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Abstract: Rainy degeneration damages an image’s visual effect and influences the performance
of subsequent vision tasks. Various deep learning methods for single image deraining have been
proposed, obtaining appropriate recovery results. Unfortunately, most existing methods ignore the
interaction between rain-layer and rain-free components when extracting relevant features, leading
to undesirable results. To break the above limitations, we propose a progressive hybrid-modulated
network (PHMNet) for single image deraining based on the two-branch and coarse-to-fine framework.
Specifically, a hybrid-modulated module (HMM) with a two-branch framework is proposed to blend
and modulate the feature of rain-free layers and rain streaks. After cascading several HMMs in
the coarsest reconstructed stage of the PHMNet, a multi-level refined module (MLRM) is adopted
to refine the final deraining results in the refined reconstructed stage. By being trained using
loss functions such as contrastive learning, the PHMNet can obtain satisfactory deraining results.
Extended experiments on several datasets and downstream tasks demonstrate that our method
performs favorably against state-of-the-art methods in quantitative evaluation and visual effects.

Keywords: image deraining; hybrid-modulation feature; two-branch framework

MSC: 68U10

1. Introduction

Image rain degeneration is hard to avoid when capturing images by cameras in rainy
weather. The presence of rain is an undesirable factor. Due to the strong scattering and
reflection of light, the rain streak would blur the background scene and change the color of
objects and the content of the final images. Rainy degeneration damages the visual image
quality, which always affects human visual perception and the performance of downstream
vision tasks, such as object detection [1,2], image segmentation [3], and recognition [4].

Furthermore, although the performance of downstream vision tasks has been im-
proved recently with deep learning technologies, heavy rain degradation would seri-
ously reduce the processing accuracy of existing pre-trained models for downstream
tasks. We take the object detection task as an example. The pre-trained model YOLOv5
is an optimized version based on YOLOv4 [5]. The model parameter provided from
https://github.com/ultralytics/yolov5 can obtain an effective and similar performance for
processing clear and light-rainy images. In contrast, the heavy-rainy images would lead to
false detection, as shown in Figure 1. Therefore, how to restore the heavy-rainy images is a
critical issue for visual image applications.
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Figure 1. The pre-training model YOLOv5 based on COCO dataset processes the (a) clear images and
the (b) light-rainy images effectively. However, it would lead to missing detection or false detection
when the model YOLOv5 processes the (c) heavy-rainy images.

The solution to the single image deraining (SID) issue is to restore the clean and
rain-free background image from the rainy image. It is difficult because we not only need
to remove the rain streaks but also need to recover the background of the rain-streak area
simultaneously. Early researchers of the single-image deraining issue mainly focus on
filter-based methods [6] and prior-based methods [7]. These methods perform well for
light-rainy images but not for heavy-rain images. Meanwhile, most of the above methods
have a high time consumption.

Recently, with the rapid development of deep learning techniques, many single image
deraining methods have been proposed [8–10], mainly including sequential frameworks
and multi-branch frameworks. Sequential frameworks [11,12] either directly learn to
estimate rain-free components of maps from rain images or estimate rain traces after
obtaining rain layer components and before obtaining rain-free images. For example,
RESCAN [12], a well-known recursion-based SID method, sequentially extracts rain streaks
from the input rain images. However, this framework has difficulty in recovering the details
of rain-free images after subtracting rain streaks from the rainy images in a simple pixelwise
manner, as shown in Figure 2c,d. On the other hand, the multi-branch framework [13,14]
trains the maps to estimate both the rain-free component and the rain-layer component
or other side information. For example, DerainCycleGAN [15] uses parallel networks
and multiple networks to process both the rain layer and rain-free images. For the multi-
branch framework, each component is estimated by an independent sub-network, and the
interaction of different components is ignored during depth feature processing. Therefore,
it is easy to cause the artificial ringing effect in deraining results, as shown in Figure 2e,f.

In particular, we observe that the rain streak layer has a serious blocking effect and
interference with the background, especially for heavy-rain images. Meanwhile, part of
the background area (sky, water, etc.) would affect the rendering of rain streaks. There-



Mathematics 2023, 11, 691 3 of 20

fore, we assume that the rain-free component and rain-streak component interfere with
each other, making it difficult to separate the rain-streak component from the rain-free
component cleanly. As shown in Figure 2, no matter whether there are sequential frame-
works [12,16] or multi-branch frameworks [13], the deraining results from these methods
both display serious rain-streak traces, since they ignore the interaction between rain-streak
and background.

(f) (g) (e) (d) (b) (a) (c) 

Figure 2. Comparisons of deraining results on (a) Rainy image. (b) Ground-truth. (c,d) The results
from sequential frameworks (RESCAN [12], MPRNet [16]). (e,f) The results from multi-stream
frameworks (MSPFN [13], PCNet [17]). (g) Deraining result from our framework.

To break the above limitations, we propose a progressive hybrid-modulated network
(PHMNet) for single image deraining within the two-branch and coarse-to-fine framework.
More specifically, we design a hybrid-modulated module (HMM) to obtain rich features
by indicating the interaction between the rain-free branch and the rain-streak branch.
The HMM extracts the pure feature of each component progressively after blending and
modulating the features of the rain-free image and rain streaks two times. Furthermore,
a coarse-to-fine framework, including the coarsest reconstructed stage (CRS) and refine
reconstructed stage (RRS), has been employed to construct the final deraining image with
rich details. Finally, we employ the physical model to guide the generation of rain-free
images and rain streaks from the CR stage while using a contrastive-learning manner to
promote the quality of the final deraining image from the RR stage.

It is noted that the existing progressive coupled network (PCNet) [17] is proposed
for image deraining by coupled representation modules (CRM) within a multi-stream
framework. The features of the rain-free and rain-streak components are modulated only in
the last part of each CRM by the joint features, respectively. Unlike the CRM, the proposed
HMM adaptively modulates the feature of each component by just using one component.
For instance, the previous rain-free feature is used to guide the next rain-streak feature
and rain-free feature at the first stage of HMM, while the rain-streak information is used to
exploit the next rain-free component and rain-streak feature at the second stage of HMM.
Therefore, we alternately modulate features of the rain-free component and rain-streak
component within the proposed HMM. Motivated by the spatial properties of rain streaks
and objects, we introduce the spatial attention mechanism to represent further guided
information of rain-free layers and rain streaks, which achieves better performance in
image deraining (see Section 4.3).

The contributions of this paper are summarized as follows:

• We propose the HMM with a new blending and modulating form for extracting the
latent feature between the rain-free branch and rain-streaks branch. The features
of the rain-free component and rain-streak component are alternately modulated in
each HMM.

• To enhance the quality of the final deraining image, we further propose the PHMNet
with the two-branch and coarse-to-fine framework by cascading serval HMMs in the
coarsest reconstructed stage and employing the multi-level refined module (MLRM)
in the refined reconstructed stage.



Mathematics 2023, 11, 691 4 of 20

• Extensive experimental results for the proposed PHMNet have been reported, which
has achieved better performance than existing state-of-the-art single image derain-
ing methods.

The structure of this paper is established as follows. The related works about SID and
feature modulation are reviewed in Section 2. Section 3 introduces the proposed PHMNet
and how to solve single image deraining. In Section 4, experimental results about the
proposed PHMNet and other state-of-the-art methods are demonstrated. Finally, Section 5
presents the conclusions of this paper.

2. Related Work
2.1. Single Image Deraining

The single image deraining task aims to restore a rain-free image from a rainy one, which
is the basis for other downstream computer vision tasks, such as object detection [1,18], surveil-
lance [19], and scene analysis [20,21]. High-quality images are key to further analyzing
latent information and application. Therefore, to improve the quality of deraining images,
the solution of removing rain from a single image has increasingly attracted researchers’
attention [6,22–26]. The main attempt is using guided-filter methods [6,27] and prior-based
methods [7,22] to solve the single-image deraining issue. They perform well for processing
rainy images with fixed rain levels while failing with complex rain conditions.

Recently, deep learning-based methods have been used for many image restoration
tasks, including image deraining, image deblurring [28], and image super-resolution [29].
For single image deraining, the existing deep learning-based methods can be simply
divided into sequential frameworks and multi-stream frameworks.

2.1.1. Sequential Frameworks

The sequential frameworks for SID aim to handle the single task (either the estimated
rain-free image or the estimated rain streak) from the input rainy image sequentially,
where data flow linearly [30,31]. For instance, Fu et al. [11] proposed a deep-learning
architecture for estimating rain-free images after extracting the detail by a priori image-
domain knowledge. ReMAEN [32] used the single-branch framework to extract rain streaks
from the input rainy image and then obtained the rain-free image based on the physical
model. However, it is hard to process the heavy-rain scenes. Further, Yasarla et al. [23,33]
used different distortion-level information, including density, direction of rain streaks, and
location quality, to extract the residual map of rain streaks and improve the quality of
deraining results. Wang et al. [24] developed a quasi-sparse distribution to approximate
the sparsity of rain streaks for training an image-deraining network. Further, attention
mechanisms are used to improve the performance of image deraining in the single-branch
framework [16,34]. For example, Chen et al. [25] proposed the multi-scale hourglass
extraction block with an attention mechanism to improve the accuracy of extracted features
during image deraining. Wang et al. [35] used self-attention for extracting the importance
features after feature aggregation with different scales.

2.1.2. Multi-Stream Frameworks

The multi-stream framework trains the mapping on estimating the formulation com-
ponents of the rain-image model, or other side information from the input rainy image
simultaneously [13,15,36]. For example, Deng et al. [14] explored the single-image de-
raining method using the context aggregation network, which includes a two-branch
framework for learning the rain streak and image detail, respectively. Further, some articles
proposed the multi-branch framework for extracting the components of a new rain image
physical model, such as a haze-like effect [37] and vapor effect [38]. Zhu et al. [39] used
a physical model to remove rain streaks from the input rainy images, which consists of a
rain streak network, rain-free network, and guide-learning network. Similarly, ref. [26] also
proposed a two-stage progressive network based on the physical model for deraining. In
particular, some articles [17] couple and blend different components in the multi-stream
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framework. Zhang et al. [40] presented a density-aware image deraining method using
a multi-stream dense network. Similarly, ref. [41] proposed a hybrid block within the
multi-stream framework for extracting the rain streaks more precisely.

2.2. Feature Modulation

Feature modulation can replace existing feature parameters by using information
learned from additional conditions. In common, traditional feature normalization modules,
batch normalization (BN) [42], instance normalization (IN) [43], and group normalization
(GN) [44] are deep learning techniques for training networks effectively. In addition,
several vision tasks, namely image style translation [45], visual question answering [46],
and image super-resolution [47], introduce external conditional information into deep
learning networks for obtaining a suitable optimized solution. In [48], latent features within
the model are directly modulated by the external semantic information, which is used
to generate super-resolution images. Liu et al. [49] used the high frequency of different-
scale images for modulating the intermediate features and achieved better deblurring
results. Inspired by the above thesis of feature modulation, the hybrid-modulated module is
proposed for image deraining, which is used to blend and modulate one formula component
by the attentive information from the other formula component.

3. The Proposed Method
3.1. Motivation

In general, the physical model for the rainy image is written as follows [50]:

I = J + R (1)

where I, J, and R denote the rainy image, rain-free image, and rain streak, respectively.
Sequential frameworks either directly estimate the rain-free image J from rainy image

I, or estimate the rain streak R∗ before obtaining the J by using the formulation J =
I − R∗, as shown in Figure 3a. On the other hand, as shown in Figure 3b, a multi-branch
framework estimates the formulation components of model (1) or other side information
simultaneously. In particular, the framework of PCNet [17] is a special form of multi-branch
framework, as shown in Figure 3c. The refined features of Jn+1 and Rn+1 are explored
after concatenating the features of Jn and Rn. However, different elements of Rn have
different refinement effects on the Jn+1, while some elements even play the opposite role.
Meanwhile, elements of Jn also have similar characteristics.

Therefore, we proposed a new framework to estimate the formulation components
of model (1), as shown in Figure 3d. Here, the features Jn+1 and Rn+1 are refined after
the previous features Jn and Rn are decoupled by using attention units, respectively. In
this way, each component can be modulated by the appropriate information from the
previous feature.

1nJnJ
(a)

nR 1nR

nJ 1nJ

(b)

C

nJ 1nJ

nR 1nR

(c)

1nJnJ

1nRnR AU

AU

(d)

Figure 3. The basic flow of different frameworks. Here, C(·) denotes the concatenation operator
and AU(·) denotes the attention unit. (a) Sequential framework. (b) Multi-branch framework.
(c) PCNet [17]. (d) Our framework.

3.2. Overview

Figure 4 shows the overall structure of the proposed PHMNet that is based on a
two-branch and coarse-to-fine framework for single image deraining. To obtain the hybrid-
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modulated feature of two components and fuse different-level spatial information, we
design two modules: (1) HMM with the attention mechanism is used to modulate the
feature between the rain-free branch and the rain-streak branch. (2) MLRM is designed to
improve the feature representation capability by fusing global and local information. Here,
the process of the proposed framework is described in detail as follows.

CR

H
M
M

···

Coarsest reconstructed stage

C
Convolution

 layer 

+ Pixel-wise 
summation

CR  Convolution 
layer and ReLU

Skip 
connection

CR

TC C
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with size n UP

Upsample 
layer

T Tanh

H
M
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···
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CR MLRM

P2

P4

P8

P16

UP

UP
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+

+

Loss 
calculation

JGT

*R

I *J
cJ

CLL

pL

Figure 4. The structure of the proposed PHMNet. The HMM blends and modulates the features of
the rain-free image and rain streaks. The MLRM concatenates and refines the feature. Lp and LCL

denote the physical loss term and contrastive-learning loss term, respectively.

3.2.1. Coarsest Reconstructed Stage (CRS)

Given a rainy image Irain, we obtain the coarse results of rain-free and rain streaks
in the CRS. Specifically, we first extract the preliminary feature of the rain-free layer and
rain-streak layer by using 1× 1 convolution, respectively. Then, the rain-free feature f 0

J and
rain-streak feature f 0

R are fed into the cascaded several hybrid-modulated modules (HMMs)
for obtaining the rain-free and rain-streak feature representation. Here, the rain-free and
rain-streak features are modulated in each HMM. Finally, the outputs of the CR stage
include the coarse rain-free image Jc and rain streak R∗ after using the 1× 1 convolution
and long-skip connection. The above process is presented as follow:

f 0
J = ConvJ

1(Irain)

f 0
R = ConvR

1 (Irain)

Jc = ConvJ
3(H(( f 0

J , f 0
R)) + f 0

J )

R∗ = ConvR
3 (H(( f 0

J , f 0
R)))

(2)

where Conv#
i denote the convolution layer with filler i × i in the # ∈ {BJ, BR} branch;

namely, BJ denotes the rain-free branch, and BR denotes the rain-streak branch. H(·)
denotes the cascaded several HMMs.

3.2.2. Refined Reconstructed Stage (RRS)

Furthermore, we produce the refined deraining result in the RRS by using the results
from the CR stage. We first get the fused feature f JR by using two 3× 3 convolution layers
after concatenating the coarse rain-free image Jc and rain streak R∗. Further, the fused
feature f JR is fed into the multi-level refined module (MLRM) and generates the refined
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feature f ∗J . Finally, we use a convolution layer and a tanh function to obtain the refined
deraining image. The above process is presented as follows:

f JR = Conv(Jc, R∗)

f ∗J = FM( f JR)

J∗ = T(Conv( f ∗J ))

(3)

where Conv(·) and T(·) denote the convolution layers and tanh function, respectively.
FM(·) denotes the MLRM.

3.3. Hybrid-Modulated Module

As in the previous introduction, the features of the rain-streak branch and rain-free
branch affect each other while preserving the critical features in each branch. Therefore, we
propose the HMM to modulate the information for preserving features.

As shown in Figure 5, taking the (t − 1)-th HMM as an example, the main principle
of HMM is described as follows. For each HMM, the rain-free attention mask is first
generated from the initial rain-free feature and is used to modulate and obtain the primary
representation of rain-free content and rain streaks ( f mid

J and f mid
R ), respectively. Then, the

rain attention mask is extracted from primary representation f mid
R , which is then used to

modulate the features f t
J and f t

R. Through this strategy, the HMM can encode the blending
relations and obtain the refined representation of the rain-free content and rain streaks.
Therefore, the final output of the modulated feature of the two components is formulated
as follows:

f mid
J = ConvRJ

1(α1MJ ⊗ f t−1
J )

f t
J = ConvRJ

2( f mid
J ⊗ β1MR) + f t−1

J

f mid
R = ConvRR

1 (α2MJ ⊗ f t−1
R )

f t
R = ConvRR

2 ( f mid
R ⊗ β2MR) + f t−1

R

(4)

where f t−1
J and f t−1

R are feature maps from the rain-free branch and rain-streak branch in
the (t− 1)-th HMM, respectively. MJ and MR are attention maps based on the image feature
f t−1
J and primary representation f mid

R , respectively. Meanwhile, ConvRJ
i , ConvRR

i , i = 1, 2
denote the convolution layer with ReLU operator in the rain-free branch and rain-streak
branch, respectively. αi, βi, i = 1, 2 are the learnable parameters to fuse the features from
different branches based on the attention maps, while we set ∑i αi = 1 and ∑i βi = 1. After
cascading several HMMs, we can effectively and progressively learn the latent feature of
the rain-free layer and rain streaks, as shown in Figure 5.

Note that the important feature of one branch is preserved by employing the spatial
attention module. Then, these features are used to modulate the features of two branches
simultaneously. Here, we introduce the spatial attention unit (SAU) to extract the spatial
attention map of features [51]. As shown in Figure 5, the input feature map f t−1

J of the first
SAU is used to extract the attention map MJ with size 1× H ×W:

MJ = S(Fsa(Cat(GMP( f t−1
J ), GAP( f t−1

J )))) (5)

where Fsa(·) denotes the convolution layers in the SAU and S(·) denotes the sigmoid
function. Cat(·) denotes the concatenation. The attention map MJ explores the spatial
positions that are essential for recovery of the deraining features and the preservation of the
raining feature. Similarly, the input feature map of the second SAU is the middle feature
map f mid

R for extracting the attention map MR with size 1× H ×W:

MR = S(Fsa(Cat(GMP( f mid
R ), GAP( f mid

R )))) (6)
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It should be noted that the attention map MR guides the deraining branch for producing the
more distinguished feature representation and preserving the critical spatial information,
as shown in Figure 6. During training, the model achieves better performance with SAU
than with other attention ways (Section 4.3).

+

+

Attentiom 
Unit

R C

R ReLU

C  Convolution layer

+ Pixel-wise summation

C Concatenation

Element-wise product

Skip connection

Attentiom 
Unit

R C R C

R C

1
IM

2
IM

2
RM

1
RM

GMP

GAP

S

GMP Global max pooling GAP Global average pooling S Sigmoid function

SAU

CC

1t
Jf

1
R
tf t

Rf

t
Jf

Figure 5. The architecture of the proposed hybrid-modulated module (HMM). Here, the spatial
attention unit (SAU) is an example of the attention unit (AU).

(a) (b) (c) (d) 

Figure 6. The feature visualization of the rain-free layer (the first row) and rain streak (the second
row) from (a) 1st HMM, (b) 4th HMM, (c) 7th HMM, (d) output of CR stage.

3.4. Multi-Level Refined Module

Combining multi-level features has been widely employed in several vision tasks [39,52].
Inspired by the previous work [39] that employs the Unet-likely framework with multi-scale
residual block for restoring deraining results, we use a single multi-level refined module to
refine the final deraining image after obtaining the coarse deraining result and rain streaks
from the CR stage. As shown in Figure 4, we first extract the fused feature representation
after concatenating the coarse results from the CR stage. Then, we introduce four-level
pool-upsample operators to obtain the global context and local structure information with
different scales from the fused feature. Each pool-upsample operator has a pooling layer
and an upsampling layer. Here, the size of four pooling layers is set as 2, 4, 8, and 16,
respectively. Each upsampling layer is used to process pooling features like the size of
the fused feature. Finally, the refined deraining result is estimated after concatenating all
pool-upsampling features and fused features.
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3.5. Total Loss Function

The proposed PHMNet is optimized to obtain a deraining image by using the total
loss function as follows:

L = LRe + LSSIM + λpLp + λCLLCL (7)

where LRe denotes the reconstruction loss term for the coarse deraining result and the
refined result, LSSIM denotes the SSIM loss term [39], Lp denotes the physical model loss
term, and LCL denotes the contrastive-learning loss term. λp and λCL are hyper-parameters
for balancing the importance of Lp and LCL, respectively.

In this paper, the reconstruction loss is defined by using L1-norm [53] for measuring
the difference among the ground-truth image Jgt, the coarse result Jc, and the refined result
J∗, respectively:

LRe = λc
∥∥Jc − Jgt

∥∥
1 + λr

∥∥J∗ − Jgt
∥∥

1 (8)

where λc and λr are hype-parameters.
Then, we use the physical model loss term [39] to guide the CR stage for extracting the

rain-free image and rain streaks. According to the physical model (1), the physical model
loss term is set by L1-norm as follows:

Lp = ‖Jc + R∗ − I‖1 (9)

Contrastive learning [54–57] aims to learn a representation for pulling close to the
positive sample and pulling far with negative samples, which has been widely employed
in the computer vision field. It is noted that the existing contrastive-learning method
for image dehazing [58] only constructs the latent feature representation space based on
a pre-trained VGG. To construct a more accurate latent-feature space for characterizing
rainy and clear images, we construct the latent-feature representation space based on the
pre-trained classification network that is used to recognize rainy or clear images. Here the
pre-trained classification network is constructed according to the Inception Network [59].
Therefore, we construct the contrastive-learning loss term based on [54,55] as follows:

LCL =
Dc

(
FPRnet

(
Jgt

)
, FPRnet(J∗)

)
Dc(FPRnet(Irain), FPRnet(J∗))

(10)

where FPRnet denotes the pre-trained rain-classifier network used to extract the representa-
tion feature from the ground-truth image Jgt, the refined result J∗, and the rainy image Irain,
respectively. Dc(x1, x2) denotes the cosine distance between x1 and y1. Here, the refined
deraining image J∗ is set as the anchor. The ground-truth image Jgt is set as the positive
sample, while the input raining image Irain is set as the negative sample.

4. Experimental Results
4.1. Experimental-Setting Details

Comparison Methods and Evaluation Metrics. In this section, several single-image
deraining algorithms, consisting of sequential methods (ReMAEN [32], RESCAN [12], and
MPRNet [16]) and multi-branch methods (DID-MDN [40], MSPFN [13], and PCNet [17]),
are compared with the proposed PHMNet. All comparison methods are trained with
their public codes and setting parameters performed by the same dataset. Furthermore,
three quality assessment metrics (peak signal-to-noise ratio (PSNR), structural similarity
(SSIM), and learned perceptual image patch similarity (LPIPS) [60]) are used to evaluate
the experimental results for displaying the quality of deraining results. Here, the PSNR
is used to measure the degree of image distortion. The higher the PSNR score, the less
image distortion. The metric SSIM is based on three comparative measures between the
restored image and ground truth, including brightness, contrast, and structure. The higher
the SSIM score, the higher the image similarly. Meanwhile, the metric LPIPS is based on the
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perceptual loss between the restored image and the ground truth. The smaller the LPIPS
score, the better the image quality.

Datasets. We construct the training dataset from dataset [53] and the DID-MDN
dataset [40]. Our training dataset here includes 15,600 image pairs with clear and rainy
images. For the testing set, we choose the test samples from [53], including 200 heavy-rain
images, named Rain200H. Meanwhile, the common synthetic rainy dataset from DID-
MDN [40] with 1200 rainy images, named Test1200, is also used to evaluate the deraining
methods. Furthermore, we choose the real data Real300 [61] to evaluate the proposed PHM-
Net. In particular, an unpaired rain/clear dataset is collected from Gopro [62], FLIR [63],
and the above training dataset, then used to train the pre-trained rain-classifier network
about the CL loss. The unpaired dataset includes 15,560 rainy images and 15,786 clear
images. After using data augmentation with this dataset, we train the pre-trained rain-
classifier network, which is used to recognize the rainy or clear image. Finally, based on this
pre-training classification network, we construct the latent feature-representation model
for the CL loss.

Training Details. The overall PHMNet is trained in an end-to-end manner based on
the PyTorch framework. To enhance the trained performance of PHMNet, we crop the
image patches of size 256× 256 as the new training sample. During 200 training epochs,
we use Adam as the optimizing solver with β1 = 0.9 and β2 = 0.999. Furthermore, the
learning rate is set as 0.001 initially while changing by the cosine annealing strategy [64].
Our network is performed on four RTX-2080 GPUs. The batch size is set as 12, which is set
based on the validation of the experimental results. In the baseline, the number of HMMs
is set as 8 in the CR stage. The parameters λp and λCL of function (7) are set as 2 and 0.001,
respectively, while the parameters λc and λr of function (8) are set as 1 and 1, respectively.

4.2. Comparison with Methods

Synthetic Datasets. We evaluate all test images from Rain200H and Test1200 on the
compared methods and use quantitative measures (PSNR, SSIM, and LPIPS) to measure
the reconstructed results, respectively. Thus, the PSNR, SSIM, and LPIPS performances are
reported in Table 1. It is noted that the proposed PHMNet outperforms other compared
methods on the dataset Rain200H and dataset Test1200. On the dataset Rain200H, with heavy
rain distributions, our method achieves improvement about 0.53 dB on PSNR, 0.0087 on
SSIM, and 0.0124 on LPIPS compared to the sequential framework ReMAEN [32] with the
second top performance. Similarly, on the other dataset Test1200, with multiple types of rain-
streak distribution, the proposed method also gets the best results. Furthermore, compared
to the existing best multi-stream framework (PCNet [17]), the proposed method has a large
improvement of about 1.31 dB on PSNR, 0.0342 on SSIM, and 0.0128 on LPIPS with dataset
Test1200, further verifying the effectiveness of its feature modulated mechanism between
the rain-streak layer and the rain-free layer.

Table 1. Metric values (PSNR/SSIM/LPIPS) of the proposed PHMNet and the compared methods
on the synthetic datasets. (↑) indicates higher scores, better image quality. (↓) indicates smaller scores,
better image quality. Best results are marked in bold.

Metric PSNR (↑) SSIM (↑) LPIPS (↓)

Data Rain200H/Test1200

ReMAEN [32] 27.43/28.18 0.8660/0.8738 0.1723/0.1456
RESCAN [12] 26.63/31.20 0.8355/0.9026 0.2161/0.1405
MPRNet [16] 27.30/31.04 0.8614/0.8861 0.1805/0.1529

DID-MDN [40] –/27.93 –/0.8662 –/0.1692
MSPFN [13] 23.88/22.57 0.7974/0.7809 0.1891/0.1859
PCNet [17] 25.77/30.19 0.8436/0.8792 0.2103/0.1426
PHMNet 27.96/31.50 0.8747/0.9134 0.1647/0.1298



Mathematics 2023, 11, 691 11 of 20

Figures 7 and 8 show several visual deraining results of different methods from the
test dataset. For heavy rainy scenes, the proposed method performs favorably against other
deraining methods, including the sequential frameworks and multi-stream frameworks, as
shown in Figure 7. Although the RESCAN [12] gets high evaluation values for deraining
results, there are blurry edges that affect the visual quality (Figure 7c). As zoomed into the
cloudy regions from the second and fourth rows in Figure 7, the proposed PHMNet removes
the rain streak in the sky and enhances the edge details of the cloud. Compared to other
deraining methods, the proposed method successfully removes most rain streaks, enhances
visibility, and lights up details in edge regions. On the other hand, for scenes with more
diverse rainfall distributions, as shown in Figure 8, due to the feature hybrid-modulation
mechanism, the proposed method outperforms other multi-branch framework methods,
such as DID-MDN [40], MSPFN [13], and PCNet [17] on dataset Test1200. Specifically, as
shown in the first, third, and fourth rows of Figure 8, the texture and details of the building
structure damaged by rain streaks can be clearly reconstructed by the proposed PHMNet,
while other methods are affected by blur and artificial ringing. Similar situations can be
found by comparing the restored sky regions of the second row of Figure 7, the hurdle
regions of the fifth row of Figure 8, and the body regions of the sixth row of Figure 7.

Real-world Dataset. To demonstrate the effect of the proposed method, several
experiments by different methods on real-world dataset Real300 are displayed in Figure 9.
This dataset includes more challenging rainy images with unknown degradation, which
have different real-world scenes, including daytime and nighttime. Due to the lack of
the corresponding ground-truth clear images, the generated deraining images are only
evaluated qualitatively. Compared with other methods, the proposed PHMNet can remove
the rain streaks and obtain acceptable deraining results, as shown in Figure 9i. Our method
not only removes the rain streaks and retains the shape’s edges (Figure 9i) but also obtains
the suitable rain-streak image (Figure 9j). Most other methods cannot process this rainy
image well, retaining tiny rain streaks. Specifically, for daytime scences, as shown in the
first, second, and fourth rows of Figure 9, the proposed PHMNet can remove the rain streak
and reconstruct the details of the background, including branches, trunks, and leaves of a
tree. For black backgrounds or nighttime scences, the deraining result from the proposed
method has fewer rain streaks than that of results from other methods. In particular, the
proposed method performs better than other methods, generating a clear result with few
rainy streaks in the vehicle-light area, as shown in the results in the fifth row of Figure 9.

(a) (b) (c) (d) (e) (g) (h)(f) (i) (j)

Figure 7. The de-raining results of the synthetic dataset Rain200H by comparing SOTA methods.
(a) Rainy image. (b) Ground-truth. (c–g) Results from RESCAN [12], MPRNet [16], PCNet [17],
ReMAEN [32], MSPFN [13]. (h) Deraining result from CR stage of our method. (i) Deraining result
from RR stage of our method. (j) Rain streak by our method. Please zoom in to see clearly.
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(a) (b) (c) (d) (e) (g) (h)(f) (i) 

Figure 8. The visualization results by comparing SOTA methods from the synthetic dataset Test1200.
(a) Rainy image. (b) Ground-truth. (c–g) Results from RESCAN [12], MPRNet [16], PCNet [17],
ReMAEN [32], DID-MDN [40]. (h) Deraining result from CR stage of our method. (i) Deraining result
from RR stage of our method. Please zoom in on the red region to see clearly.

(a) (b) (c) (d) (e) (g) (h)(f) (i) (j) 

Figure 9. The visualization results by comparing SOTA methods from the real-world dataset
Real300. (a) Rain image. (b–g) Results from RESCAN [12], MPRNet [16], PCNet [17], ReMAEN [32],
MSPFN [13], DID-MDN [40]. (h) Deraining result from CR stage of our method. (i) Deraining result
from RR stage of our method. (j) Rain streak by our method. Please zoom in to see clearly.

Two Downstream Tasks. We use YOLOv5, an optimized version based on YOLOv4 [5],
to verify the image quality restored by different deraining methods in the object detection
tasks. The model parameter is provided from https://github.com/ultralytics/yolov5,

https://github.com/ultralytics/yolov5
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accessed on 15 July 2022. Meanwhile, the MTCNN [65] is also used to demonstrate the
image quality restored by different deraining methods in the face detection tasks. For
object detection tasks, the proposed method provides restored images with higher quality,
which leads to less misdetection. For instance, since the restored images from MPRNet [16]
and PCNet [17] have noticeable rainy streaks, all cars are recognized as trains or trucks,
as shown in the second row of Figure 10c,d. Furthermore, as shown in the third row of
Figure 10, the deraining image resulted from the proposed method can provide higher
quality information to detect the details of two buses, while only one bus can be detected
in the other deraining results.

For the face detection task, MTCNN [65] processes the images recovered by our
method with stable detection results, as shown in Figure 11g. Although the MPRNet [16]
can yeild the deraining results for detecting all facial regions, its deraining results contain
tiny rain streaks. Meanwhile, we observe that the recovered images from some deraining
methods, such as RESCAN [12] and DID-MDN [40], are not able to detect the correct face,
while the MTCNN [65] can detect the face from the corresponding rainy image. Therefore,
it is essential to construct a deraining method that can provide highly visual images and
does not affect the performance of downstream tasks.

Limitations. Since the training datasets do not include the rainy type of raindrops, the
proposed method can not remove the drop-like effect well, as shown in the second row of
Figure 9j. On the other hand, the loss function (9) is constructed by the physical model (1).
However, if the low-quality image has haze, water vapor, and other degradation factors,
the proposed model is hard to trained by using the loss function (9), which would lead to
unpleasant results. As shown in the second row of Figure 11g, the area of the chair of the
deraining result is unclear due to the water vapor. Therefore, future work is planned to
develop the new physical model including different degradation factors.

(a) (b) (c) (d) (e) (g) (f) 

Figure 10. The visualization results of object detection by YOLOv5 for images from different deraining
methods. (a) Rain image. (b–f) Tesults from RESCAN [12], MPRNet [16], PCNet [17], ReMAEN [32],
DID-MDN [40]. (g) Object detection result from our method. Please zoom in to see clearly and note
the red arrow.
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(a) (b) (c) (d) (e) (g) (f) 

Figure 11. The visualization results of face detection by MTCNN [65] for images from different
deraining methods. (a) Rain image. (b–f) Results from RESCAN [12], MPRNet [16], PCNet [17],
ReMAEN [32], DID-MDN [40]. (g) Object detection result from our method. Please zoom in to
see clearly.

4.3. Ablation Study

To demonstrate the contribution of various parts in PHMNet qualitatively and quanti-
tatively, some ablation experiments trained on the Rain200H dataset are shown as follows.
First, we explore the modulated mechanism of PHMNet between feature maps of rain-
streak and rain-free layers. Further experiments are shown to evaluate why spatial attention
is implemented in the HMM. Then, the effectiveness of each loss term is evaluated. Mean-
while, an ablation study of hyperparameters of a loss function has been provided. Finally,
an additional study on finding appropriate latent-feature space to construct contrastive
learning loss is presented.

Effect of Modulated Mechanism. Here, a baseline is constructed by removing the
feature modulation (FM) of the proposed HMMs. This means that both the rain-free branch
and the rain-streak branch of the baseline are constructed by several residual modules.
Figure 12 shows that PHMNet (HMM with FM) can achieve rapid feature modulation and
extraction, leading to more meaningful features. As shown in Figure 12b,c PHMNet’s third
module (the third row of Figure 12) extracts the outline feature of the object approximately,
while the third module of baseline (the first row) has not obtained effective features.
Meanwhile, PHMNet’s rain-streak branch extracts more effective spatial features of the
rain streak, as shown in the fourth row of Figure 12b,c. Furthermore, Table 2 shows that
the proposed PHMNet performs better than the baseline. In particular, the baseline results
in a large decrease of 2.06 dB on PSNR, 0.0077 on SSIM, and 0.0055 on LPIPS with dataset
Rain200H, validating the decision to use the feature modulation between the rain-free
branch and rain-streak branch. Thus, the proposed HMM with FM can extract more
valuable features, leading to better deraining results.

Table 2. Metric values (PSNR/SSIM/LPIPS) of the proposed method (HMM with the FM) and
baseline (HMM without the FM).

Method Metric

baseline 25.89/0.8670/0.1702
our method 27.96/0.8747/0.1647
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(a) (b) (c) (d) (e) 

Rainy image

The HMM 
without 
feature 

modulation

The proposed 
HMM 

Figure 12. The first and second row show the visualization results of the rain-free layer and rain streak
of the baseline (HMM without FM), respectively. The third and fourth row display the visualization
results of the rain-free layer and rain streak of the proposed PHMNet (HMM with FM), respectively.
The first column shows a rainy image. The results of other columns are from (a) 1st module, (b) 3rd
module, (c) 5th module, (d) 7th module, (e) output of CR stage.

Effect of the Proposed HMM. As introduced in Section 3.3, the proposed HMM is
designed by using two spatial attention units. Therefore, we compare the proposed HMM
with several baseline modules to verify the effect of spatial attention units. It is noted
that all baseline modules are designed by using the backbone of Section 3.3. The baseline
modules are shown as follows.

• HMM-CC: This baseline module is designed by replacing all attention units of HMM
with channel attention.

• HMM-CS: This baseline is designed by just using channel attention to replace the 1st
attention unit of HMM with channel attention.

• HMM-SC: This baseline just replaces the 2nd attention unit of HMM with channel attention.

It is noted that each baseline module is used to replace the HMM of the proposed
PHMNet and trained by the same training dataset and same loss terms as that of PHMNet.
Table 3 shows the metric values (PSNR/SSIM/LPIPS) of the deraining network with each
baseline module and the proposed HMM. Here, the baseline HMM-SC results in a large
decrease of 1.30 dB on PSNR, 0.0099 on SSIM, and 0.0134 on LPIPS with dataset Rain200H,
while the performance of the baseline HMM-SC decreases 1.14 dB on PSNR, 0.0025 on
SSIM, and 0.0002 on LPIPS with dataset Rain200H. Furthermore, the baseline HMM-CC
results in a large decrease of 0.65 dB on PSNR, 0.0172 on SSIM, and 0.0096 on LPIPS with
dataset Rain200H. The results show that spatial information plays an important role in
hybrid-modulating features within the HMMs, which leads to a better performance of the
proposed method.
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Table 3. Metric values (PSNR/SSIM/LPIPS) of the proposed HMMs with different attention mecha-
nisms. Our method uses the spatial attention in all attention units of HMM. Best results are marked
in bold.

Method
Position Metric

1st 1 2nd 1 PSNR SSIM LPIPS

HMM-CC CA 2 CA 27.31 0.8575 0.1743
HMM-CS CA SA 2 26.82 0.8722 0.1649
HMM-SC SA CA 26.66 0.8648 0.1781

HMM (our method) SA SA 27.96 0.8747 0.1647
1 1st and 2nd denote the first and the second attention unit in HMM, respectively. 2 CA and SA denote the channel
attention and spatial attention, respectively.

Effect of Different Loss Terms. In order to prove the effectiveness of the proposed
PHMNet loss function (7), several combinations of loss function terms are used to train
PHMNet. As shown in Table 4, the combination of different loss terms leads to consistent
improvement, and the combination of all these loss terms produces the best quantitative
results. In particular, after adding the loss term LSSIM to train a network with dataset
Rain200H, the network results in an improvement of 0.0068 on SSIM and 0.0144 on LPIPS
compared to that of a network trained by loss term LRe. It demonstrates that the loss
term LSSIM enhances the quality of the deraining results on the SSIM metric. Furthermore,
the network trained without the loss term Lp with dataset Rain200H results in a large
decrease of 1.23 dB on PSNR, 0.0007 on SSIM, and 0.0007 on LPIPS. Thus, the loss term
Lp combines the information of the input rain image and helps the proposed PHMNet
obtain improvement quality of the deraining images. It is noted that the loss term LCL also
improves the visual effect of the deraining result. The usage of the loss term LCL results in
a large improvement of 1.1 dB on PSNR, 0.0008 on SSIM, and 0.0007 on LPIPS for dataset
Rain200H. This benefits from using the latent feature to represent space to measure the
similarity and difference among the rainy image, restored image, and ground truth.

Table 4. Metric values (PSNR/SSIM/LPIPS) of the proposed PHMNet trained by different loss terms
with dataset Rain200H.

LRe Lp LSSIM LCL Metirc

X 26.47/0.8586/0.1835
X X 26.41/0.8604/0.1816
X X 26.71/0.8654/0.1691
X X X 26.84/0.8667/0.1717
X X X 26.73/0.8740/0.1654
X X X X 27.96/0.8747/0.1647

Effect of Different Hyperparameters. Taking the dataset Rain200H as an example,
we explore the performance of the proposed method with different hyperparameters of loss
function after using various image quality measurement methods (PSNR, SSIM, and LPIPS).
Here, we focus mainly on two hyperparameters of function (7), including λp and λCL.

On the one hand, hyperparameter λp is employed mainly to balance the influence
of physical model loss terms. Here, λp is set from 0.1 to 2. As shown in Table 5, the
performance of the proposed PHMNet is improving, while the value of λp is increasing. It
is noted that the proposed PHMNet has a very similar performance when λp is set to 1 or 2.
Therefore, λp is set to 2 in this paper. On the other hand, hyperparameter λCL is used to
constrain the importance of a contrastive-learning loss term. Here, λCL is set from 5× 10−4

to 1× 10−2. As shown in Table 6, the proposed PHMNet can achieve the best performance
when λCL is set to 1× 10−3. Furthermore, the performance of the proposed method would
be reduced when λCL is set to a large term, such as 1× 10−2. Therefore, λCL is set to 2 in
this paper.
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Table 5. Metric values (PSNR/SSIM/LPIPS) of the proposed PHMNet trained with different λp

hyperparameters. It is noted that other hyperparameters are fixed.

Value of λp Metric

0.1 26.90/0.8644/0.1725
0.5 27.12/0.8701/0.1698
1 27.88/0.8740 /0.1645
2 27.96/0.8747/0.1647

Table 6. Metric values (PSNR/SSIM/LPIPS) of the proposed PHMNet trained with different λCL

hyperparameters. It is noted that other hyperparameters are fixed.

Value of λCL Metric

0.01 27.23/0.8723/0.1747
0.005 27.83/0.8739/0.1646
0.001 27.96/0.8747/0.1647

0.0005 27.63/0.8729/0.1721

Rain Classifier Network for Contrastive-learning Loss. Existing image restoration
methods [58] only construct the latent feature representation space based on a pre-trained
VGG. In this paper, we construct the latent feature space as follows. Firstly, we construct
a rain-classifier network based on inception network [59] for discriminating whether the
input image is rainy. Then, we lose the last classified layer of the rain-classifier network
and fix the other parameter as the latent feature-representation model after training the RC
net. Finally, we construct the contrastive-learning loss as shown in Equation (10).

Table 7 shows that contrastive-learning loss based on the proposed rain classifier
network improves the performance of the proposed PHMNet. As shown in Table 7, the
usage of a rain classifier network for constructing contrastive-learning loss results in an
excellent improvement of 1.57 dB on PSNR, 0.0085 on SSIM, and 0.0066 on LPIPS for dataset
Rain200H. This means that the rain classifier network can provide stronger supervising
information on rain streaks and background to train the proposed method, resulting in
better image quality.

Table 7. Metric values (PSNR/SSIM/LPIPS) of the proposed PHMNet trained by the CL with
different feature representation space.

Method Metric

CL with VGG 26.39/0.8662/0.1713
our method 27.96/0.8747/0.1647

5. Conclusions

We propose a progressive hybrid-modulated network (PHMNet) for single image
deraining within a two-branch and two-stage framework. Firstly, the hybrid-modulated
module (HMM) with two branches is introduced to blend and modulate the feature of
the rain-free image layer and the rain streak layer, which refine the hybrid feature of each
component progressively. Then, we cascade several HMMs as the CRS and adopt the multi-
level refined module (MLRM) as the refined reconstructed stage (RRS), which can improve
the quality of the final deraining result. Finally, we employ the physical model to guide the
generation of rain-free images and rain streaks in the CR stage while using a contrastive-
learning manner to promote the quality of the final deraining image from the RR stage.
The quantitative and qualitative analysis of the experimental results demonstrates that the
proposed PHMNet performs favorably against state-of-the-art methods when processing
both synthetic and real-world datasets. The current framework based on a single physical
model has limitations that make it difficult to process a low-quality image with multiple
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degradation factors, such as haze, water vapor, and so on. Therefore, we plan to improve
the physical model and address these issues in future work.
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