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Abstract: In this article, we present a study about the evolution of the COVID-19 pandemic in
Turkey. The modelling of a new virus named SARS-CoV-2 is considered by an SIR model consisting
of a nonlinear system of differential equations. A collocation approach based on the Pell–Lucas
polynomials is studied to get the approximate solutions of this model. First, the approximate solution
in forms of the truncated Pell–Lucas polynomials are written in matrix forms. By utilizing the
collocation points and the matrix relations, the considered model is converted to a system of the
nonlinear algebraic equations. By solving this system, the unknown coefficients of the assumed
Pell–Lucas polynomial solutions are determined, and so the approximate solutions are obtained.
Secondly, two theorems about the error analysis are given and proved. The applications of the
methods are made by using a code written in MATLAB. The parameters and the initial conditions
of the model are determined according to the reported data from the Turkey Ministry of Health.
Finally, the approximate solutions and the absolute error functions are visualized. To demonstrate the
effectiveness of the method, our approximate solutions are compared with the approximate solutions
obtained by the Runge–Kutta method. The reliable results are obtained from numerical results and
comparisons. Thanks to this study, the tendencies of the pandemic can be estimated. In addition, the
method can be applied to other countries after some necessary arrangements.

Keywords: collocation method; COVID-19 modeling; error analysis; mathematical modeling; nonlinear
differential equations; Pell–Lucas polynomials; SIR model

MSC: 34A34; 42C05; 65L60; 65L70; 92D30; 93A30

1. Introduction

In December 2019, an epidemic first appeared in Wuhan, China’s Hubei province.
The cause of this epidemic was not clear, and the epidemic quickly spread to other countries.
Not long after, this infectious disease of unknown cause was identified as a new coronavirus
(nCoV) and this virus was named severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). The World Health Organization (WHO) named this infectious disease as coronavirus
disease 2019 (COVID-19) and the SARS-CoV-2 epidemic was declared a pandemic on 11
March 2020. According to worldometer data, as of 25 December 2022, worldwide, there
have been a total of 661,711,220 cases, 6,685,775 deaths, and 634,178,985 recoveries.

To address COVID-19, measures such as the mutual stoppage of countries’ flights,
border closings, taking quarantine decisions for infected people, curfews, education suspen-
sion, and the beginning of distance education were taken. In addition, all kinds of cultural,
scientific, artistic, and similar meetings and events were postponed. Places such as theatres,
cinemas, massage parlors, gyms, cafes, concert halls and wedding halls were temporarily
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closed. Simultaneously, scientists started the vaccine studies and soon after, people tried to
immunize the population by vaccinating them. Thus, the normalization process was begun.
However, the number of cases and deaths is still increasing significantly. For this reason,
all studies related to the pandemic are of great importance for science and humanity.

On the other hand, studies were also started in the field of mathematics for this
pandemic with the help of the models related to infectious diseases. The most important
of these model problems are the continuous population models [1–7], the Lotka–Volterra
population model [2,5–14], the Hantavirus infection model [15–19], the HIV infection
models [20–35], the SIR epidemic model [36–41], and the SIRD epidemic model [42–45].

Canto, Avila–Vales and Garcia–Almeida studied a SIRD-based COVID-19 models in
Yucatan, Mexico in 2020 [46]. Canto and Avila–Vales worked on a parametric estimation
of an SEIR and an SIRD models of COVID-19 pandemic in Mexico in 2020 [47]. Calafiore,
Novara, and Possieri investigated a modified SIR model for the COVID-19 contagion in
Italy in 2020 [48]. Calafiore and Novara studied a time-varying SIRD model for the COVID-
19 contagion in Italy in 2020 [49]. Mohammadi, Rezapour, and Jajarmi worked the fractional
SIRD mathematical model for the first and second waves of the disease in Iran and Japan
in 2021 [50]. Pacheco and Lacerda made function estimation and regularization in an SIRD
model applied to the COVID-19 pandemics in 2021 [51]. Faruk and Kar conducted a data-
driven analysis and prediction of COVID-19 dynamics during the third wave by using an
SIRD model in Bangladesh in 2021 [52]. Covid-19 epidemic data in Italy, using an adjusted
time-dependent SIRD model, was modeled by Ferrari et al. in 2021 [53]. Kovalnogov,
Simos, and Tsitouras studied Runge–Kutta pairs suited for SIR-type epidemic models in
2021 [54]. Martinez investigated a modified SIRD model to study the evolution of the
COVID-19 pandemic in Spain in 2021 [55]. Pei and Zhang made long-term predictions of
COVID-19 in some countries by a SIRD Model in 2021 [56]. The progress of the COVID-19
outbreak in India was worked by Chatterjee et al. in 2021 [57] by using a SIRD model.
Fernández–Villaverde and Jones estimated and simulated an SIRD model of COVID-19 for
many countries, states, and cities in 2022 [58]. In addition, there are some studies in the
literature regarding these models [59–63].

In 2020, a novel parametric model of the COVID-19 to estimate the casualties in
Turkey was studied by Tutsoy et al. [64]. In 2020, the progress of COVID-19 in Turkey was
estimated by Özdinç et al. [65]. Three mathematical models for forecasting the COVID-19
outbreak in Iran and Turkey were assessed by Niazkar et al. in 2020 [66]. The forecasting
epidemic size for Turkey and Iraq using the logistic model was made by Ahmed et al. in
2020 [67]. Atangana and Araz studied the mathematical model of COVID-19 spread in
Turkey and South Africa in 2020 [68]. Djilali and Ghanbari estimated analysis of the peak
outbreak epidemic in South Africa, Turkey, and Brazil in 2020 [69]. The dynamics of the
outbreak in Hubei and Turkey were predicted and analyzed by Aslan et al. in 2020 [70].
Atangana and Araz modeled third waves of COVID-19 spread with piecewise differential
and integral operators for Turkey, Spain, and Czechia in 2021 [71].

On the other hand, various numerical methods based on the Pell–Lucas polynomials
were studied to obtain the approximate solutions of some differential equations and integro-
differential equations [7,72–77]. Accordingly, it is concluded that effective results are
obtained with the help of the Pell–Lucas polynomials. To date, there is still no the collocation
method based on the Pell–Lucas polynomials among the studies on the approximate
solutions of the SIR model problem. Therefore, in this study, the parameters of the SIR
model problem are determined according to Covid-19 data in Turkey and the Pell–Lucas
collocation method is applied to this model.

In this study, the SIR epidemic model is considered in [47,52,57]

dS(t)
dt = − β

P S(t)I(t),
dI(t)

dt = β
P S(t)I(t)− γI(t), 0 ≤ t ≤ b,

dR(t)
dt = γI(t),

(1)
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with the initial conditions
S(0) = S0 = P− I0 − R0,
I(0) = I0,
R(0) = R0,

(2)

where P = S(t) + I(t) + R(t). That is, population size P is constant.
The descriptions of the parameters and the variables in the model (1) and (2) are given

in Table 1. Additionally, the arrows in Figure 1 indicate the flow between the populations
of susceptible (S), infected (I), removed (R). Note that the individuals R(t) in the model
represents the number of individuals who both recovered and died.

Table 1. Representations of the parameters and the variables in the model (1) and (2).

Parameter/Variable Explanation

t The independent variable in units of days

S(t) The dependent variable showing the number of the susceptible
individuals at time t

I(t) The dependent variable showing the number of individuals infected
with COVID-19 at time t

R(t) The dependent variable showing the number of individuals removed
(recovered and died) from COVID-19 at time t

β The rate of contact or transmission
γ The rate of recovery

Figure 1. The transmission schematic representing the SIR model.

Our aim is to find the Pell–Lucas polynomial solutions of the model (1) and (2) as
follows:

SN(t) = ∑N
n=0 anQn(t),

IN(t) = ∑N
n=0 bnQn(t),

RN(t) = ∑N
n=0 cnQn(t),

(3)

where N is any positive integer, and an, bn, cn, dn are the Pell–Lucas coefficients. In addition,
Qn(t) (n = 0, . . . , N) are the Pell–Lucas polynomials defined by [78,79]

Qn(t) =
Jn/2K

∑
k=0

2n−2k n
n− k

(
n− k

k

)
tn−2k. (4)

Here, J n/2 K shows the integer value of n/2. For features about the Pell–Lucas
polynomials, please see [78,79].

2. Fundamental Matrix Relations

In this section, the Pell–Lucas polynomial solutions of the SIR model (1) and (2) are
written in matrix forms.

Lemma 1. The Pell–Lucas polynomials Qn(t) in (4) are expressed in the following matrix form [77],

QN(t) = TN(t)DN , (5)
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where TN(t) =
[

1 t t2 · · · tN ]
, QN(t) =

[
Q0(t) Q1(t) Q2(t) · · · QN(t)

]
and if N is even

DT
N =



2 0 0 · · · 0
0 21 1

1 (
1
0) 0 · · · 0

20 2
1 (

1
1) 0 22 2

2 (
2
0) · · · 0

...
...

...
. . .

...

20 N
N
2
(

N
2
N
2
) 0 22 N

N+2
2

(
N+2

2
N−2

2
) · · · 2N N

N (N
0 )


,

and if N is odd

DT
N =



2 0 0 · · · 0
0 21 1

1 (
1
0) 0 · · · 0

20 2
1 (

1
1) 0 22 2

2 (
2
0) · · · 0

...
...

...
. . .

...

0 21 N
N+1

2
(

N+1
2

N−1
2
) 0 · · · 2N N

N (N
0 )


.

Proof. When the vector TN(t) is multiplied by the matrix DN from the right side, we have
the vector TN(t)DN , which is QN(t).

Lemma 2. The Pell–Lucas polynomial solutions (3) of the SIR model (1) and (2) for any selected
value of N are written in following forms:

S(t) u SN(t) = TN(t)DNAN ,
I(t) u IN(t) = TN(t)DNBN ,
R(t) u RN(t) = TN(t)DNCN ,

(6)

where

AN =
[

a0 a1 · · · aN
]T , BN =

[
b0 b1 · · · bN

]T , CN =
[

c0 c1 · · · cN
]T .

Here, the matrices TN(t) and DN are as in Lemma 1.

Proof. If the vector TN(t)DN is multiplied by AN from the right, we get SN(t) = TN(t)DNAN.
Similarly, the vector TN(t)DN is multiplied by BN from the right, we have IN(t) =
TN(t)DNBN . Finally, when the vector TN(t)DN is multiplied from the right by CN , the ap-
proximate solution RN(t) is obtained in matrix form as RN(t) = TN(t)DNCN .

Lemma 3. The matrix relations for the derivatives of the Pell–Lucas polynomial solutions (3) are
as follows:

S
′
(t) u S

′
N(t) = TN(t)HNDNAN ,

I
′
(t) u I

′
N(t) = TN(t)HNDNBN ,

R
′
(t) u R

′
N(t) = TN(t)HNDNCN ,

(7)

where

HN =


0 1 0 · · · 0
0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · N
0 0 0 · · · 0

.

Here, the matrices TN(t), DN , AN , BN and CN are as in Lemma 2.
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Proof. By taking the derivatives of the solutions in matrix forms (6), the following matrix
forms are obtained:

S
′
(t) u S

′
N(t) = T

′
N(t)DNAN ,

I
′
(t) u I

′
N(t) = T

′
N(t)DNBN ,

R
′
(t) u R

′
N(t) = T

′
N(t)DNCN .

(8)

Now, the derivative of the matrix TN(t) is taken and so the term T
′
N(t) is converted to

the form [77]
T
′
N(t) = TN(t)HN . (9)

Hence, the relation (9) is substituted in (8) and then the approximate solutions are written
in the next forms

S
′
(t) u S

′
N(t) = TN(t)HNDNAN ,

I
′
(t) u I

′
N(t) = TN(t)HNDNBN ,

R
′
(t) u R

′
N(t) = TN(t)HNDNCN .

Lemma 4. The matrix representation of the nonlinear term in the SIR model (1) for any selected
value of N is written as

S(t)I(t) u SN(t)IN(t) = (TN(t)DNAN)(TN(t)DNBN). (10)

Here, the matrices TN(t), DN , AN and BN are as in Lemma 2.

Proof. If we use the matrix representations of S(t) u SN(t) = TN(t)DNAN and I(t) u
IN(t) = TN(t)DNBN in the Lemma 2, then we have

S(t)I(t) u SN(t)IN(t) = (TN(t)DNAN)(TN(t)DNBN). (11)

Lemma 5. The matrix relations of the initial conditions (2) for the solutions (3) are in forms
UNAN = S0, UN = TN(0)DN ,
UNBN = I0, UN = TN(0)DN ,
UNCN = R0, UN = TN(0)DN .

(12)

Here, the matrices TN(t), DN , AN , BN and CN are as in Lemma 2.

Proof. By writting 0 instead of t in the equations in the system (6), we obtain the following
matrix relations:

S(0) u S0(0) = TN(0)DNAN ,
I(0) u I0(0) = TN(0)DNBN ,
R(0) u R0(0) = TN(0)DNCN .

(13)

Consequently, the matrix multiplication TN(0)DN is represented by UN , and thus we
have the matrix relations in the Equation (12).

Theorem 1. It is supposed that the solutions of the model (1) and (2) are sought in the form (3).
In that case, we get the following matrix relations:

TN(t)HNDNAN = − β
P (TN(t)DNAN)(TN(t)DNBN),

TN(t)HNDNBN = β
P (TN(t)DNAN)(TN(t)DNBN)− γTN(t)DNBN ,

TN(t)HNDNCN = γ(TN(t)DNBN).
(14)

Here, the matrices TN(t), HN , DN , AN , BN and CN are as in Lemmas 2 and 3.
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Proof. If Lemma 3 is used for the terms S
′
(t), I

′
(t) and R

′
(t) in Equation (1), Lemma 2

is used for the term I(t) in Equation (1), and Lemma 4 is used for the term S(t)I(t) in
Equation (1), the proof is completed.

3. The Method for the Solutions of the SIR Model

In this section, a collocation method based on the Pell–Lucas polynomials is pre-
sented for the SIR model. In application of the method, we use the evenly spaced colloca-
tion points.

Definition 1. The evenly spaced collocation points in [0, b] are defined by

ti =
b
N

i, i = 0, 1, . . . , N. (15)

Theorem 2. It is assumed that the approximate solutions of the Equation (1) under the conditions
(2) can be represented in the form (3). In that case, the model (1) can be reduced to the system

W0AN + G1,0BN = 0(N+1)×1,
W0BN + G2,0BN = 0(N+1)×1,
W0CN + G3,0BN = 0(N+1)×1,
W1AN + G1,1BN = 0(N+1)×1,
W1BN + G2,1BN = 0(N+1)×1,
W1CN + G3,1BN = 0(N+1)×1,

...
WNAN + G1,NBN = 0(N+1)×1,
WNBN + G2,NBN = 0(N+1)×1,
WNCN + G3,NBN = 0(N+1)×1,

(16)

where
Wi = TN(ti)HNDN ,
G1,i =

β
P (TN(ti)DNAN)TN(ti)DN ,

G2,i = −
β
P (TN(ti)DNAN)TN(ti)DN + γTN(ti)DN ,

G3,i = −γTN(ti)DN ,
0(N+1)×1 = zeros((N + 1)× 1).

Here, the matrices AN , BN , CN , TN(ti), HN and DN are as in Lemmas 2 and 3.

Proof. By writing the collocation points (15) in the Equation (14), we get

TN(t0)HNDNAN = − β
P (TN(t0)DNAN)(TN(t0)DNBN),

TN(t0)HNDNBN = β
P (TN(t0)DNAN)(TN(t0)DNBN)− γTN(t0)DNBN ,

TN(t0)HNDNCN = γ(TN(t0)DNBN),
TN(t1)HNDNAN = − β

P (TN(t1)DNAN)(TN(t1)DNBN),
TN(t1)HNDNBN = β

P (TN(t1)DNAN)(TN(t1)DNBN)− γTN(t1)DNBN ,
TN(t1)HNDNCN = γ(TN(t1)DNBN),

...
TN(tN)HNDNAN = − β

P (TN(tN)DNAN)(TN(tN)DNBN),
TN(tN)HNDNBN = β

P (TN(tN)DNAN)(TN(tN)DNBN)− γTN(tN)DNBN ,
TN(tN)HNDNCN = γ(TN(tN)DNBN),

(17)
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or 

W0AN + G1,0BN = 0(N+1)×1,
W0BN + G2,0BN = 0(N+1)×1,
W0CN + G3,0BN = 0(N+1)×1,
W1AN + G1,1BN = 0(N+1)×1,
W1BN + G2,1BN = 0(N+1)×1,
W1CN + G3,1BN = 0(N+1)×1,

...
WNAN + G1,NBN = 0(N+1)×1,
WNBN + G2,NBN = 0(N+1)×1,
WNCN + G3,NBN = 0(N+1)×1.

(18)

Consequently, by using the following equations,

Wi = TN(ti)HNDN ,
G1,i =

β
P (TN(ti)DNAN)TN(ti)DN ,

G2,i = −
β
P (TN(ti)DNAN)TN(ti)DN + γTN(ti)DN ,

G3,i = −γTN(ti)DN ,

we complete the proof.

Theorem 3. Supposing that the Pell–Lucas polynomial solutions of the SIR model (1) and (2) can
be represented as in (3). Then, we have the following system:

W0AN + G1,0BN = 0(N+1)×1,
W0BN + G2,0BN = 0(N+1)×1,
W0CN + G3,0BN = 0(N+1)×1,
W1AN + G1,1BN = 0(N+1)×1,
W1BN + G2,1BN = 0(N+1)×1,
W1CN + G3,1BN = 0(N+1)×1,

...
WNAN + G1,NBN = 0(N+1)×1,
WNBN + G2,NBN = 0(N+1)×1,
WNCN + G3,NBN = 0(N+1)×1,

UNAN = S0,
UNBN = I0,
UNCN = R0.

(19)

Here, the matrices Wi, Gi,N , AN , BN , CN , 0(N+1)×1 and UN are as in Theorem 2 and Lemma 5.

Proof. If the matrix systems (12) and (16) are written as a single system, then we obtain a
new 3(N + 2)× 1-dimensional matrix system. Hence, we get the desired result.

Corollary 1. By solving the obtained system (19) with the help of a program written in MATLAB,
we have the coefficient matrices AN , BN and CN in (6). The calculated coefficient matrices AN , BN
and CN are written in (6) and thus the approximate solutions of the model (1) and (2) are found.

4. Error Analysis

In this section, we give two important theorems. First, we determine the upper
boundary of the errors for the method. Secondly, we present an error estimation method by
using the residual function.

Theorem 4. (Upper Boundary of Errors) Let S(t), I(t), R(t) be the exact solutions of the problem
(1) and (2). It is supposed that SN(t), IN(t), RN(t) are the Pell–Lucas polynomial solutions (3) with
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N − th degree of the problem (1) and (2). In addition, the expansions of the generalized Maclaurin
series with N− th degree of S(t), I(t), R(t) are SM

N (t), IM
N (t), RM

N (t). Then, the absolute errors of
the Pell–Lucas polynomial solutions for 0 ≤ t ≤ b are bounded by the inequality

‖S(t)− SN(t)‖∞ ≤ kN(‖ÃN‖∞ + ‖DN‖∞‖AN‖∞) + bN+1

(N+1)!‖S
(N+1)(ct)‖∞,

‖I(t)− IN(t)‖∞ ≤ kN(‖B̃N‖∞ + ‖DN‖∞‖BN‖∞) + bN+1

(N+1)!‖I(N+1)(ct)‖∞,

‖R(t)− RN(t)‖∞ ≤ kN(‖C̃N‖∞ + ‖DN‖∞‖CN‖∞) + bN+1

(N+1)!‖R
(N+1)(ct)‖∞,

(20)

where ‖TN(t)‖∞ ≤ max {bN , 1} := kN ,4AN = ‖AN+1‖∞ − ‖AN‖∞,4BN = ‖BN+1‖∞ −
‖BN‖∞,4CN = ‖CN+1‖∞−‖CN‖∞. Also, the coefficient matrix of SM

N (t), the coeffcient matrix
of IM

N (t), the coeffcient matrix of RM
N (t) are represented, respectively, ÃN , B̃N and C̃N .

Proof. First, we add and subtract the functions S(t)− SN(t), I(t)− IN(t), R(t)− RN(t) to
the functions the Maclaurin expansions SM

N (t), IM
N (t), RM

N (t), respectively. Next, we use the
triangle inequality and so we have

‖S(t)− SN(t)‖∞ = ‖S(t)− SM
N (t) + SM

N (t)− SN(t)‖∞ ≤ ‖S(t)− SM
N (t)‖∞ + ‖SM

N (t)− SN(t)‖∞,
‖I(t)− IN(t)‖∞ = ‖I(t)− IM

N (t) + IM
N (t)− IN(t)‖∞ ≤ ‖I(t)− IM

N (t)‖∞ + ‖IM
N (t)− IN(t)‖∞,

‖R(t)− RN(t)‖∞ = ‖R(t)− RM
N (t) + RM

N (t)− RN(t)‖∞ ≤ ‖R(t)− RM
N (t)‖∞ + ‖RM

N (t)− RN(t)‖∞.
(21)

By examining the terms ‖S(t) − SM
N (t)‖∞, ‖I(t) − IM

N (t)‖∞, ‖R(t) − RM
N (t)‖∞, we

write the remainder terms of the Maclaurin series SM
N (t), IM

N (t), RM
N (t) as follows:

tN+1

(N+1)! S
(N+1)(ct), 0 ≤ t ≤ b,

tN+1

(N+1)! I(N+1)(ct), 0 ≤ t ≤ b,
tN+1

(N+1)! R(N+1)(ct), 0 ≤ t ≤ b,

(22)

and thus we get
‖S(t)− SM

N (t)‖∞ ≤ bN+1

(N+1)!‖S
(N+1)(ct)‖∞,

‖I(t)− IM
N (t)‖∞ ≤ bN+1

(N+1)!‖I(N+1)(ct)‖∞,

‖R(t)− RM
N (t)‖∞ ≤ bN+1

(N+1)!‖R
(N+1)(ct)‖∞.

(23)

According to Lemma 2, we know that SN(t) = TN(t)DNAN , IN(t) = TN(t)DNBN ,
RN(t) = TN(t)DNCN are the matrix forms of the Pell–Lucas polynomial solutions SN(t),
IN(t), RN(t), respectively. In addition, we denote the expansions of the Maclaurin series
of S(t), I(t), R(t) as SM

N (t) = TN(t)ÃN , IM
N (t) = TN(t)B̃N , RM

N (t) = TN(t)C̃N . Hence,
we can write the terms ‖SM

N (t)− SN(t)‖∞, ‖IM
N (t)− IN(t)‖∞, ‖RM

N (t)− RN(t)‖∞ as the
following forms:

‖SM
N (t)− SN(t)‖∞ = ‖TN(t)(ÃN −DNAN)‖∞ ≤ ‖TN(t)‖∞

(
‖ÃN‖∞ + ‖DN‖∞‖AN‖∞

)
,

‖IM
N (t)− IN(t)‖∞ = ‖TN(t)(B̃N −DNBN)‖∞ ≤ ‖TN(t)‖∞

(
‖B̃N‖∞ + ‖DN‖∞‖BN‖∞

)
,

‖RM
N (t)− RN(t)‖∞ = ‖TN(t)(C̃N −DNCN)‖∞ ≤ ‖TN(t)‖∞

(
‖C̃N‖∞ + ‖DN‖∞‖CN‖∞

)
.

(24)

Now, because of 0 ≤ t ≤ b, we express the term ‖TN(t)‖∞ as follows:

‖TN(t)‖∞ ≤ max {bN , 1} := kN . (25)

By using the expression (25), we get the inequalities in (24) as

‖SM
N (t)− SN(t)‖∞ ≤ kN

(
‖ÃN‖∞ + ‖DN‖∞‖AN‖∞

)
,

‖IM
N (t)− IN(t)‖∞ ≤ kN

(
‖B̃N‖∞ + ‖DN‖∞‖BN‖∞

)
,

‖RM
N (t)− RN(t)‖∞ ≤ kN

(
‖C̃N‖∞ + ‖DN‖∞‖CN‖∞

)
.

(26)
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By substituting the inequalities (23) and (26) in (21), we have

‖S(t)− SN(t)‖∞ ≤ kN(‖ÃN‖∞ + ‖DN‖∞‖AN‖∞) + bN+1

(N+1)!‖S
(N+1)(ct)‖∞,

‖I(t)− IN(t)‖∞ ≤ kN(‖B̃N‖∞ + ‖DN‖∞‖BN‖∞) + bN+1

(N+1)!‖I(N+1)(ct)‖∞,

‖R(t)− RN(t)‖∞ ≤ kN(‖C̃N‖∞ + ‖DN‖∞‖CN‖∞) + bN+1

(N+1)!‖R
(N+1)(ct)‖∞.

(27)

As a result, the proof is completed.

Theorem 5. (Error Estimation) Let S(t), I(t), R(t) be the exact solutions of the model (1) and
(2) and SN(t), IN(t), RN(t) be the Pell–Lucas polynomial solutions (3) with N − th degree of the
model (1) and (2). In this case, the following error problem is obtained:

e
′
S,N(t) +

β
P (eS,N(t)eI,N(t) + IN(t)eS,N(t) + SN(t)eI,N(t)) = −Re1,N(t),

e
′
I,N(t)−

β
P (eS,N(t)eI,N(t) + IN(t)eS,N(t) + SN(t)eI,N(t)) + γeI,N(t) = −Re2,N(t),

e
′
R,N(t)− γeI,N(t) = −Re3,N(t),

eS,N(0) = 0, eI,N(0) = 0, eR,N(0) = 0.

(28)

Here, eS,N(t) = S(t)− SN(t), eI,N(t) = I(t)− IN(t), eR,N(t) = R(t)− RN(t). In addi-
tion, Re1,N(t), Re2,N(t), Re3,N(t) are the residual functions of the model (1) and (2) for the the
Pell–Lucas polynomial solutions (3).

Proof. Because the Pell–Lucas polynomial solutions in (3) provide the Equation (1) and
initial conditions (2), we can write

Re1,N(t) = S
′
N(t) +

β
P SN(t)IN(t),

Re2,N(t) = I
′
N(t)−

β
P SN(t)IN(t) + γIN(t),

Re3,N(t) = R
′
N(t)− γIN(t),

SN(0) = S0, IN(0) = I0, RN(0) = R0.

(29)

The model (29) is subtracted from model (1) and (2) and thus we have the error
problem

e
′
S,N(t) +

β
P (eS,N(t)eI,N(t) + IN(t)eS,N(t) + SN(t)eI,N(t)) = −Re1,N(t),

e
′
I,N(t)−

β
P (eS,N(t)eI,N(t) + IN(t)eS,N(t) + SN(t)eI,N(t)) + γeI,N(t) = −Re2,N(t),

e
′
R,N(t)− γeI,N(t) = −Re3,N(t),

eS,N(0) = 0, eI,N(0) = 0, eR,N(0) = 0.

(30)

Here, eS,N(t) = S(t)− SN(t), eI,N(t) = I(t)− IN(t), eR,N(t) = R(t)− RN(t). Conse-
quently, we complete the proof of the theorem.

Corollary 2. By solving the problem (28) with the help of the method in the previous section, we
obtain the estimated error functions eS,N,M(t), eI,N,M(t), eR,N,M(t).

5. Numerical Verification and Discussion

In this section, we make the applications of the methods presented in the Sections 3 and 4
for the SIR model. First, we determine the parameters and the initial conditions in this model
by using the COVID-19 data in Turkey [80]. Secondly, by using a program for the method
in MATLAB, we get the Pell–Lucas polynomial solutions. In addition, we compare our
approximate solutions with the approximate solutions of the Runge–Kutta method. Finally,
we present application results in tables and graphs and discuss the numerical verification.

In order to determine the parameters β, γ and the initial conditions S0, I0, R0 in the
SIR model (1) and (2), the COVID-19 data in Turkey are used. Hence, the numbers of
the susceptible individuals, the infected individuals, the removed individuals on April 4,
2020 are selected as the initial condition [80]. In addition, we give representations of the
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solutions and the errors in Table 2 and we give the values of parameters β, γ and initial
conditions S0, I0, R0 in SIR model (1) and (2) in Table 3.

Table 2. Representations of the solutions and the errors in the Section 5.

Data Explanation

S(t) The susceptible individuals at time t
I(t) The individuals infected with COVID-19 at time t
R(t) The individuals removed (recovered and died) from COVID-19 at time t
SN(t) The susceptible individuals at time t according to the method in Section 3

IN(t)
The individuals infected with COVID-19 at time t according to the method in
Section 3

RN(t)
The individuals removed (recovered and died) from COVID-19 at time t
according to the method in Section 3

eS,N,M(t) The estimated error function for the susceptible population according to the
method in Section 4

eI,N,M(t) The estimated error function for the infected population according to the
method in Section 4

eR,N,M(t) The estimated error function for the removed population (recovered and died)
according to the method in Section 4

Table 3. The parameters β, γ and the initial conditions S0, I0, R0 in the SIR model (1) and (2).

Parameters S0 I0 R0 β γ

Values 83,996,609 3013 378 1/14 1287/23,934

[1/day] [Total Removed/Total Infected]
[80] [80] [80] Estimated [81,82] Estimated [80,83]

We consider the SIR epidemic model together with the conditions according to the
selected parameters for Covid-19 data in Turkey as follows:

dS(t)
dt = −8.5034e− 10 S(t)I(t),

dI(t)
dt = 8.5034e− 10 S(t)I(t)− 0.0538 I(t),

dR(t)
dt = 0.0538 I(t),

S(0) = 83996609, I(0) = 3013, R(0) = 378.

(31)

Now, let’s apply the Pell–Lucas collocation method in the range [0, 60]. First, we write
the Pell–Lucas polynomial solutions for N = 5 as

S5(t) = ∑5
n=0 anQn(t),

I5(t) = ∑5
n=0 bnQn(t),

R5(t) = ∑5
n=0 cnQn(t).

(32)

By using the Lemma 2, we express the Pell–Lucas polynomial solutions in (32) in
matrix forms

S(t) u S5(t) = T5(t)D5A5,
I(t) u I5(t) = T5(t)D5B5,
R(t) u R5(t) = T5(t)D5C5.

(33)

Here,

A5 =
[

a0 a1 a2 a3 a4 a5
]T , B5 =

[
b0 b1 b2 b3 b4 b5

]T ,

C5 =
[

c0 c1 c2 c3 c4 c5
]T , T5(t) =

[
1 t t2 t3 t4 t5 ],
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DT
5 =



2 0 0 0 0 0
0 2 0 0 0 0
2 0 4 0 0 0
0 6 0 8 0 0
2 0 16 0 16 0
0 10 0 40 0 32

.

Secondly, we determine the collocation points for the range [0, 60]. Because b = 60,
the collocation points become t0 = 0, t1 = 12, t2 = 24, t3 = 36, t4 = 48, t5 = 60. Thus,
by using the system (16), we get

W0A5 + G1,0B5 = 06×1,
W0B5 + G2,0B5 = 06×1,
W0C5 + G3,0B5 = 06×1,
W1A5 + G1,1B5 = 06×1,
W1B5 + G2,1B5 = 06×1,
W1C5 + G3,1B5 = 06×1,

...
W5A5 + G1,5B5 = 06×1,
W5B5 + G2,5B5 = 06×1,
W5C5 + G3,5B5 = 06×1,

(34)

where

Wi = T5(ti)H5D5,
G1,i = 8.5034e− 10 (T5(ti)D5A5)T5(ti)D5,
G2,i = −8.5034e− 10 (T5(ti)D5A5)T5(ti)D5 + 0.0538 T5(ti)D5,
G3,i = −0.0538 T5(ti)D5,

D5 =



2 0 2 0 2 0
0 2 0 6 0 10
0 0 4 0 16 0
0 0 0 8 0 40
0 0 0 0 16 0
0 0 0 0 0 32

, H5 =



0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 4 0
0 0 0 0 0 5
0 0 0 0 0 0

,

06×1 =
[

0 0 0 0 0 0
]
, T5(0) =

[
1 0 0 0 0 0

]
,

T5(12) =
[

1 12 122 123 124 125 ], T5(24) =
[

1 24 242 243 244 245 ],
T5(36) =

[
1 36 362 363 364 365 ], T5(48) =

[
1 48 482 483 484 485 ],

T5(60) =
[

1 60 602 603 604 605 ].
Subsequently, we express the matrix relations of the initial conditions by using (12) in

the following matrix forms:
U5A5 = 83996609, U5 = T5(0)D5,
U5B5 = 3013, U5 = T5(0)D5,
U5C5 = 378, U5 = T5(0)D5.

(35)

Here, T5(0) =
[

1 0 0 0 0 0
]
.

As the next step, we combine (34) and (35) and we solve the combined system with
the help of MATLAB. The solution of this system determines the coefficients matrices A5,
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B5 and C5. By writing the determined coefficient matrices in (33), we get the approximate
solutions of (1) and (2) as

S5(t) = 83996533− 2.1537e + 02 t− 1.8846 t2 − 0.0118 t3 − 3.4679e− 05 t4

−3.2610e− 07 t5,
I5(t) = 3013 + 5.3228e + 01 t + 0.4657 t2 + 0.0029 t3 + 8.6146e− 06 t4

+7.9518e− 08 t5,
R5(t) = 378 + 1.6215e + 02 t + 1.4190 t2 + 0.0089 t3 + 2.6064e− 05 t4

+2.4658e− 07 t5.

(36)

In Figures 2–4, we show the Pell–Lucas polynomial solutions SN(t), IN(t), RN(t) of
the SIR model (31) for N = 5, N = 8 and N = 10. According to this, we interpret that
although the susceptible population is decreasing, the infected population and the removed
population are increasing. In Figure 5, we demonstrate that the Pell–Lucas polynomial
solutions IN(t) and RN(t) of model (31) for N = 5. From here, we said that the removed
population is increased at a greater rate. Accordingly, the removed rate is quite high
compared to the infected rate at 60 days. Also, we compare the Pell–Lucas polynomial
solutions SN(t), IN(t), RN(t) of the SIR model (31) for N = 5 with those of the Runge–Kutta
method in Figure 6. According to Figure 6, it is said that the graphs of the presented method
and the Runge–Kutta method are similar. That is, we observe that the method is accurate
and effective.
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Figure 2. Graphical representation of the susceptible individuals for N = 5, N = 8 and N = 10.
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Figure 3. Graphical representation of the infected individuals for N = 5, N = 8 and N = 10.
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Figure 4. Graphical representation of the removed individuals for N = 5, N = 8 and N = 10.
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Figure 5. Graphical representation of the infected individuals and the removed individuals for N = 5.
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In Figures 7–9, we compare the residual absolute error functions of the SIR model (31)
for N = 5, N = 8 and N = 10. In addition, we compare the estimated absolute error func-
tions of the SIR model (31) for (N, M) = (5, 6), (N, M) = (8, 9) and (N, M) = (10, 11) in
Figures 10–12. Accordingly, we observe that as the value of N increases, the errors decrease.
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Figure 7. The residual absolute errors of the susceptible individuals for N = 5, N = 8 and N = 10.
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Figure 8. The residual absolute errors of the infected individuals for N = 5, N = 8 and N = 10.
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Figure 9. The residual absolute errors of the removed individuals for N = 5, N = 8 and N = 10.
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Figure 10. The estimated errors of the susceptible individuals for (N, M) = (5, 6), (N, M) = (8, 9)
and (N, M) = (10, 11).
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Figure 11. The estimated errors of the infected individuals for (N, M) = (5, 6), (N, M) = (8, 9) and
(N, M) = (10, 11).
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Figure 12. The estimated errors of the removed individuals for (N, M) = (5, 6), (N, M) = (8, 9) and
(N, M) = (10, 11).
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In Tables 4–6, we tabulate the residual absolute errors and the estimated absolute
errors of the SIR model (31) for (N, M) = (8, 9) and (N, M) = (10, 11). According to
Tables 4–6, we observe that as the value of N increases, the error decreases. Although
the residual absolute errors are better than the estimation absolute errors, the estimation
absolute errors are not bad either. In other words, the error estimation method presented in
Section 4 give very successful results.

Table 4. Comparison of the residual absolute errors and the estimated absolute errors of the
susceptible individuals.

Residual Absolute Errors Estimated Absolute Errors

ti |R1,8(t)| |R1,10(t)| |e1,8,9(t)| |e1,10,11(t)|
0 2.5055 × 10−5 1.7821 × 10−8 2.7755 × 10−22 6.9117 × 10−26

10 3.9551 × 10−7 1.0382 × 10−10 5.4301 × 10−5 3.0992 × 10−8

20 5.4811 × 10−8 1.0065 × 10−11 5.3574 × 10−5 3.1013 × 10−8

30 1.7356 × 10−14 1.7963 × 10−14 5.3476 × 10−5 3.1007 × 10−8

40 2.7206 × 10−8 5.4862 × 10−12 5.3568 × 10−5 3.1005 × 10−8

50 7.7954 × 10−8 2.3212 × 10−11 5.3686 × 10−5 3.0992 × 10−8

60 8.1501 × 10−15 6.2135 × 10−14 5.2078 × 10−5 3.03 × 10−8

Table 5. Comparison of the residual absolute errors and the estimated absolute errors of the
infected individuals.

Residual Absolute Errors Estimated Absolute Errors

ti |R2,8(t)| |R2,10(t)| |e2,8,9(t)| |e2,10,11(t)|
0 4.5783 × 10−6 1.5858 × 10−8 1.2801 × 10−23 4.7937 × 10−26

10 7.1278 × 10−8 9.2552 × 10−11 5.4365 × 10−6 1.5551 × 10−8

20 9.7302 × 10−9 9.0502 × 10−12 3.107 × 10−6 9.1025 × 10−9

30 1.0093 × 10−13 5.9179 × 10−14 1.7995 × 10−6 5.3174 × 10−9

40 4.6659 × 10−9 4.9293 × 10−12 1.0621 × 10−6 3.1079 × 10−9

50 1.3106 × 10−8 2.1138 × 10−11 6.4465 × 10−7 1.8073 × 10−9

60 3.4531 × 10−14 3.2251 × 10−14 1.1109 × 10−7 4.2956 × 10−10

Table 6. Comparison of the residual absolute errors and the estimated absolute errors of the
removed individuals.

Residual Absolute Errors Estimated Absolute Errors

ti |R3,8(t)| |R3,10(t)| |e3,8,9(t)| |e3,10,11(t)|
0 2.0477 × 10−5 1.9418 × 10−9 3.159 × 10−23 2.9812 × 10−26

10 3.2423 × 10−7 1.1024 × 10−11 4.8865 × 10−5 1.5403 × 10−8

20 4.5081 × 10−8 1.0284 × 10−12 5.0467 × 10−5 2.1872 × 10−8

30 1.4048 × 10−14 5.2996 × 10−14 5.1677 × 10−5 2.5652 × 10−8

40 2.254 × 10−8 5.4701 × 10−13 5.2506 × 10−5 2.786 × 10−8

50 6.4847 × 10−8 2.2316 × 10−12 5.3041 × 10−5 2.9147 × 10−8

60 2.9582 × 10−15 4.9546 × 10−14 5.1967 × 10−5 2.9831 × 10−8

6. Conclusions

This paper proposes a numerical method for an SIR model to investigate the present
condition of COVID-19 disease contamination and to estimate its future improvements in
Turkey. The parameters and the initial conditions of this model are determined by using real
data. The presented method is a collocation approach based on the Pell–Lucas polynomials.
According to the Pell–Lucas collocation method, the SIR model is reduced to a system of
nonlinear algebraic equations. The solutions of this nonlinear algebraic system determine
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coefficients of the Pell–Lucas polynomial solutions of the SIR model. Additionally, two
error analyses are made. According to Figures 2–4, it is interpreted that although the
susceptible population is decreasing, the infected population and the removed population
are increasing. Also in Figure 5, it is observed that the removed population increases from
378 to 17,667 for the same value of N whereas the infected population increases from 3013
to 8685 for N = 5. In the 60-day period from 4 April 2020, an increase in the number of the
infected patients is observed. Nevertheless, a faster increase is observed in the number of
the removed patients. In that case, we expect that the pandemic will diminish when enough
isolation precautions are continued. In Figure 6, we compare the approximate solutions
SN(t), IN(t), RN(t) for N = 5 with those of the Runge–Kutta method. Accordingly, it
is concluded that the graphs obtained from the presented method and the Runge–Kutta
method are similar.

In Figures 7–12 and Tables 4–6, we examine the residual absolute errors and the
estimated absolute errors of the approximate solution functions. According to these, we
deduce that as the value of N increases the error decreases. Even though, the residual
absolute errors are better than the estimation absolute errors, the estimation absolute errors
are not bad either. Accordingly, we comment that the Pell–Lucas collocation method is the
effective method to get the approximate solutions of the SIR model. A limitation of the
method is that the individuals R(t) in the model represents the number of individuals who
both recovered and died. However, the method can be improved by making necessary
adjustments to the model. A more important advantage of the method than all these
advantages is that the parameters in the model can be determined for different countries,
and this method can be developed for other countries as well. Moreover, this method can
be developed for similar infections. In the future, in similar epidemic situations, the method
can be applied by determining the parameters of the model and the initial conditions in the
model. Moreover, the results are obtained in a very short time thanks to the code written
in MATLAB. Hereby, the cautious provisions can be made to minimize infections and to
intercept an overloading of the health system.
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71. Atangana, A.; Araz, S.İ. Modeling third waves of Covid-19 spread with piecewise differential and integral operators: Turkey,
Spain and Czechia. Results Phys. 2021, 29, 104694. [CrossRef]

72. Dönmez Demir, D.; Lukonde, A.P.; Kürkçü, Ö.K.; Sezer, M. Pell–Lucas series approach for a class of Fredholm-type delay
integro-differential equations with variable delays. Math. Sci. 2021, 15, 55–64. [CrossRef]
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