikit-
Optimize library, the optimized model and its hyperparameters are shown below:

• LGBM: bagging_fraction = 0.8374829161718105, bagging_freq = 6, feature_fraction
= 0.5841143936824905, learning_rate = 0.025450870095720408, min_child_samples = 2,
min_split_gain = 0.1853520160149429, n_estimators = 234, num_leaves = 242,
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random_state = 3317, reg_alpha = 0.0032933153051456932, reg_lambda
= 3.2851517043202704 × 10−6.

• RF: bootstrap = False, criterion = ‘entropy’, max_depth = 11, max_features = 0.4,
min_impurity_decrease = 1 × 10−9, min_samples_leaf = 6, min_samples_split = 10,
n_estimators = 300.

• ET: criterion = ‘entropy’, max_depth = 11, max_features = 1.0, min_impurity_decrease
= 1.1410366199157523 × 10−7, min_samples_split = 3, n_estimators = 300.

• AdaBoost: learning_rate = 0.06748784395891723, n_estimators = 300.
• KNN: n_neighbors = 4, weights = ‘distance’.

Table 2. Comparison with ML models.

Model Accuracy Recall Precision F1-Score

All features

LGBM 0.7155 0.8045 0.7394 0.7658
KNN 0.6971 0.7904 0.7342 0.7561

ET 0.6964 0.8058 0.7263 0.7576
RF 0.6912 0.8128 0.7130 0.7542

AdaBoost 0.6819 0.7474 0.7266 0.7315

REFCV’s features

LGBM 0.7400 0.8199 0.7606 0.7858
RF 0.7395 0.8442 0.7534 0.7897
ET 0.7348 0.8359 0.7495 0.7842

AdaBoost 0.7110 0.7808 0.7535 0.7561
KNN 0.6969 0.7987 0.7283 0.7557

Light Gradient Boosting Classifier = LGBM, K-Neighbors Classifier = KNN, Extra Trees Classifier = ET, Random
Forest Classifier = RF, Ada Boosting Classifier = AdaBoost.

After fine-tuning the hyper-parameters for each base model, the models’ performance
increased significantly, and their rankings also changed. LGBM had the highest perfor-
mance ranking among the base models, but after fine-tuning, it fell to second place, and
ET became the model with the best performance. The ET model scored the best overall,
with accuracy of 0.7690, recall of 0.8853, precision of 0.7672, and an F1-score of 0.8165.
RF, AdaBoost, and KNN occupied the final three positions in the ranking order. Table 3
provides specifics on the performance of the hyperparameter fine-tuned models.

Table 3. Performance of the hyperparameter fine-tuned models.

Model Accuracy Recall Precision F1-Score

ET 0.7690 0.8853 0.7672 0.8165
LGBM 0.7586 0.8442 0.7716 0.8023

RF 0.7440 0.8686 0.7438 0.7983
AdaBoost 0.7400 0.8449 0.7624 0.7927

KNN 0.7355 0.7987 0.7702 0.7821
Light Gradient Boosting Classifier = LGBM, K-Neighbors Classifier = KNN, Extra Trees Classifier = ET, Random
Forest Classifier = RF, Ada Boosting Classifier = AdaBoost.

3.3. Comparing the Accuracy of Stacking Models Predicting the Depression of PWPD

Table 4 shows the predictive performance (accuracy, F1-score, precision, and recall)
of 10 stacking models for predicting depression in PWPD, respectively. The results of
our research indicated that the predictive performance of the “ET + LGBM + RF + LR”
model (stacking ensemble: accuracy 0.7736, recall 0.8692, precision 0.7795, and F1-score
0.8172)” was the best compared with the best single model ET (accuracy 0.7690, recall
0.8853, precision 0.7672, and an F1-score 0.8165). Moreover, despite the stack model
ET + LGBM + RF + AdaBoost + LR having the same performance as the top model, we did
not select it. The explanation is that the model’s performance before adding AdaBoost
was the same in models (8) and (10), in which AdaBoost is one of the base models. This
indicates that the AdaBoost base model had no impact on the stacking ensemble models
used to analyze the dataset in this study.
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Table 4. Performance of 10 stacking models.

Stacking Model Accuracy Recall Precision F1-Score

(1) ET + LR 0.7448 0.8936 0.7373 0.8028
(2) LGBM + LR 0.7540 0.8609 0.7598 0.8034
(3) RF + LR 0.7107 0.8763 0.7065 0.7792
(4) AdaBoost + LR 0.5962 1 0.5962 0.7468
(5) KNN + LR 0.7017 0.8628 0.7112 0.7764
(6) ET + LGBM + LR 0.7686 0.8692 0.7743 0.8141
(7) ET + LGBM + RF + LR 0.7736 0.8692 0.7795 0.8172
(8) ET + LGBM + RF + AdaBoost + LR 0.7736 0.8692 0.7795 0.8172
(9) ET + LGBM + RF + KNN + LR 0.7590 0.8609 0.7763 0.8075
(10) ET + LGBM + RF + AdaBoost + KNN + LR 0.7590 0.8609 0.7763 0.8075

Light Gradient Boosting Classifier = LGBM, K-Neighbors Classifier = KNN, Extra Trees Classifier = ET, Random
Forest Classifier = RF, Ada Boosting Classifier = AdaBoost.

3.4. Evaluation of LIME-Based Stacking Ensemble Model

We chose a specific instance to analyze in order to show how the LIME model works
with the stacking ensemble model. Figure 2 depicts a description of a Parkinson’s disease
patient suffering from depression. Figure 2a summarizes the patient’s state and contributing
circumstances. This patient was 71 years old at that moment and was first diagnosed
with PD at the age of 65 and with PD-D (Parkinson’s disease with dementia) or PD-MCI
(Parkinson’s disease with mild cognitive impairment) at the age of 69. This person’s
education period was 9 years. In addition, the patient had the Korean mini mental state
examination score (DEM_KMMSE_SCR) at 25/30 points, the Clinical dementia rating
sum of boxes (DEM_CDR_SSCR) at 4/5 points, the Korean montreal cognitive assessment
(DEM_KMOCA_SCR) at 12/30 points, K-iADL(Korean instrumental activities of daily
living score at 28 points, the Hoehn and Yahr staging score (DEM_HYSTAG_SCR) at 5/5
points, and the Motor Untitled Parkinson disease rating scale score (DEM_UPDRS_MSCR)
at 45/108 points.

Figure 2. Example of a PD patient with depression experience.

Our stacking ensemble model predicted that the patient would have severe depression
with a probability of 85%. Figure 2b depicts the LIME methodology. The orange bars
represent the variables that significantly contribute to the prediction’s rejection, whereas
the blue bars represent the states and factors that considerably contribute to the prediction’s
support. According to the explanation, at the time of the prediction, “the Motor Untitled
Parkinson disease rating scale score, the Hoehn and Yahr staging score, K-iADL score,
education period, first diagnosis age, the Korean montreal cognitive assessment, and the
Korean mini mental state examination score” were the target’s main factors and states that
most contribute to the prediction.

After applying LIME to all testing data in case a person had depression, we eval-
uated the relative contributions of variables to the prediction of depression in PWPD.
With a weight of 10.36 + 0.02%, the Motor Untitled Parkinson disease rating scale score
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(DEM_UPDRS_MSCR) contributed the most to model prediction, while the Hoehn and
Yahr staging score (DEM_HYSTAG_SCR) contributed 8.29 + 0.01%. The Korean mini
mental state examination score (DEM_KMMSE_SCR), the Clinical dementia rating sum
of boxes (DEM_CDR_SSCR), and the education period (DEM_EDU) were responsible for
6.82%, 5.05%, and 3.63% of the variance, respectively. As seen in Figure 3, the top variables
for depression prediction were arranged in detail.

Figure 3. LIME’s top features for depression prediction cases.

4. Discussion

This study compared the predictive performance of 15 machine learning algorithms to
predict depression in PWPD in South Korea and confirmed that the ET + LGBM + RF + LR
model had the best predictive performance. The findings were consistent with previous
research [9,26,27], which found that the stacking ensemble model’s root-mean-square error
(RMSE) was lower than that of the single machine learning model. Byeon (2021) [9] showed
that the stacking ensemble model had a higher index of agreement, variance of errors, and
accuracy than the single machine learning model, implying that its predictive performance
could be higher for structured data such as examination data. Our research confirms this
statement. Furthermore, Kaur et al. [27] demonstrated that even when all base models
are combined, the stacking ensemble model does not always perform at its best. Our
research also shows that combining three models into a total of five base models yielded
the best performance; consequently, performance of a stacking ensemble model would
be better when a model with harmony is selected rather than including all algorithms
unconditionally.

Another finding of this study was the importance of the feature selection method to the
model’s performance. The prediction outcomes of all models are stable once the number of
chosen features exceeds a certain threshold, and adding more features will not only increase
the models’ accuracy but will significantly increase the amount of computation. According
to Zhang et al. [28], the REFCV feature selection method allowed them to outperform earlier
studies with their Alzheimer’s disease prediction model. Our model was also reduced
from 35 to 10 variables, thereby decreasing execution time and enhancing its performance.
Our model’s performance was improved and execution time was lowered by reducing
its 35 variables to 10. Moreover, reducing noise enables the hyperparameter to be fine-
tuned with a broader range of values without excessive execution time, resulting in a more
effective model.

The importance of this study is that we created a LIME-based stacking ensemble
prediction model for depression in PWPD in order to explain the depression judgment
of AI in a way that medical professionals can comprehend. Similar to the results of
this study, many previous studies reported that the major risk factors for depression in
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Parkinson’s patients were gender, education level, early age at onset of PD, and age [29,30].
The fundamental processes of depression in PWPD remain unknown [31]. Nonetheless,
previous studies discovered that women with PD were far more likely to be depressed.
This is analogous to the general population’s gender bias in depression [32,33]. Future
research is required to discover the relationship between demographic characteristics and
depression in PWPD based on a large-scale cohort.

It is critical to stress to patients, their families, and other professionals that PWPD
may be treated and that recovery is achievable. Unfortunately, depressive disorders are
rarely recognized in professional settings, and even when they are, they are typically
not adequately treated [34]. Even though depression is common in PWPD, only 1% of
PWPD stated that they had depression, according to the Global Parkinson’s Disease Survey
Steering Committee’s 2002 findings. These results show that, although PWPD regularly
suffer depression, many PWPD, their careers, and their medical practitioners do not find
depression symptoms or treat them as aging symptoms, and the patients do not receive
proper diagnosis or therapy. Several studies [34–36] examining the risk factors for depres-
sion in PWPD have reported that daily living ability, sleep behavior disorders, cognitive
level, Hoehn and Yahr stage, and environmental factors (such as social stigma and social
involvement) are significant determinants of depression. These results corroborated the
findings of selected factors used to develop our study’s predictive model.

The limitations of this study are as follows. First, although the model can be inter-
preted, the performance of our stacking ensemble model is lower than the support vector
machine in Byeon [37]. Future studies are needed to find a more accurate model or explore
more about features that should be used. Second, there was only a tiny sample size. Thirdly,
causation could not be determined due to the cross-sectional nature of the study. To es-
tablish causality, further longitudinal research is necessary. Lastly, LIME’s explanations
are not always stable or consistent due to the use of different samples or the definition of
which local data points are included in the local model.

5. Conclusions

In conclusion, this study created a LIME-based stacking ensemble model to explain
depression or non-depression predictions generated by a “black-box” deep learning model.
The results offer a trustworthy stacking ensemble model that can aid PWPD in the pre-
diction of depression. The LIME explanations show that this stacking ensemble model
makes decisions similar to humans based on extremely logical factors. For “black-box”
machine learning predictive technologies to be widely adopted in healthcare, more study
into improving LIME and the traits that raise its trust among physicians is essential.
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