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Abstract: In this work, we are concerned with the finite-time synchronization (FTS) control issue
of the drive and response delayed memristor-based inertial neural networks (MINNs). Firstly, a
novel finite-time stability lemma is developed, which is different from the existing finite-time stability
criteria and extends the previous results. Secondly, by constructing an appropriate Lyapunov function,
designing effective delay-dependent feedback controllers and combining the finite-time control theory
with a new non-reduced order method (NROD), several novel theoretical criteria to ensure the FTS
for the studied MINNs are provided. In addition, the obtained theoretical results are established
in a more general framework than the previous works and widen the application scope. Lastly, we
illustrate the practicality and validity of the theoretical results via some numerical examples.

Keywords: novel finite-time stability theorems; generalized MINNs; mixed time-varying delays; new
non-reduced order method

MSC: 93D40

1. Introduction

Neural networks (NNs) have garnered considerable attention from researchers, due to
being widely applied in numerous different fields, such as cryptography, model identifica-
tion, and signal processing [1–7]. The essential issues of these applications are to research
the dynamical behaviors of NNs. As a significant dynamical property, synchronization
has attracted wide-scale attention in recent years [8–12]. However, in the existing papers,
most of these published works are connected with infinite-time synchronization, such
as exponential synchronization and asymptotical synchronization [13–15]. Considering
that the lifespan of biologies and apparatus is limited, we always desire to obtain faster
or even finite-time convergent speed in practice. Hence, the investigation of FTS is more
meaningful [16–19]. In the meantime, compared with the infinite-time synchronization of
NNs, FTS has a better convergence rate and exhibits several other desirable features.

It is well known that conventional NNs are usually presented by first-order differential
equations. In 1986, Westervelt and Babcock established the NNs with an inertial item by
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adding the inductors into the NNs’ model, which could be described by a second-order
form [20]. Inertial neural networks (INNs) have evident engineering and biological back-
grounds, and the dynamical properties of INNs are more complicated than conventional
NNs [21–24]. Recently, some results on the dynamical behaviors of INNs, which include
periodicity, stability, dissipativity and so on, have been presented [25–29]. With the ap-
plication of INNs to various fields such as secure communication, signal processing and
image encryption [30–32], some further studies of the INNs are essential and significant.
Meanwhile, due to the inherent communication times between the neurons and the limited
switching speed of amplifiers, the time delays unavoidably exist in the process of the imple-
mentation of INNs (see Figure 1a). However, it has been proved in many previous works
that the existence of time delays may cause divergence, oscillation, and even instability of
the system [33–35]. Hence, the dynamic analysis of INNs with mixed time-varying delays
(MTVDs) is necessary for their successful applications.

(b) Relation between four fundamental elements 
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Figure 1. System constitution and four fundamental elements.

On the other hand, a memristor device, which is the fourth basic circuit element
(see Figure 1b) successfully manufactured by HP Laboratory [36], is a perfect element to
simulate the function of the neural synapse [37,38]. Adopting memristors as the synapses
connection weights in the circuit of NNs has a lot of merits, including simple structure,
nano-dimension, ease of integration and low power consumption [39,40]. Considering
the advantages of memristors, memristor-based INNs have become a hot topic [41–44].
In [45], by using a hybrid feedback controller, novel results were acquired to insure the FTS
of drive and response MINNs, and the authors deeply discuss the relationship between
the estimated value of settling time and the parameter ξi in variable substitution. In [46],
the authors investigated the FTS and fixed time synchronization of MINNs by using
the Lyapunov stability theory and Filippov discontinuous theory. However, so far, all
authors have studied the FTS of MINN by utilizing a variable substitution method to
transform MINNs’ system into a first-order form. There are hardly any articles studying
the dynamical properties of MINNs by using NROD, and the existing results are just
focused on infinite-time synchronization or stability. As mentioned in the papers [28,41],
the variable transformation method for the discontinuous MINNs’ system may be short of
rigor in practice. Hence, researching MINNs themselves directly is a better method, instead
of utilizing the reduced-order method.

Motivated by the aforementioned discussions, in this work, we will investigate the
MINNs with MTVDs by using a new study method and acquire several new sufficient
conditions to insure the FTS for such considered systems. The main contributions are
highlighted below:

1. A novel finite-time stability criterion is derived (see Lemma 2), which is different from
the existing finite-time stability criteria and extends the previous results.

2. By combining finite-time control theory with a new NROD, which can study MINNs
themselves directly instead of using the variable substitution method, some new
theoretical criteria to ensure the FTS for the studied MINNs are developed.
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3. Taking the memristors, inertial items, and MTVDs into account, the acquired theoreti-
cal results are established in a more general framework than the previous results and
widens the application scope.

The remainder of this paper is organized as follows. In Section 2, the INNs model,
some useful definition, and lemmas are introduced. In Section 3, new criteria for IMNNs
with MTVDs derived are given. In Section 4, illustrative examples are presented to validate
the effectiveness of the theoretical results. Finally, Section 5 shows the conclusions.

Notations: Let R denote the space of real numbers. C([t0 − τ, t0],R) denotes the set of
all continuous functions from [t0 − τ, t0] to R. xT denotes the transpose of a vector (or a
matrix) x. diag{· · · } denotes a diagonal matrix. (·)n×n denotes a n× n matrix. || · ||1 are
the 1-norm of a vector (or a matrix).

2. Preliminaries

In this work, we consider the MINNs with MTVDs as follows:

d2xi(t)
dt2 =− ai

dxi(t)
dt
− bixi(t) +

n

∑
j=1

cij(xi(t)) f j(xj(t)) +
n

∑
j=1

dij(xi(t))

× f j(xj(t− τ(t))) +
n

∑
j=1

eij(xi(t))
∫ t

t−`(t)
f j(xj(s))ds + Ii(t) (1)

i ∈ {1, 2, · · · , n}, where xi(t) represents the state of the ith neuron, and the second deriva-
tive of xi(t) is called an inertial term of the system (1). ai > 0 and bi > 0 are constants. The
function f j(·) represents the nonlinear activation function. Ii(t) is the external input on the
ith neuron. τ(t) and `(t) are the discrete and distributed delay, respectively, and there exist
constants τ and ` such that 0 ≤ τ(t) ≤ τ, 0 ≤ `(t) ≤ `. cij(xi(t)), dij(xi(t)) and eij(xi(t))
are memristor-based connection weights, which are given by

cij(xi(t)) =

c′ij, |xi(t)| ≤ Ti,

c′′ij, |xi(t)| > Ti,
dij(xi(t)) =

d′ij, |xi(t)| ≤ Ti,

d′′ij, |xi(t)| > Ti,
eij(xi(t)) =

e′ij, |xi(t)| ≤ Ti

e′′ij, |xi(t)| > Ti

for i, j = 1, 2, · · · , n, where Ti > 0 represents the switching jumps, and c′ij, c′′ij, d′ij, d′′ij, e′ij, e′′ij,
are known constants. Denote

c̄ij = max{|c′ij|, |c
′′
ij|}, d̄ij = max{|d′ij|, |d

′′
ij|}, ēij = max{|e′ij|, e′′ij|}, ĉij = max{c′ij, c′′ij},

čij = min{c′ij, c′′ij}, d̂ij = max{d′ij, d′′ij}, ďij = min{d′ij, d′′ij}, êij = max{e′ij, e′′ij}, ěij = min{e′ij, e′′ij}

and

C̄ =
(
c̄ij
)

n×n, D̄ =
(
d̄ij
)

n×n, Ē =
(
ēij
)

n×n, Ĉ =
(
ĉij
)

n×n, Č =
(
čij
)

n×n,

D̂ =
(
d̂ij
)

n×n, Ď =
(
ďij
)

n×n, Ê =
(
êij
)

n×n, Ě =
(
ěij
)

n×n.

The initial value of system (1) is given by

xi(s) = φi(s),
dxi(s)

ds
= φ′i(s), t0 ≥ 0, s ∈ [t0 − τ, t0]

where φi(s), φ′i(s) ∈ C([t0 − τ, t0],R), i = 1, 2, · · · , n.
For the activation functions f j(·), we conduct the following assumptions.

Assumption 1. For ∀x, y ∈ R, x 6= y, there exist constants lj > 0 such that the activation
function f j : R → R satisfies | f j(x)− f j(y)| ≤ lj|x − y|, i = 1, 2, · · · , n,, i.e., the function f j
satisfies the Lipschitz condition,
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Assumption 2. For ∀x ∈ R, there exist constants Mj > 0 such that the activation function
f j : R→ R satisfies | f j(x)| ≤ Mj, i = 1, 2, · · · , n,, i.e., the function f j is bounded.

Then, the response MINNs is given as follows:

d2yi(t)
dt2 =− ai

dyi(t)
dt
− biyi(t) +

n

∑
j=1

cij(yi(t)) f j(yj(t)) +
n

∑
j=1

dij(yi(t))

× f j(yj(t− τ(t))) +
n

∑
j=1

eij(yi(t))
∫ t

t−`(t)
f j(yj(s))ds + Ii(t) + Ui(t) (2)

in which yi(t) is the state of the response MINNs and Ui(t) is the properly designed con-
troller; the memristor-based connection weights cij(yi(t)), dij(yi(t)), eij(yi(t)) are defined
as in (1). The initial value of system (2) is as follows:

yi(s) = ψi(s),
dyi(s)

ds
= ψ′i(s), t0 ≥ 0, s ∈ [t0 − τ, t0]

where ψi(s), ψ′i(s) ∈ C([t0 − τ, t0],R), i = 1, 2, · · · , n.
Denote synchronization error ri(t) = yi(t)− xi(t). From (1) and (2), we obtain the

error systems as follows:

d2ri(t)
dt2 =− ai

dri(t)
dt
− biri(t) +

n

∑
j=1

cij(yi(t))gj(rj(t)) +
n

∑
j=1

dij(yi(t))gj(rj(t− τ(t)))

+
n

∑
j=1

eij(yi(t))
∫ t

t−`(t)
gj(rj(s))ds +

n

∑
j=1

[cij(yi(t))− cij(xi(t))] f j(xj(t))

+
n

∑
j=1

[dij(yi(t))− dij(xi(t))] f j(xj(t− τ(t)))

+
n

∑
j=1

[eij(yi(t))− eij(xi(t))]
∫ t

t−`(t)
f j(xj(s))ds + Ui(t) (3)

for i = 1, 2, · · · , n, where gj(rj(·)) = f j(yj(·))− f j(xj(·)).
The synchronization error system (3) can be transformed into the vector form as

r′′(t) =− Ar′(t)− Br(t) + Cyg(r(t)) + Dyg(r(t− τ(t))) + Ey

∫ t

t−`(t)
g(r(s))ds

+ (Cy − Cx) f (x(t)) + (Dy − Dx) f (x(t− τ(t)))

+ (Ey − Ex)
∫ t

t−`(t)
f (x(s))ds + U(t) (4)

where

r(t) =
(
r1(t), r2(t), · · · , rn(t)

)T , g(r(·)) =
(

g1(r1(·)), g2(r2(·)), · · · , gn(rn(·))
)T ,

f (x(·)) =
(

f1(x1(·)), f2(x2(·)), · · · , fn(xn(·))
)T , U(t) =

(
U1(t), U2(t), · · · , Un(t)

)T .

and

A = diag{a1, a2, · · · , an}, B = diag{b1, b2, · · · , bn}, Cy =
(
cij(yi(t))

)
n×n, Cx =

(
cij(xi(t))

)
n×n,

Dy =
(
dij(yi(t))

)
n×n, Dx =

(
dij(xi(t))

)
n×n, Ey =

(
eij(yi(t))

)
n×n, Ex =

(
eij(xi(t))

)
n×n,

The following definition and lemmas are given, which are helpful in proving the main
results.
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Definition 1. [46] Drive and response MINNs (1) and (2) are said to be FTS, if for appropriate
designed controller Ui(t), there exists a constant 0 < T < +∞, such that lim

t→t0+T
r(t) = 0, and

r(t) ≡ 0 for ∀t ≥ t0 + T, and T is called the settling time.

Since FTS requires that the system trajectories converge to a Lyapunov equilibrium
state in the finite time, the FTS is a stronger condition than the exponential or asymptotic
synchronization. The following Lemma 1, which has been widely used in many previous
works, gives a sufficient condition to ensure FTS.

Lemma 1. [47] Suppose there exist a continuous positive-definite function V : D → R+, and an
open neighborhood χ ⊂ D of the origin, such that

V′(x(t)) ≤ −αVη(x(t)), ∀x(t) ∈ χ \ {0}.

In which α > 0, η ∈ (0, 1) are constant. Then, the origin of the system is FTS, and the settling
time T1 satisfies

T1 ≤ t0 +
V1−η(x(t0))

α(1− η)
.

The term V(x(t)) will inevitably appear in the derivative of the Lyapunov function,
which is ignored to estimate the settling time in the Lemma 1. Thus, there is room for
further research to reduce the conservatism of the FTS conditions. In the following, we will
derive a new lemma that takes into account the useful term V(x(t)).

Lemma 2. Assume there exist a positive definite continuous function V : D → R+, a continuous
differentiable function ϕ : R → R+, constants k > 0, and an open neighborhood χ ⊂ D of the
origin, such that for ∀t ≥ t0,

V′(x(t)) ≤ −kV(x(t))− ϕ(t), ∀x(t) ∈ χ \ {0} (5)

ϕ(t) > 0, ϕ′(t) ≤ 0 (6)

Then, if t ≥ t0 +
1
k ln kV(x(t0))+ϕ(t0)

ϕ(t) holds, the origin of system is FTS.

Proof. Please see Appendix A for the detailed proof of Lemma 2.

Remark 1. The novel FTS lemma is different from the existing finite-time stability criteria and
extends the previous results. Compared with the Lemma 1, the novel Lemma 2 fully considers the
information in the derivative of the Lyapunov function. Note that the settling time is not explicit; it
needs to be evaluated for the specific ϕ(t) function. Next, we will provide explicit estimations of the
settling time for some specific functions satisfying the condition (6).

Lemma 3. Under the conditions in Lemma 2, and ϕ(t) = αVη(x(t)), where α > 0, η ∈ (0, 1) are
constant. Then, the origin of the system is FTS, and the settling-time T2 satisfies

T2 ≤ t0 +
ln
( k

α V1−η(x(t0)) + 1
)

k(1− η)
.

Remark 2. It is not hard to see that ϕ(t) = αVη(x(t)) > 0 and ϕ′(t) = ηαVη−1(x(t))V′(x(t)) <
0; thus, the condition (6) is satisfied. By the condition (5), one has V(t) ≤ V(t0)e−k(t−t0). Thus,
we have ln(ϕ(t)) = ln(αVη(x(t))) ≤ ln(α) + η[ln(V(t0))− k(t− t0)]. Hence, when t ≥ t0 +
ln
(

1+ k
α V1−η(x(t0))

)
k(1−η)

,, one has V(x(t)) ≡ 0. Namely, the system can achieve FTS and the settling

time is bound by T2 ≤ t0 +
ln
(

1+ k
α V1−η(x(t0))

)
k(1−η)

. Obviously,
ln
(

1+ k
α V1−η(x(t0))

)
k(1−η)

/
V1−η(x(t0))

α(1−η)
< 1,
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namely, T2 < T1. Therefore, Lemma 3 can provide a tighter settling time estimation than Lemma 1.
In Lemma 2 of [48], a similar result has been given.

Lemma 4. Under the conditions in Lemma 2, and ϕ(t) = θ, where θ > 0 are constant. Then, the
origin of the system is FTS, and the settling-time T3 satisfies

T3 ≤ t0 +
ln
( k

θ V(x(t0)) + 1
)

k
.

Remark 3. Obviously, ϕ(t) = θ > 0 and ϕ′(t) = 0. Based on Lemma 2, one has T3 ≤

t0 +
ln
(

k
θ V(x(t0))+1

)
k . Compared with the Lemmas 1 and 3, the derivative of the Lyapunov function

in Lemma 4 does not need to have exponential terms, and the settling time is more concise and
easy to test. In addition, the FTS theorem in [49] requires that the Lyapunov function satisfies
V′(x(t)) ≤ −θ, and the settling time is T = t0 +

V(t0)
θ . Obviously, if setting k = 0, then

Lemma 4 is reduced to the FTS lemma in [49]; thus, Lemma 4 is a strengthened result. Moreover,
1
k ln kV(t0)+θ

θ < V(t0)
θ ,, i.e., Lemma 4 can provide a tighter estimate value of settling time than FTS

lemma in [49].

Lemma 5. Under the conditions in Lemma 2, and ϕ(t) = $e−ξ(t−t0), where $ > 0, 0 < ξ < k are
constant. Then, the origin of the system is FTS, and the settling time T4 is bounded by

T4 ≤ t0 +
ln
( k

$ V(x(t0)) + 1)

k− ξ
.

Remark 4. It is easy to know that ϕ(t) = $e−ξ(t−t0) > 0 and ϕ′(t) = −ξ$e−ξ(t−t0) < 0;
thus, the condition (6) is satisfied. We have ln(ϕ(t)) = ln($) − ξ(t − t0). Therefore, when

t ≥ t0 +
ln
(

k
$ V(x(t0))+1)

k−ξ ,, one has V(x(t)) ≡ 0. Namely, the system can realize FTS. Moreover,

the settling time is bounded by T4 ≤ t0 +
ln
(

k
$ V(x(t0))+1)

k−ξ .

Lemma 6. (see [46]) Setting x1, x2, · · · , xn ≥ 0, 0 < p ≤ 1,; then, the following inequality holds:

n

∑
i=1

xp
i ≥

( n

∑
i=1

xi

)p

.

3. Main Results

On the basis of the Lyapunov functions’ approach and finite-time control theory, we
will directly study the FTS from MINNs themselves instead of utilizing the reduced-order
method.

We define the delay-dependent feedback controller U(t), as follows:

U(t) =− sgn(r′(t))
[

Λr̄′(t) + Θr̄(t) + D̄Lr̄(t− τ(t)) + β + ĒL
∫ t

t−`(t)
r̄(s)ds

+ ξ
(
r̄(t)

)µ
+ ξ
(
r̄′(t)

)µ
]

(7)

in which sgn(r′(t)) = diag
(
sign(r′1(t)), sign(r′2(t)), · · · , sign(r′n(t))

)
, r̄′(t) =

(
|r′1(t)|, |r′2(t)|,

· · · , |r′n(t)|
)T , r̄(·) =

(
|r1(·)|, |r2(·)|, · · · , |rn(·)|

)T , L = diag
{

l1, l2, · · · , ln
}

.Λ = diag
{

λ1, λ2,

· · · , λn
}

, Θ = diag
{

θ1, θ2, · · · , θn
}

, β =
(

β1, β2, · · · , βn
)T ,
(
r̄(t)

)µ
=
(
|r1(t)|µ, |r2(t)|µ, · · · ,

|rn(t)|µ
)T ,
(
r̄′(t)

)µ
=
(
|r′1(t)|µ, |r′2(t)|µ, · · · , |r′n(t)|µ

)T , and λi, θi, βi > 0(i = 1, 2, · · · , n),
ξ > 0, 0 < µ < 1 are constants,
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Theorem 1. Suppose Assumptions 1 and 2 hold. If λi, θi(i = 1, 2, · · · , n) and β satisfy

λi > 1− ai, θi > bi + li
n

∑
j=1

c̄ji,∣∣∣∣β∣∣∣∣1 >
∣∣∣∣(Ĉ− C̆)M

∣∣∣∣
1 +

∣∣∣∣(D̂− D̆)M
∣∣∣∣

1 + `
∣∣∣∣(Ê− Ĕ)M

∣∣∣∣
1,

then the drive-response system (1) and (2) can be synchronized in a finite time under the controller
(7). Moreover, the settling time

T ≤ t0 +
ln
(
1 + a

ξ

(
2V(t0)

) 1−µ
2
)

a(1− µ)
. (8)

where a = min{λ, θ}, and λ = min
1≤i≤n

{λi + ai − 1}, θ = min
1≤i≤n

{
θi − bi − li

n

∑
j=1

c̄ji

}
.

Proof. Please see Appendix B for a detailed proof of Theorem 1.

Theorem 2. Suppose Assumptions 1 and 2 hold. If λi, θi(i = 1, 2, · · · , n) and β satisfy

λi > 1− ai, θi > bi + li
n

∑
j=1

c̄ji,∣∣∣∣β∣∣∣∣1 >
∣∣∣∣(Ĉ− C̆)M

∣∣∣∣
1 +

∣∣∣∣(D̂− D̆)M
∣∣∣∣

1 + `
∣∣∣∣(Ê− Ĕ)M

∣∣∣∣
1,

then the drive-response MINNs (1) and (2) are synchronized in a finite time under the controller
(7). Moreover, the settling time

T ≤ t0 +

(
V(t0)

)1−µ

ξ(1− µ)
. (9)

Proof. Please see Appendix C for a detailed proof of Theorem 2.

Remark 5. Obviously,

ln
(
1 + a

ξ

(
V(t0)

)1−µ)
a(1− µ)

/(
V(t0)

)1−µ

ξ(1− µ)
=

ln
(
1 + a

ξ

(
V(t0)

)1−µ)
a
ξ

(
V(t0)

)1−µ
< 1

Therefore,
ln
(

1+ a
ξ

(
V(t0)

)1−µ)
a(1−µ)

<

(
V(t0)

)1−µ

ξ(1−µ)
, i.e., Theorem 1 can give a tighter estimate value of

settling time than Theorem 2. Theorem 1 is a strengthened result. However, Theorem 2 has fewer
parameters than Theorem 1 and is easier to test. Therefore, we can adopt the Theorem 1 or the
Theorem 2 in actual applications.

Next, we propose the following delay-dependent feedback control scheme:

U(t) = −sgn(r′(t))
[

Λr̄′(t) + Θr̄(t) + D̄Lr̄(t− τ(t)) + ĒL
∫ t

t−`(t)
r̄(s)ds + β

]
. (10)

Theorem 3. Suppose Assumptions 1 and 2 hold. If λi, θi(i = 1, 2, · · · , n) and β satisfy

λi > 1− ai, θi > bi + li
n

∑
j=1

c̄ji,∣∣∣∣β∣∣∣∣1 >
∣∣∣∣(Ĉ− C̆)M

∣∣∣∣
1 +

∣∣∣∣(D̂− D̆)M
∣∣∣∣

1 + `
∣∣∣∣(Ê− Ĕ)M

∣∣∣∣
1,
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then the drive-response MINNs (1) and (2) can achieve FTS with the controller (10). Moreover, the
settling time

T ≤ t0 +
1
a

ln
aV(t0) + β∗

β∗
. (11)

Proof. Please see Appendix D for a detailed proof of Theorem 3.

Remark 6. Compared with Theorem 1 (or Theorem 2), we can observe that the controller of
Theorem 3 does not need to have an exponential term, and the drive-response MINNs (1) and (2)
can also achieve FTS, which can effectively simplify the controller. In addition, the controller (10) is
easier to implement and operate in the actual application. In addition, the settling time in Theorem 3
is more concise and easier to test than Theorem 2 (or Theorem 3).

Moreover, we propose the following delay-dependent feedback control scheme:

U(t) = −sgn(r′(t))
[

Λr̄′(t) + Θr̄(t) + D̄Lr̄(t− τ(t)) + ĒL
∫ t

t−`(t)
r̄(s)ds + β + ∆e−µ(t−t0)

]
. (12)

where ∆ = (δ1, δ2, · · · , δn)T and δi > 0(i = 1, 2, · · · , n), µ > 0 are constants.

Theorem 4. Suppose Assumptions 1 and 2 hold. If λi, θi(i = 1, 2, · · · , n) and β satisfy

λi > 1− ai , θi > bi + li
n

∑
j=1

c̄ji , µ < a,

∣∣∣∣β∣∣∣∣1 >
∣∣∣∣(Ĉ− C̆)M

∣∣∣∣
1 +

∣∣∣∣(D̂− D̆)M
∣∣∣∣

1 + `
∣∣∣∣(Ê− Ĕ)M

∣∣∣∣
1,

then, the drive-response MINNs (1) and (2) can achieve FTS with the controller (12). Moreover, the
settling time

T ≤ t0 +
1

a− µ
ln

aV(t0) + ω

ω
. (13)

Proof. Please see Appendix E for a detailed proof of Theorem 4.

Remark 7. Up to now, in several earlier papers [44–46], which discussed the FTS of MINNs,
the theoretical criteria have been acquired basically by utilizing the reduced-order method. As is
known to all, the variable transformation method for the discontinuous MINNs system may be
short of rigor in practice. In this work, we directly study the MINNs themselves without using the
reduced-order method, and several novel sufficient conditions to insure the FTS for the considered
MINNs are developed.

Remark 8. Unlike the INNs without memristor [15,17,18], the MNNs without inertial term [8,13]
and the INNs with discrete or constant delays [15,17,18,44–46], this work takes into account the
memristors, inertial items and MTVDs. Our considered MINNs is more general. Hence, the results
in this work are acquired in a more general framework than the previous results, which widens the
application scope.
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4. Illustrative Example

Example 1. Consider the two-neuron drive MINNs with MTVDs, as follows:

d2xi(t)
dt2 =− ai

dxi(t)
dt
− bixi(t) +

2

∑
j=1

cij(xi(t)) f j(xj(t)) +
2

∑
j=1

dij(xi(t))

× f j(xj(t− τ(t))) +
2

∑
j=1

eij(xi(t))
∫ t

t−`(t)
f j(xj(s))ds + Ii(t) (14)

i = 1, 2, where a1 = 2.52, a2 = 3.14, b1 = 3.39, b2 = 3.78, and the activation functions
f1(·) = f2(·) = tanh(·), τ(t) = `(t) = et

1+et , I1(t) = 5sin(t), I2(t) = 5cos(t). We can clearly
observe that the functions f1 and f2 satisfy Assumption 1 and 2 with l1 = l2 = 1, M1 = M2 = 1,
and 0 ≤ τ(t), `(t) ≤ 1. The memristor-based connection weights take the following forms:

c11(x1(t)) =

{
5.21, |x1(t)| ≤ T1,
−3.48, |x1(t)| > T1,

c12(x1(t)) =

{
4.25, |x1(t)| ≤ T1,
−5.37, |x1(t)| > T1,

c21(x2(t)) =

{
3.37, |x2(t)| ≤ T2,
2.62, |x2(t)| > T2,

c22(x2(t)) =

{
−4.63, |x2(t)| ≤ T2,
3.77, |x2(t)| > T2,

d11(x1(t)) =

{
2.59, |x1(t)| ≤ T1,
−5.47, |x1(t)| > T1,

d12(x1(t)) =

{
−3.56, |x1(t)| ≤ T1,
−4.28, |x1(t)| > T1,

d21(x2(t)) =

{
2.07, |x2(t)| ≤ T2,
3.69, |x2(t)| > T2,

d22(x2(t)) =

{
−4.37, |x2(t)| ≤ T2,
4.92, |x2(t)| > T2,

e11(x1(t)) =

{
−4.36, |x1(t)| ≤ T1,
2.55, |x1(t)| > T1,

e12(x1(t)) =

{
2.33, |x1(t)| ≤ T1,
5.47, |x1(t)| > T1,

e21(x2(t)) =

{
−3.78, |x2(t)| ≤ T2,
5.64, |x2(t)| > T2,

e22(x2(t)) =

{
4.39, |x2(t)| ≤ T2,
5.24, |x2(t)| > T2.

where T1 = 3, T2 = 10. The initial value of system (14) are x1(0) = −3.8, x′1(0) = 7.8,
x2(0) = −2.5, x′2(0) = 22.3. The corresponding response MINNs as follows:

d2yi(t)
dt2 =− ai

dyi(t)
dt
− biyi(t) +

2

∑
j=1

cij(yi(t)) f j(yj(t)) +
2

∑
j=1

dij(yi(t))

× f j(yj(t− τ(t))) +
2

∑
j=1

eij(yi(t))
∫ t

t−`(t)
f j(yj(s))ds + Ii(t) + Ui(t) (15)

where i = 1, 2, the initial value of system (15) are y1(0) = −2.6, y′1(0) = −8.35, y2(0) = 2.3,
y′2(0) = −24.4, and the controllers Ui(t) are defined in (7). The drive and response MINNs (14)
and (15) and their synchronization error system without controller are given in Figures 2 and 3,
which imply that drive-response MINNs will not achieve synchronization as time increases.
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Figure 2. The drive-response MINNs without the controller.
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Figure 3. The synchronization error system without the controller.

Obviously, we can obtain that 1− a1 = −1.52, 1− a2 = −2.14, b1 + l1
2

∑
j=1

c̄j1 = 11.97,

b2 + l2
2

∑
j=1

c̄j2 = 13.78, and
∣∣∣∣(Ĉ − C̆)M

∣∣∣∣
1 = 32.70,

∣∣∣∣(D̂ − D̆)M
∣∣∣∣

1 = 30.95, `
∣∣∣∣(Ê −

Ĕ)M
∣∣∣∣

1 = 33.76, so we have
∣∣∣∣β∣∣∣∣1 > 97.41. Choose λ1 = λ2 = 1, θ1 = θ2 = 15,

β1 = β2 = 50, ξ = 1.5 and µ = 0.8, then the condition in Theorem 1 or Theorem 2 is
satisfied. According to Theorem 1 or Theorem 2, the drive MINNs (14) and the response
MINNS (15) can achieve FTS with the controller (14), and the estimated value of settling
time T ≤ 7.77 or T ≤ 4.36. Figure 4 shows the synchronization error trajectories of drive-
response MINNs (14) and (15) under the controller (7). The drive-response MINNs are
successfully synchronized in the finite time. Therefore, the correctness of Theorems 1 and 2
is certified.
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Figure 4. The synchronization error system with the controller.
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Example 2. Consider the two-neuron drive MINNs with MTVDs, as follows:

d2xi(t)
dt2 =− ai

dxi(t)
dt
− bixi(t) +

2

∑
j=1

cij(xi(t)) f j(xj(t)) +
2

∑
j=1

dij(xi(t))

× f j(xj(t− τ(t))) +
2

∑
j=1

eij(xi(t))
∫ t

t−`(t)
f j(xj(s))ds + Ii(t) (16)

i = 1, 2, where a1 = 1.32, a2 = 1.43, b1 = 1.57, b2 = 1.33, and the activation functions
f1(·) = f2(·) = tanh(·), τ(t) = `(t) = et

1+et , I1(t) = sin(t), I2(t) = cos(t). We can clearly
observe that the functions f1 and f2 satisfy Assumption 1 and 2 with l1 = l2 = 1, M1 = M2 = 1,
and 0 ≤ τ(t), `(t) ≤ 1. The memristor-based connection weights take the following forms:

c11(x1(t)) =

{
1.15, |x1(t)| ≤ T1,
−1.34, |x1(t)| > T1,

c12(x1(t)) =

{
1.44, |x1(t)| ≤ T1,
1.53, |x1(t)| > T1,

c21(x2(t)) =

{
−1.83, |x2(t)| ≤ T2,
1.47, |x2(t)| > T2,

c22(x2(t)) =

{
1.28, |x2(t)| ≤ T2,
−1.66, |x2(t)| > T2,

d11(x1(t)) =

{
−1.73, |x1(t)| ≤ T1,
−1.48, |x1(t)| > T1,

d12(x1(t)) =

{
1.27, |x1(t)| ≤ T1,
−1.19, |x1(t)| > T1,

d21(x2(t)) =

{
−1.63, |x2(t)| ≤ T2,
−1.38, |x2(t)| > T2,

d22(x2(t)) =

{
−1.55, |x2(t)| ≤ T2,
1.82, |x2(t)| > T2,

e11(x1(t)) =

{
−1.14, |x1(t)| ≤ T1,
1.52, |x1(t)| > T1,

e12(x1(t)) =

{
1.57, |x1(t)| ≤ T1,
1.46, |x1(t)| > T1,

e21(x2(t)) =

{
−1.35, |x2(t)| ≤ T2,
1.86, |x2(t)| > T2,

e22(x2(t)) =

{
1.74, |x2(t)| ≤ T2,
−1.58, |x2(t)| > T2.

where T1 = 1, T2 = 1. The initial value of system (16) are x1(0) = 0.8, x′1(0) = −4.8, x2(0) =
−1.5, x′2(0) = 1.8. The corresponding response MINNs are as follows:

d2yi(t)
dt2 =− ai

dyi(t)
dt
− biyi(t) +

2

∑
j=1

cij(yi(t)) f j(yj(t)) +
2

∑
j=1

dij(yi(t))

× f j(yj(t− τ(t))) +
2

∑
j=1

eij(yi(t))
∫ t

t−`(t)
f j(yj(s))ds + Ii(t) + Ui(t) (17)

where i = 1, 2, the initial value of system (17) are y1(0) = −0.6, y′1(0) = 3.65, y2(0) = −1.3,
y′2(0) = −1.3, and the controllers Ui(t) are defined in (10). When the controllers Ui(t) = 0, the
drive and response MINNs (16) and (17) and its synchronization error system are given in Figures 5
and 6, which imply that drive-response MINNs will not achieve synchronization as time increases.
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Figure 5. The drive-response MINNs without the controller.
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Figure 6. The synchronization error system without the controller.

According to Theorem 3, we can obtain that 1− a1 = −0.32, 1− a2 = −0.43, b1 +

l1
2

∑
j=1

c̄j1 = 4.74, b2 + l2
2

∑
j=1

c̄j2 = 4.52, and
∣∣∣∣(Ĉ − C̆)M

∣∣∣∣
1 = 8.82,

∣∣∣∣(D̂ − D̆)M
∣∣∣∣

1 = 6.33,

`
∣∣∣∣(Ê− Ĕ)M

∣∣∣∣
1 = 9.30,; thus, we have

∣∣∣∣β∣∣∣∣1 > 24.45. Then, choose λ1 = λ2 = 1, θ1 = θ2 =
5, and β1 = 10, β2 = 16,; the error systems with the controller are shown in Figure 7,and the
settling time T ≤ 4.48. It is easy to observe from Figure 7 that the drive-response MINNs
(16) and (17) are successfully synchronization in the finite time with the controller (10);
thus, the practicality and validity of Theorem 3 are shown.
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Figure 7. The synchronization error system with the controller.

5. Conclusions

In this work, novel sufficient conditions to guarantee the FTS for the studied MINNs
have been given. Moreover, the novel finite-time stability criterion proposed in this paper is
completely different from the existing ones, and it enriches the analytical tools for studying
FTS. In addition, we directly investigated the FTS from the MINNs themselves without
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utilizing the variable substitution method widely used in the previous literature, which
does not change the order of the second-order MINNs. Finally, several numerical examples
have also been provided to demonstrate the validity of the novel research results. New
useful study methods and theoretical results of this paper have widened the existing results,
and this can be extended to many dynamical systems, such as nonlinear impulsive systems,
and coupled neural networks, which are our possible future research topics.
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Appendix A

Proof of Lemma 2. Multiplying both sides of (5) with ekt has

d[V(x(t))ekt]

dt
≤ −ϕ(t)ekt. (A1)

Integrating (A1) over [t0, t] yields

V(t, x(t))ekt ≤V(t0, x(t0))ekt0 −
∫ t

t0

ϕ(s)eksds (A2)

On the basis of Integration by parts, one has

∫ t

t0

ϕ(s)eksds =
∫ t

t0

(
1
k

ϕ(s)eks
)′

ds−
∫ t

t0

1
k

ϕ′(s)eksds

=
1
k

ϕ(t)ekt − 1
k

ϕ(t0)ekt0 −
∫ t

t0

1
k

ϕ′(s)eksds (A3)

By the conditions (6), substituting (A3) into (A2), we have

0 ≤ V(x(t) ≤
(

V(x(t0)) +
ϕ(t0)

k

)
ek(t0−t) − ϕ(t)

k
. (A4)

When t ≥ t0 +
1
k ln kV(x(t0))+ϕ(t0)

ϕ(t) holds, we have V(x(t)) ≡ 0. Then, the proof is com-
pleted.

Appendix B

Proof of Theorem 1. We adopt the following Lyapunov functions:

V(t) =
∣∣∣∣r(t)∣∣∣∣1 + ∣∣∣∣r′(t)∣∣∣∣1 =

(
sign(r(t))

)Tr(t) +
(
sign(r′(t))

)Tr′(t).
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where

sign(r(t)) =
(
sign(r1(t)), sign(r2(t)), · · · , sign(rn(t))

)T ,

sign(r′(t)) =
(
sign(r′1(t)), sign(r′2(t)), · · · , sign(r′n(t))

)T .

By the system (3), we have

V′(t) =
(
sign(r(t))

)Tr′(t) +
(
sign(r′(t))

)T
[
− Ar′(t)− Br(t) + Cyg(r(t))

+ Dyg(rj(t− τ(t))) + Ey

∫ t

t−`(t)
g(r(s))ds + (Cy − Cx) f (x(t))

+ (Dy − Dx) f (x(t− τ(t))) + (Ey − Ex)
∫ t

t−`(t)
f (x(s))ds + U(t)

]
. (A5)

Obviously,
(
sign(r(t))

)Tr′(t) = ∑n
i=1 sign(ri(t))r′i(t) ≤

∣∣∣∣r′(t)∣∣∣∣1,
(
sign(r′(t))

)T
[−Ar′(t)]

= −∑n
i=1 ai|r′i(t)| = −

∣∣∣∣Ar′(t)
∣∣∣∣

1,
(
sign(r′(t))

)T
[−Br(t)] = −∑n

i=1 sign(r′i(t))biri(t)
≤
∣∣∣∣Br(t)

∣∣∣∣
1. By Assumption 1, we can derive that

(
sign(r′(t))

)TCyg(r(t)) =
n

∑
i=1

n

∑
j=1

sign(r′i(t))cij(yi(t))gj(rj(t)) ≤
n

∑
i=1

n

∑
j=1
|cij(yi(t))| · |gj(rj(t))|

≤
n

∑
i=1

n

∑
j=1

c̄ijlj|rj(t)| =
∣∣∣∣C̄Lr(t)

∣∣∣∣
1. (A6)

Similar to (A6), we obtain that
(
sign(r′(t))

)T Dyg(rj(t− τ(t))) ≤
∣∣∣∣D̄Lr(t− τ(t))

∣∣∣∣
1,(

sign(r′(t))
)TEy

∫ t
t−`(t) g(r(s))ds ≤

∣∣∣∣ĒL
∫ t

t−`(t) r̄(t)ds
∣∣∣∣

1. By Assumption 2, we acquire

(
sign(r′(t))

)T
(Cy − Cx) f (x(t)) =

n

∑
i=1

n

∑
j=1

sign(r′i(t))[cij(yi(t))− cij(xi(t))] f j(xj(t))

≤
n

∑
i=1

n

∑
j=1
|cij(yi(t))− cij(xi(t))| · | f j(xj(t))|

≤
n

∑
i=1

n

∑
j=1

(ĉij − c̆ij)Mj =
∣∣∣∣(Ĉ− C̆)M

∣∣∣∣
1. (A7)

where M =
(

M1, M2, · · · , Mn
)T . Similarly, we have

(
sign(r′(t))

)T
(Dy −Dx) f (x(t− τ(t)))

≤
∣∣∣∣(D̂− D̆)M

∣∣∣∣
1,
(
sign(r′(t))

)T
(Ey − Ex)

∫ t
t−`(t) f (x(s))ds ≤ `

∣∣∣∣(Ê− Ĕ)M
∣∣∣∣

1. It is easy to
derive that(

sign(r′(t))
)TU(t) =−

∣∣∣∣Λr′(t)
∣∣∣∣

1 −
∣∣∣∣Θr(t)

∣∣∣∣
1 −

∣∣∣∣D̄Lr(t− τ(t))
∣∣∣∣

1

−
∣∣∣∣ĒL

∫ t

t−`(t)
r̄(t)ds

∣∣∣∣
1 −

∣∣∣∣β∣∣∣∣1 − ξ
n

∑
i=1
|ri(t)|µ − ξ

n

∑
i=1
|r′i(t)|µ. (A8)
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Therefore,

V′(t) ≤−
(∣∣∣∣Λr′(t)

∣∣∣∣
1 +

∣∣∣∣Ar′(t)
∣∣∣∣

1 −
∣∣∣∣r′(t)∣∣∣∣1)− (∣∣∣∣Θr(t)

∣∣∣∣
1 −

∣∣∣∣Br(t)
∣∣∣∣

1

−
∣∣∣∣C̄Lr(t)

∣∣∣∣
1

)
−
(∣∣∣∣β∣∣∣∣1 − ∣∣∣∣(Ĉ− C̆)M

∣∣∣∣
1 −

∣∣∣∣(D̂− D̆)M
∣∣∣∣

1

− `
∣∣∣∣(Ê− Ĕ)M

∣∣∣∣
1

)
− ξ

n

∑
i=1
|ri(t)|µ − ξ

n

∑
i=1
|r′i(t)|µ

≤− λ
n

∑
i=1
|r′i(t)| − θ

n

∑
i=1
|ri(t)| − β∗ − ξ

n

∑
i=1
|ri(t)|µ − ξ

n

∑
i=1
|r′i(t)|µ

≤− aV(t)− ξ
n

∑
i=1
|ri(t)|µ − ξ

n

∑
i=1
|r′i(t)|µ. (A9)

where λ = min
1≤i≤n

{λi + ai − 1} > 0, θ = min
1≤i≤n

{
θi − bi − li

n

∑
j=1

c̄ji

}
> 0, β∗ =

∣∣∣∣β∣∣∣∣1 −(∣∣∣∣(Ĉ− C̆)M
∣∣∣∣

1 +
∣∣∣∣(D̂− D̆)M

∣∣∣∣
1 + `

∣∣∣∣(Ê− Ĕ)M
∣∣∣∣

1

)
> 0, and a = min{λ, θ}

According to Lemma 6, one has

V′(t) ≤− aV(t)− ξ

( n

∑
i=1
|ri(t)|

)µ

− ξ

( n

∑
i=1
|r′i(t)|

)µ

=− aV(t)− ξ
[(∣∣∣∣r(t)∣∣∣∣1)µ

+
(∣∣∣∣r′(t)∣∣∣∣1)µ]

≤− aV(t)− ξ
(
V(t)

)µ. (A10)

Based on Lemma 3, the drive MINNs (1) and response MINNs (2) can realize FTS.
What is more, the settling time

T ≤ t0 +
ln
(
1 + a

ξ

(
V(t0)

)1−µ)
a(1− µ)

.

This proof is completed.

Appendix C

Proof of Theorem 2. The proofs are similar to the Theorem 1. From (A10), we have V′(t) ≤
−ξ
(
V(t)

)µ. Based on Lemma 1, the drive MINNs (1) and response MINNs (2) can realize

FTS. Moreover, the settling time T ≤ t0 +

(
V(t0)

)1−µ

ξ(1−µ)
. This proof is completed.

Appendix D

Proof of Theorem 3. We construct a Lyapunov function, as follows:

V(t) =
∣∣∣∣r(t)∣∣∣∣1 + ∣∣∣∣r′(t)∣∣∣∣1 =

(
sign(r(t))

)Tr(t) +
(
sign(r′(t))

)Tr′(t).

By the system (3), we have

V′(t) =
(
sign(r(t))

)Tr′(t) +
(
sign(r′(t))

)T
[
− Ar′(t)− Br(t) + Cyg(r(t))

+ Dyg(rj(t− τ(t))) + Ey

∫ t

t−`(t)
g(r(s))ds + (Cy − Cx) f (x(t))

+ (Dy − Dx) f (x(t− τ(t))) + (Ey − Ex)
∫ t

t−`(t)
f (x(s))ds + U(t)

]
. (A11)
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Similarly, we can derive that

V′(t) ≤−
(∣∣∣∣Ar′(t)

∣∣∣∣
1 −

∣∣∣∣r′(t)∣∣∣∣1)+ (∣∣∣∣Br(t)
∣∣∣∣

1 +
∣∣∣∣C̄Lr(t)

∣∣∣∣
1

)
+
∣∣∣∣D̄Lr(t− τ(t))

∣∣∣∣
1 +

∣∣∣∣ĒL
∫ t

t−`(t)
r̄(t)ds

∣∣∣∣
1 +

(∣∣∣∣(Ĉ− C̆)M
∣∣∣∣

1

+
∣∣∣∣(D̂ + D̆)M

∣∣∣∣
1 + `

∣∣∣∣(Ê− Ĕ)M
∣∣∣∣

1

)
+
(
sign(r′(t))

)TU(t). (A12)

It is easy to deduce that(
sign(r′(t))

)TU(t) =−
∣∣∣∣Λr′(t)

∣∣∣∣
1 −

∣∣∣∣Θr(t)
∣∣∣∣

1 −
∣∣∣∣D̄Lr(t− τ(t))

∣∣∣∣
1

−
∣∣∣∣ĒL

∫ t

t−`(t)
r̄(t)ds

∣∣∣∣
1 −

∣∣∣∣β∣∣∣∣1. (A13)

Therefore,

V′(t) ≤−
(∣∣∣∣Λr′(t)

∣∣∣∣
1 +

∣∣∣∣Ar′(t)
∣∣∣∣

1 −
∣∣∣∣r′(t)∣∣∣∣1)− (∣∣∣∣Θr(t)

∣∣∣∣
1 −

∣∣∣∣Br(t)
∣∣∣∣

1 −
∣∣∣∣C̄Lr(t)

∣∣∣∣
1

)
−
(∣∣∣∣β∣∣∣∣1 − ∣∣∣∣(Ĉ− C̆)M

∣∣∣∣
1 −

∣∣∣∣(D̂− D̆)M
∣∣∣∣

1 − `
∣∣∣∣(Ê− Ĕ)M

∣∣∣∣
1

)
=−

n

∑
i=1

(
θi − bi − li

n

∑
j=1

c̄ji

)
|ri(t)| − β∗ −

n

∑
i=1

(λi + ai − 1)|r′i(t)|

≤ − λ
n

∑
i=1
|r′i(t)| − θ

n

∑
i=1
|ri(t)| − β∗ ≤ −aV(t)− β∗ (A14)

By Lemma 4, the FTS between the drive MINNs (1) and the response MINN (3) under
the controller (10) is realized. Moreover, the settling time is

T ≤ t0 +
1
a

ln
aV(t0) + β∗

β∗
.

The proof is completed.

Appendix E

Proof of Theorem 4. We construct a Lyapunov function, as follows:

V(t) =
∣∣∣∣r(t)∣∣∣∣1 + ∣∣∣∣r′(t)∣∣∣∣1 =

(
sign(r(t))

)Tr(t) +
(
sign(r′(t))

)Tr′(t).

Similar to the proof of Theorem 3, we can derive that

V′(t) ≤−
(∣∣∣∣Λr′(t)

∣∣∣∣
1 +

∣∣∣∣Ar′(t)
∣∣∣∣

1 −
∣∣∣∣r′(t)∣∣∣∣1)− (∣∣∣∣Θr(t)

∣∣∣∣
1

−
∣∣∣∣Br(t)

∣∣∣∣
1 −

∣∣∣∣C̄Lr(t)
∣∣∣∣

1

)
−
(∣∣∣∣β∣∣∣∣1 − ∣∣∣∣(Ĉ− C̆)M

∣∣∣∣
1

−
∣∣∣∣(D̂− D̆)M

∣∣∣∣
1 − `

∣∣∣∣(Ê− Ĕ)M
∣∣∣∣

1

)
−
∣∣∣∣∆e−µ(t−t0)

∣∣∣∣
1

≤− aV(t)−ωe−µ(t−t0) (A15)

where ω =
n

∑
i=1

δi.

By Lemma 5, the FTS between the drive MINNs (1) and the response MINN (3) under
the controller (12) is realized. In addition, the settling time is

T ≤ t0 +
1

a− µ
ln

aV(t0) + ω

ω
.

The proof is completed.



Mathematics 2023, 11, 684 17 of 18

References
1. Chong, E.K.P.; Hui, S.; Zak, S.H. An analysis of a class of neural networks for solving linear programming problems. IEEE Trans.

Autom. Control 1999, 44, 1995–2006.
2. Lee, T.H.; Trinh, H.M.; Park, J.H. Stability Analysis of Neural Networks With Time-Varying Delay by Constructing Novel

Lyapunov Functionals. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 4238–4247.
3. Chen, J.; Park, J.H.; Xu, S. Stability Analysis for Neural Networks With Time-Varying Delay via Improved Techniques. IEEE

Trans. Cybern. 2019, 49, 4495–4500.
4. Zhang, C.; He, Y.; Jiang, L.; Wu, M. Stability Analysis for Delayed Neural Networks Considering Both Conservativeness and

Complexity. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1486–1501.
5. Dong, S.; Zhong, S.; Shi, K.; Kang, W.; Cheng, J. Further improved results on non-fragile H?T performance state estimation for

delayed static neural networks. Neurocomputing 2019, 356, 9–20.
6. Kiannejad, M.; Salehizadeh, M.R.; Oloomi-Buygi, M.; Baringo, L. A stochastic offering approach for photovoltaic power plants in

day-ahead and balancing markets. Int. J. Electr. Power Energy Syst. 2023, 147, 108841.
7. Kiannejad, M.; Salehizadeh, M.R.; Oloomi-Buygi, M. Two-stage ANN-based bidding strategy for a load aggregator using

decentralized equivalent rival concept. IET Gener. Transm. Distrib. 2021, 15, 56–70.
8. Chen, J.; Zeng, Z.; Jiang, P. Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural

networks. Neural Netw. 2014, 51, 1–8.
9. Hua, L.; Zhong, S.; Shi, K.; Zhang, X. Further results on finite-time synchronization of delayed inertial memristive neural

networks via a novel analysis method. Neural Netw. 2020, 127, 47–57.
10. Bao, H.; Park, J.H.; Cao, J. Adaptive synchronization of fractional-order memristor-based neural networks with time delay.

Nonlinear Dyn. 2015, 82, 1343–1354.
11. Liu, Y.; Tong, L.; Lou, J.; Lu, J.; Cao, J. Sampled-Data Control for the Synchronization of Boolean Control Networks. IEEE Trans.

Cybern. 2019, 49, 726–732.
12. Hua, L.; Zhu, H.; Shi, K.; Zhong, S.; Tang, Y.; Liu, Y. Novel Finite-Time Reliable Control Design for Memristor-Based Inertial

Neural Networks With Mixed Time-Varying Delays. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 1599–1609.
13. Zhang, R.; Park, J.H.; Zeng, D.; Liu, Y.; Zhong, S. A new method for exponential synchronization of memristive recurrent neural

networks. Inf. Sci. 2018, 466, 152–169.
14. Zhang, G.; Zeng, Z.; Ning, D. Novel results on synchronization for a class of switched inertial neural networks with distributed

delays. Inf. Sci. 2020, 511, 114–126.
15. Zhang, R.; Zeng, D.; Park, J.H.; Liu, Y.; Zhong, S. Quantized Sampled-Data Control for Synchronization of Inertial Neural

Networks With Heterogeneous Time-Varying Delays. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 6385–6395.
16. Guan, C.; Fei, Z.; Karimi, H.R.; Shi, P. Finite-Time Synchronization for Switched Neural Networks via Quantized Feedback

Control. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 2873–2884.
17. Zhang, Z.; Cao, J. Novel Finite-Time Synchronization Criteria for Inertial Neural Networks With Time Delays via Integral

Inequality Method. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 1476–1485.
18. Alimi, A.M.; Aouiti, C.; Assali, E.A. Finite-time and fixed-time synchronization of a class of inertial neural networks with

multi-proportional delays and its application to secure communication. Neurocomputing 2019, 332, 29–43.
19. Hua, L.; Zhu, H.; Zhong, S.; Zhang, Y.; Shi, K.; Kwon, O.M. Fixed-Time Stability of Nonlinear Impulsive Systems and Its Applica-

tion to Inertial Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–12. https://doi.org/10.1109/TNNLS.2022.3185664.
20. Babcock, K.; Westervelt, R. Stability and dynamics of simple electronic neural networks with added inertia. Phys. D Nonlinear

Phenom. 1986, 23, 464–469.
21. Babcock, K.; Westervelt, R. Dynamics of simple electronic neural networks. Phys. D Nonlinear Phenom. 1987, 28, 305–316.
22. Wheeler, D.W.; Schieve, W. Stability and chaos in an inertial two-neuron system. Phys. D Nonlinear Phenom. 1997, 105, 267–284.
23. Angelaki, D.E.; Correia, M.J. Models of membrane resonance in pigeon semicircular canal type II hair cells. Biol. Cybern. 1991,

65, 1–10.
24. Tani, J. Model-based learning for mobile robot navigation from the dynamical systems perspective. IEEE Trans. Syst. Man Cybern.

Part B (Cybern.) 1996, 26, 421–436.
25. Yunquan, K.; Chunfang, M. Stability and existence of periodic solutions in inertial BAM neural networks with time delay. Neural

Comput. Appl. 2013, 23, 1089–1099.
26. Xiao, Q.; Huang, T.; Zeng, Z. Global Exponential Stability and Synchronization for Discrete-Time Inertial Neural Networks With

Time Delays: A Timescale Approach. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 1854–1866.
27. Li, N.; Zheng, W.X. Synchronization criteria for inertial memristor-based neural networks with linear coupling. Neural Netw.

2018, 106, 260–270.
28. Zhang, G.; Zeng, Z. Stabilization of Second-Order Memristive Neural Networks With Mixed Time Delays via Nonreduced Order.

IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 700–706.
29. Zhang, G.; Zeng, Z.; Hu, J. New results on global exponential dissipativity analysis of memristive inertial neural networks with

distributed time-varying delays. Neural Netw. 2018, 97, 183–191.



Mathematics 2023, 11, 684 18 of 18

30. Lakshmanan, S.; Prakash, M.; Lim, C.P.; Rakkiyappan, R.; Balasubramaniam, P.; Nahavandi, S. Synchronization of an Inertial
Neural Network With Time-Varying Delays and Its Application to Secure Communication. IEEE Trans. Neural Netw. Learn. Syst.
2018, 29, 195–207.

31. Xu, C.; Zhang, Q. Existence and global exponential stability of anti-periodic solutions for BAM neural networks with inertial
term and delay. Neurocomputing 2015, 153, 108–116.

32. Prakash, M.; Balasubramaniam, P.; Lakshmanan, S. Synchronization of Markovian jumping inertial neural networks and its
applications in image encryption. Neural Netw. 2016, 83, 86–93.

33. Wang, Q.; Perc, M.; Duan, Z.; Chen, G. Impact of delays and rewiring on the dynamics of small-world neuronal networks with
two types of coupling. Phys. A Stat. Mech. Its Appl. 2010, 389, 3299–3306.

34. Wang, Q.; Chen, G.; Perc, M. Synchronous Bursts on Scale-Free Neuronal Networks with Attractive and Repulsive Coupling.
PLoS ONE 2011, 6, e15851.

35. Guo, D.; Wang, Q.; Perc, M. Complex synchronous behavior in interneuronal networks with delayed inhibitory and fast electrical
synapses. Phys. Rev. E 2012, 85, 061905.

36. Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83.
37. Jo, S.H.; Chang, T.; Ebong, I.; Bhadviya, B.B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic

systems. Nano Lett. 2010, 10, 1297–1301.
38. Corinto, F.; Forti, M. Memristor Circuits: Flux?aCharge Analysis Method. IEEE Trans. Circuits Syst. I Regul. Pap. 2016,

63, 1997–2009.
39. Kim, H.; Sah, M.P.; Yang, C.; Roska, T.; Chua, L.O. Neural Synaptic Weighting With a Pulse-Based Memristor Circuit. IEEE Trans.

Circuits Syst. I Regul. Pap. 2012, 59, 148–158.
40. Duan, S.; Hu, X.; Dong, Z.; Wang, L.; Mazumder, P. Memristor-Based Cellular Nonlinear/Neural Network: Design, Analysis, and

Applications. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 1202–1213.
41. Zhang, G.; Hu, J.; Zeng, Z. New Criteria on Global Stabilization of Delayed Memristive Neural Networks With Inertial Item.

IEEE Trans. Cybern. 2020, 50, 2770–2780.
42. Sheng, Y.; Huang, T.; Zeng, Z.; Li, P. Exponential Stabilization of Inertial Memristive Neural Networks With Multiple Time Delays.

IEEE Trans. Cybern. 2021, 51, 579–588.
43. Gong, S.; Yang, S.; Guo, Z.; Huang, T. Global exponential synchronization of inertial memristive neural networks with time-

varying delay via nonlinear controller. Neural Netw. 2018, 102, 138–148.
44. Guo, Z.; Gong, S.; Huang, T. Finite-time synchronization of inertial memristive neural networks with time delay via delay-

dependent control. Neurocomputing 2018, 293, 100–107.
45. Huang, D.; Jiang, M.; Jian, J. Finite-time synchronization of inertial memristive neural networks with time-varying delays via

sampled-date control. Neurocomputing 2017, 266, 527–539.
46. Wei, R.; Cao, J.; Alsaedi, A. Finite-time and fixed-time synchronization analysis of inertial memristive neural networks with

time-varying delays. Cogn. Neurodyn. 2018, 12, 121–134.
47. Tang, Y. Terminal sliding mode control for rigid robots. Automatica 1998, 34, 51–56.
48. Shen, Y.; Huang, Y. Uniformly Observable and Globally Lipschitzian Nonlinear Systems Admit Global Finite-Time Observers.

IEEE Trans. Autom. Control 2009, 54, 2621–2625.
49. Forti, M.; Grazzini, M.; Nistri, P.; Pancioni, L. Generalized Lyapunov approach for convergence of neural networks with

discontinuous or non-Lipschitz activations. Phys. D Nonlinear Phenom. 2006, 214, 88–99.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Preliminaries
	Main Results
	Illustrative Example
	Conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	References

