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Abstract: Green energy is very important for developing new cities with high energy consumption, in
addition to helping environment preservation. Integrating solar energy into a grid is very challenging
and requires precise forecasting of energy production. Recent advances in Artificial Intelligence
have been very promising. Particularly, Deep Learning technologies have achieved great results in
short-term time-series forecasting. Thus, it is very suitable to use these techniques for solar energy
production forecasting. In this work, a combination of a Convolutional Neural Network (CNN), a
Long Short-Term Memory (LSTM) network, and a Transformer was used for solar energy production
forecasting. Besides, a clustering technique was applied for the correlation analysis of the input
data. Relevant features in the historical data were selected using a self-organizing map. The hybrid
CNN-LSTM-Transformer model was used for forecasting. The Fingrid open dataset was used for
training and evaluating the proposed model. The experimental results demonstrated the efficiency
of the proposed model in solar energy production forecasting. Compared to existing models and
other combinations, such as LSTM-CNN, the proposed CNN-LSTM-Transformer model achieved
the highest accuracy. The achieved results show that the proposed model can be used as a trusted
forecasting technique that facilitates the integration of solar energy into grids.

Keywords: solar energy production; forecasting; convolutional neural network; long short-term
memory network; transformer

MSC: 68T07; 68T09

1. Introduction

Modern cities require more energy than usual. As these cities are intended to be
green, renewable energy resources are the alternative to provide the required energy.
Integrating renewable energy into a grid provides enormous benefits to the economy
and the environment by reducing greenhouse gas emission and energy production cost.
However, renewable energy resources present many challenges, such as variability and
seasonality, that directly affect their integration into a grid. Solar power is the most
important renewable energy resource with high production and reliability. It presents low
panel cost with high efficiency [1,2]. Considering the aforementioned advantages of solar
energy, it is a growing renewable energy resource used worldwide in recent years [3].

For a safe and stable integration of solar energy into a grid, forecasting techniques have
been deployed to estimate the generated energy and align it with the energy demanded.
Precise forecasting can predict energy production values close to the real values [4]. Solar
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energy forecasting is very important for grid integration [5], reserve estimation, and storage
management. Accurate forecasting requires high-performance techniques and historical
data availability. Recent Deep Learning techniques have proven to be efficient for time-
series forecasting and great results have been achieved. Besides, the availability of open
datasets of historical time series for solar energy forecasting is very important.

Recent advances in Artificial Intelligence (AI) techniques have powered a wide range of
applications, such as object detection [6], scene classification [7], transportation systems [8],
and time-series forecasting [9]. Forecasting solar energy production is one of the most
investigated applications based on AI techniques [10]. It has been proved that promising
results can be achieved compared to other kinds of forecasting methods due to the ability
of AI models to learn from historical data and build a strong relationship between relevant
features. Traditional AI techniques, such as extreme learning machines [11], support vector
machines [12], and fuzzy neural networks [13], are widely adopted to model the non-linear
relationship relating time series with forecasting outputs. However, these models are
characterized by a shallow structure with a limited learning capability. In addition, feature
selection is based on handcrafted descriptors that require experienced engineering and
prior domain knowledge. Thus, shallow models present many limitations for solar energy
production forecasting, which requires high-performance models. Three main limitations
prevent the use of shallow models for solving forecasting problems. First, handcrafted
features require highly skilled engineers with prior knowledge of the domain of solar power
production data. Since feature selection is based on unreliable engineering experience,
shallow models are inappropriate for discovering non-linear features in variant historical
time series of solar energy production. Second, shallow models have a low generalization
capability. The performance of these models is proved for smooth applications with
simple data. However, the historical time series of solar energy production is highly
complex and variant due to noisy weather conditions. Thus, shallow models are not
suitable for mapping complex relationships in solar energy production forecasting. Finally,
shallow models achieve a high performance with small training datasets, but a lower
performance is obtained with large-scale datasets due to the overfitting problem. Historical
time series of solar energy production forecasting present large-scale datasets, which make
shallow models unable to handle this amount of data. For example, the Autoregressive
Integrated Moving Average (ARIMA) was applied for solar poser forecasting [14], and
low performances were achieved. The aforementioned limitations drive the need for more
powerful AI techniques, such as Deep Learning [15].

Deep Learning is a very powerful AI technique widely adopted for a wide range of
applications. Deep Learning presents a high learning capacity from large-scale datasets,
supports unsupervised learning, and has a high generalization capability. Compared to
shallow models, it is more powerful and can handle more complex applications, such as
indoor object detection [16], fatigue detection [17], and forecasting problems [18]. For solar
energy production forecasting, many Deep Learning models, such CNN [19], LSTM [20],
and autoencoders [21], have been successfully applied to solve the problem.

Recently, a new kind of model, named Transformers [22], was proposed for sequence-
to-sequence modeling. It was originally designed for natural language processing appli-
cations and was then generalized to computer vision applications [23]. To the best of our
knowledge, it has not been previously adopted for solar energy production forecasting.
The main limitations that prevent the use of Transformers in time-series forecasting are
the following:

• Quadratic time computation: the main operation for the self-attention block proposed
by Transformers, named canonical dot product [22], is computationally extensive and
requires large memory storage.

• Very large memory for large input: large input requires stacking more encoder/
decoder layers, which results in the doubling of the required memory by a factor equal
to the number of stacked encoder/decoder layers. This limits the use of Transformer
for processing large inputs, such as long time series.
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• Low processing speed: the processing speed of the encoder/decoder structures works
sequentially, which increases the processing time.

In this work, we focused on solving the aforementioned limitations to make Trans-
formers more suitable for solar energy production forecasting. We improved a Transformer
structure with new components, and we modified the self-attention block. Then, convolu-
tional layers were integrated into the Transformer encoder structure. In addition, the LSTM
network was adopted to enhance prediction performances. The proposed forecasting meth-
ods consist of a preprocessing stage based on the clustering technique. The self-organizing
map algorithm [24] was used for clustering the input data based on seasons, which makes
the data more useful. The hybrid CNN-LSTM-Transformer model was then used to forecast
solar energy production. The experiments using the Fingrid open dataset [25] demonstrated
the high performance of the proposed model compared to current state-of-the-art models
and other combinations, such as LSTM-Transformer and CNN-Transformer.

The contributions of this study are as follows:

• The proposed clustering technique increased the forecasting accuracy. The solar
irradiation in the collected data presents wide variation between different seasons.
Thus, clustering the data into four main clusters based on seasons enhanced the
learning capacity of the proposed model.

• The CNN-LSTM combination represented a more powerful forecasting model. CNN
and LSTM are two powerful Deep Learning models for time-series forecasting. The
combination of the two models was very effective for forecasting solar energy production.

• Adopting a Transformer achieved a better performance. The proposed Transformer
was very important for enhancing the performance of the CNN-LSTM combination. It
was used to force the LSTM to pay attention to relevant features in the historical time
series and to generate more accurate predictions.

• Proposing a probe sparse operation was important to replace the canonical dot product
operation in the self-attention block. The proposed operation reduced the computa-
tional time and storage memory.

• Proposing a distillation technique helped privilege the dominating attention scores
in the stacked encoder. This technique reduced the computational complexity and
allowed the processing of longer sequences.

• Proposing a generative decoder helped acquire long sequences through a simple for-
ward pass. It was useful for preventing the spread of cumulative errors in the inference.

The rest of the paper is organized as follows: Section 2 presents related works. The
proposed approach is described and detailed in Section 3. The experiments and results are
presented and discussed in Section 4. In Section 5, the conclusions and directions for future
works are provided.

2. Related Works

As the energy demand of modern cities grows fast, there is a need for a trusted
forecasting system to smoothly integrate renewable energy into a grid. To this end, various
methods have been proposed to build high-performance solar energy forecasting systems.
In this study, only Deep Learning-based methods are discussed since they outperform old
methods by a large margin.

A combination of an autoencoder and a bidirectional LSTM neural network was
proposed for the day before the renewable energy forecasting [26]. The proposed model,
named AB-Net, was used in a one-step forecast of renewable energy production for short-
term horizons. To build a training dataset, data were collected from various renewable
energy resources. Next, the collected data were denoised and cleaned. After preprocessing
the data, the AB-net was applied for forecast generation. First, the autoencoder was applied
to extract the discriminative features. Second, the bidirectional LSTM was used to generate
a forest by learning the temporal features of the data. The evaluation of the AB-Net on
public datasets has proved its efficiency.
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Qu et al. [27] proposed a solar energy forecasting system based on a temporal dis-
tributed gated recurrent network. The proposed system was composed of three main
parts. First, the daily fluctuation in the data was extracted using a linear model. Second,
a scenario generation model was designed to generate linear forecasting trends. Finally,
the proposed temporal distributed gated recurrent network was used to generate the final
one-day-ahead forecasts of solar energy production. The training data were collected from
a solar energy farm in southeastern China. The proposed method was evaluated using data
collected from the same farm, and acceptable results were achieved.

The power of Convolutional Neural Networks and LSTM networks was combined
by Agga et al. [28] to develop a powerful solar energy foresting algorithm. The CNN was
used to extract spatial features from the historical time series. Then, the LSTM was used to
extract temporal features and to provide the predictions of solar energy production. The
hybrid CNN-LSTM was designed over different forward and backward time series. The
data used for training and evaluating the proposed forecasting algorithm were collected
from a photovoltaic plant in Morocco. The data include production records, weather data,
and power consumption of generated power. The experimental results proved that the
proposed CNN-LSTM algorithm can provide good forecast results.

Rai et al. [29] developed a forecasting system based on the fusion of a sequence-to-
sequence autoencoder and a gated recurrent unit. The proposed system takes advantage
of supervised and unsupervised learning. First, the sequence-to-sequence autoencoder
extracts the mysterious relationships between non-linear data of historical time series. In
addition, it decreases the reconstruction error and taps the important feature correlation.
Second, the gated recurrent unit extracts the temporal features by exploiting the time
dependency of the time series. The proposed system was evaluated for different forecasting
durations, such as 24 h, 48 h, and 15 days. Compared to the most recent forecasting
methods, the proposed system provides reliable performance.

To facilitate the integration of solar energy into a smart grid, a production forecasting
system based on the combination of a convolutional graph and a variational autoencoder
was proposed in [21]. The proposed system extracts the probability distribution functions
forecasting future solar power production in a modeled weighted graph. It is proved
that learning the probability distribution functions is very useful for generating accurate
forecasts. For training and evaluating the proposed system, data were collected from a
set of photovoltaic sites in California, US. Each site was modeled as a weighted graph,
where each node was a power measurement and the edges represented the correlation. By
extracting relevant features using graph spectral convolution, the proposed system predicts
future solar power production. The experiments proved that the proposed system could
provide good results.

Sabri et al. [30] proposed the use of a combination of gated recurrent units and CNN to
forecast solar power. The proposed method relays on the extraction of temporal and special
features to predict solar power production. First, the gated recurrent units are applied to
extract the temporal features. Second, the CNN extracts the spatial features. Finally, an
output layer combines the extracted features and generates the forecasting results. The
data for the training and evaluation of the proposed method were collected from the Desert
Knowledge Australia Solar Centre (DKASC). Four years of data from May 2017 to May 2021
were collected with a five-minute resolution. The data include generated power, current,
temperature, humidity, diffuse horizontal radiation, global horizontal radiation, and other
information. The experiments proved that the proposed method could provide acceptable
forecasting accuracy.

A multi-region solar power prediction system was proposed in [31]. A combination
of a LSTM model and a particle swarm optimization algorithm was proposed to predict
solar power production. First, the particle swarm optimization algorithm was applied
to extract relevant features for the training of the LSTM network. Second, the extracted
features were combined with the data from the training dataset and were fed to the LSTM
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network. Different LASTM variants were tested to select the best model. It was proved that
the bi-directional LSTM network has the best performance compared to other variants.

Considering the presented works, there is still space to improve the prediction accuracy
to better optimize the integration of solar power in a grid. The research gap in solar power
production forecasting can be summarized in three points. First, there are few works
that take advantage of a Transformer model to make time-series forecasting. Second, the
optimization of a Transformer model for use in solar power forecasting has not been studied.
Finally, the combination of CNN, LSTM, and Transformer will be considered the key to
find the main relation in a historical time series.

3. Proposed Approach

In this work, a solar energy production forecasting system was proposed based on
the combination of a CNN model, an LSTM model, and a Transformer. First, the CNN
part was charged with extracting spatial features. Second, the LSTM part was charged
with extracting temporal features. Finally, the Transformer combines the extracted features
and generated predictions based on an encoder–decoder structure. Before feeding data
to the proposed model, a clustering technique was applied for data organization and
management. The self-organizing map algorithm was used for clustering the input data
based on seasons, which makes the data more useful. The overall workflow of the proposed
system is presented in Figure 1.
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3.1. Proposed Forecasting Model

The proposed forecasting model consists of a CNN, a LSTM, and a Transformer.
The CNN extracts the spatial features, the LSTM extracts the temporal features, and
the Transformer employs the extracted features to generate the forecasting results. The
transformer’s encoder–decoder strategy has the potential of improving forecasting accuracy
by learning from the mixed spatial and temporal features.

The CNN model is composed of two convolution layers. The first layer has 16 convo-
lution filters with a 3 × 1 kernel size. The second layer has 32 convolution filters with a
3 × 1 kernel. The LSTM model is composed of one layer with 32 units. The Transformer
model is composed of three consecutive self-attention blocks with additional convolution,
activation, and pooling layers. The proposed forecasting model is presented in Figure 2.
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3.2. Self-Organizing Map Algorithm

The main idea of clustering the input data is to regroup the data based on different
seasons. Thus, the data were mapped into four clusters corresponding to four seasons.
The data from the different clusters were used for training and evaluating the proposed
system. For data clustering, a self-organizing map algorithm [32] was selected after testing
many clustering algorithms. The main structure of the self-organizing map algorithm is
presented in Figure 3.
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The learning methodology of the self-organizing map algorithm is based on two main
steps. First, the weight vector of each neuron in the feature map is normalized by the
current vector x and the neuron value. Second, the winning neuron node is selected based
on the minimum Euclidian distance between the neuron value and the weight. Then, the
weight matrix is updated based on the new node. Updating the weight matrix can be
computed using Equation (1) [32]:

wij(t + 1) = wij(t) + η(t)hd,j(t)
(
Xi − wij(t)

)
hd,j(t) = exp

(
d2

dj

2r2(t)

)

r(t + 1) = RND
(
(r(t)− 1)×

(
1− t

T

))
+ 1

η(t + 1) = η(t)− η(0)
T

(1)

where η(t) is the learning rate; wij(t + 1) is the updated weight; wij(t) is the current weight;
d2

dj is the distance between neuron d and neuron j; r(t) is the neighborhood radius; T is the
learning frequency; and RND is the rounding function.

3.3. Convolutional Neural Network

A Convolutional Neural Network (CNN) is one of the best Deep Learning models for
solving different applications. A CNN model is based on four different layers, including
convolution layers, activation layers, pooling layers, and fully connected layers. The
convolution layers extract spatial features from the data; the activation layers enhance the
learning capability by maximizing the non-linearity of the mapping function; the pooling
layers compress the dimension of the feature maps; and the fully connected layers combine
the global and local features extracted by the convolution layers. A typical representation
of a CNN model is presented in Figure 4. For the problem of solar energy forecasting, a
1D convolution is used to process the time series. Considering a layer with input xk

i and
output yk

j , the convolution layer is matrix multiplication between the input of the previous

layer and a filter bank wk
ij, while adding a regularization term (bias) bk

j . The convolution
layer can be computed using Equation (2):

yk
j = ∑i (xk

i ∗ wk
ij) + bk

j (2)
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In the nonlinear layer, a nonlinear activation function is applied, such as a rectified linear
unit (ReLU). A nonlinear layer based on a ReLU can be computed as using Equation (3):

ỹk
j = max

(
0, yk

j

)
(3)

The maximum pooling layer is performed by selecting the maximum value in a given
matrix. The fully connected layer can be dotted with a nonlinear activation function, such
as a ReLU. The output layer for classification can be dotted with a softmax activation
function, and for regression, it is dotted with a linear regression function. The softmax
function can be computed using Equation (4), and the linear regression function can be
computed using Equation (5):

p
(
yj
∣∣x) = exTwj

∑k
i=1 exTwi

(4)

y = ax + b (5)

where

a =
n(∑n

i=0 xiyi)− (∑n
i=0 xi)(∑n

i=0 yi)

n(∑n
i=0 x2

i )− (∑n
i=0 xi)

2

b =
(∑n

i=0 yi)− a(∑n
i=0 xi)

n

3.4. LSTM Unit

LSTM is a recurrent neural network variant, which was proposed to solve the vanish-
ing gradient problem presented in older variants. An LSTM unit is based on three main
gates, including the input gate, the forget gate, and the output gate, in addition to a cell
state. A detailed illustration of an LSTM unit is presented in Figure 5. The input gate is
charged with collecting information; the forget gate decides on the information to forget
and store; and the output gate updates the unit value. These gates allow the control of
information flow in the unit. This control presents an advantage for the problem of solar
energy forecasting due to the possibility of continuously updating the unit based on a
historical time series.
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The LSTM unit can be computed by calculating the different gates. At instance t, the
input gate is it, the forget gate is ft, and the output gate is ot. The presented gates can be
computed using (6):

it = σg(wixt + uiht−1 + bi) (6)

ft = σg

(
w f xt + u f ht−1 + b f

)
ot = σg(woxt + uoht−1 + bo)

3.5. Transformer

A Transformer presents a new kind of artificial neural network, which is mainly based
on a self-attention mechanism. It was originally designed for natural language processing
applications and was recently adopted for computer vision applications with the Vision
Transformer (ViT) version. It mimics a recurrent neural network that processes sequential
data but has different working processes. A Transformer processes all the data at once
compared to a RNN that processes data sequentially. Transformers suffer from many
problems that limit their use in solar energy forecasting. The main limitations can be
summarized into the following three points:

• Quadratic time computation: the main operation for the self-attention block proposed
by Transformers, named canonical dot product, is computationally extensive and
requires large memory storage.

• Very large memory for large input: large input requires stacking more encoder/
decoder layers, which results in the doubling of the required memory by a factor equal
to the number of stacked encoder/decoder layers. This limits the use of Transformers
for processing large inputs, such as long time series.

• Low processing speed: the processing speed of the encoder/decoder structures works
sequentially, which increases the processing time.

The canonical self-attention mechanism is based on three main inputs, which are the
query (Q), the key (K), and the value (V). Considering an input with a dimension d, the
output of the canonical self-attention mechanism can be computed using Equation (7):

A(Q, K, V) = so f tmax
(

QKT
√

d

)
V (7)

The output for a specific raw in Q, K, and V can be computed using Equation (8):

A(Q, K, V) = ∑j

k
(
qi, k j

)
∑l k(qi, kl)

vj = Ep(kj |qi)

[
vj
]

p
(
k j
∣∣qi
)
=

k
(
qi, k j

)
∑l k(qi, kl)

(8)

The self-attention mechanism processes the input values and generates the output
by calculating the probability p

(
k j
∣∣qi
)
. This process requires quadratic time computation

and memory storage in the order of O
(

LK LQ
)
. Enhancing the performance of the Trans-

former requires additional computation, which limits its use in real applications. Many
works [33,34] have been proposed to overcome these limitations by discovering the sparsity
of the probability distribution computed by the self-attention mechanism. Motivated by
this discovery, a new kind of self-attention mechanism was proposed. To attend to this,
we started by evaluating the learned attention patterns. It was discovered that only a
few numbers of dot-product pairs affect the overall performance, while the others do not
contribute to the performance. Thus, the main idea is to eliminate dot-product pairs that
do not affect the performance.

Considering the query qi, the attention output on all keys is the composition between
the probability p

(
k j
∣∣qi
)

and the V values. The corresponding query’s attention probability
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distribution is encouraged to deviate from the uniform distribution by the dominant
dot-product pairs. If the probability p

(
k j
∣∣qi
)

is close to a uniform distribution equal to
q
(
k j
∣∣qi
)
= 1

LK
, then the output of the self-attention mechanism is the sum of the V values.

To identify the relevant queries, the similarity between distributions p and q can be used.
We proposed measuring the similarity using the Kullback–Leibler divergence method [35].
The similarity between q and p can be computed using Equation (9):

KL(q||p) = ln ∑LK
l=1 e

qikT
l√
d − 1

LK
∑LK

j=1

qikT
l√
d
− lnLK (9)

After eliminating the constant, the sparsity for the ith query can be computed using
Equation (10):

M(qi, K) = ln ∑LK
l=1 e

qikT
l√
d − 1

LK
∑LK

j=1

qikT
l√
d

(10)

The query that obtains a high measure M(qi, K) has a high probability of containing
the dominant dot-product pair that contributes to the overall performance. By considering
this measurement, a probe sparse operation for self-attention was proposed to replace the
canonical operation. The probe sparse operation allows the processing of a fixed number n
of queries for each key. The attention based on the proposed operation can be computed
using Equation (11):

A(Q, K, V) = so f tmax
(

Q’KT
√

d

)
V (11)

Q’ contains n queries that satisfy the measurement M with the same size as q. A
sampling factor c was proposed to control the number of queries n. Hence, the number of
queries can be controlled based on Equation (12):

n = c× lnLQ (12)

This relation reduces the calculation of dot-product operations for the query–key
lookup to O

(
lnLQ

)
and maintains the memory occupation for each layer in the order of

O
(

LK lnLQ
)
. The multi-head approach explains that this attention creates various sparse

query–key pairings for each head, preventing significant information loss in return.
However, in order to process all of the queries for the measurement M, it is necessary

to calculate each pair of dot products, and the first part of the measurement operation may
have a problem with numerical stability. We suggest an empirical approximation for the
effective acquisition of the query sparsity measurement to overcome this issue. As such,
the measurement can be computed using Equation (13):

M̂(qi, K) = max
j

(
qikT

l√
d
)− 1

LK
∑LK

j=1

qikT
l√
d

(13)

The proposed max operator in measurement M̂ is less sensitive to zero values, in
addition to presenting good numerical stability. Practically, the self-attention mechanism
accepts equal input length for both queries and keys. Considering L as the input length,
the computational complexity for the probe sparse based on self-attention is O(L ln L).

Memory limitation is a hard challenge that prevents the adoption of a Transformer
in time-series forecasting. To overcome this limitation, we designed an encoder that
processes longer sequential input, while requiring less memory. For this purpose, a new
component was proposed based on the use of a 1D convolution layer and embedding
the layer to generate the input of the self-attention block. The encoder’s purpose is to
extract from the lengthy sequential inputs the reliable long-range dependency. The input is
reshaped to matrix representation, the corresponding matrix for the tth input sequence Xt

is Xt
mx ∈ RLx×dm .
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Due to the use of the proposed probe sparse operation in the self-attention mechanism,
the feature map of the encoder contains redundant combinations of value V. To handle this
problem, a distilling operation was proposed to create a focused self-attention feature map
in the next layer and to prioritize the better ones with dominant features. The proposed
distilling operation was inspired by the dilated convolution [36]. Passing from one layer to
the next one, the proposed distilling operation can be computed using Equation (14).

Xt
j+1 = maxpool

(
ELU

(
conv1D

([
Xt

j

]
A

)))
(14)

where maxpool represents the maximum pooling layer with a stride of 2; ELU is the
exponential linear unit activation function; conv1D is a one-dimensional convolution layer
with a kernel size of 3; and

[
Xt

j

]
A

is the output of the proposed self-attention block. The
proposed decoder structure is presented in Figure 6.
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The proposed distilling operation reduces the memory occupation toO((2− ε)L log L).
In order to increase the robustness of the distilling process, we constructed copies of the
main stack with the inputs reduced by half and gradually reduced the number of self-
attention distilling layers by removing one layer at a time in a way that their output
dimension is aligned. We then combined the outputs of each stack to obtain the encoder’s
final hidden representation.

The next goal is to design a decoder that generates longer sequential outputs in a
single forward way. We adopted the standard decoder of the Transformer model, which
consists of two identical multi-head attention layers stacked on top of one another. The
input vector of the decoder is computed using Equation (15):

Xt
d = concat

(
Xt

token, Xt
0
)
∈ R(Ltoken+Ly)×dm (15)

where Xt
token ∈ RLtoken×dm is the start token and Xt

0 ∈ RLy×dm is the placeholder for the
target sequence. In the Probsparse self-attention computing mechanism, the masked dot-
products are set to −∞, which implements masked multi-head attention. By preventing
each position from anticipating the subsequent ones, auto-regressive behavior is avoided.
To generate the output, a fully connected layer is used, with its size depending on the
forecasting variate.

To achieve our goal, a generative inference was adopted by replacing specific flags as
a token with Ltoken input sequence and adding an earlier slice before the output sequence.
In this way, the proposed decoder generates predictions in a single forward way instead of
the dynamic decoding in the original transformer.

As a loss function, we proposed the use of the Mean Squared Error (MSE) function.
The loss propagation starts from the decoder until reaching the input of the encoder.
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4. Experiment and Results

The proposed model was extensively tested to prove its efficiency. The performance of
the forecasting model was evaluated using a publicly available dataset. Different evaluation
metrics were used for the evaluation of the model’s performance. In the next sections, we
present the dataset used for training and evaluating the proposed forecasting model. In
addition, we present the evaluation metrics used for evaluation. Besides, the achieved
results are presented and discussed, and an ablation study is presented to prove the
efficiency of the proposed model and the impact of the proposed components on the
Transformer model.

4.1. Dataset

The Fingrid open dataset [25] was used to obtain the training data. The gathered
data were updated at an hourly rate. The data were collected from a solar power plant
established in Finland, which provided historical time series and weather conditions. The
solar power plant can produce one megawatt of power per hour in total. The data were
downloaded in the CSV format. Using the min-max normalization approach, the training
data were normalized between zero and one. Data normalization enables performance
comparisons without taking into consideration the solar power facility’s capacity. By
excluding power levels throughout the night and on overcast days, the data were then
filtered. After splitting the data into three sets, 60% were utilized for training, 10% were
utilized for validation, and 30% were utilized for testing. A simple example of solar power
prediction in relation to weather conditions, such as sunny, cloudy, and rainy, is presented
in Figure 7.
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4.2. Experimental Details

To find the most suitable hyperparameters for the proposed model, we applied a
grid search technique. The proposed forecasting model is composed of a CNN with two
1D convolution layers, an LSTM layer, and a Transformer model. The CNN model has
two convolution layers, where the first has 16 filters with a 3 × 1 kernel and the second
one has 32 filters with the same kernel size. The LSTM is composed of 32 units. The
Transformer model has an encoder with four stacked layers and a decoder with two layers.
The proposed forecasting model was trained using the Adam optimizer with an initial
learning rate of 0.0001. The learning rate was reduced to half every two epochs. The
number of epochs was set to 10, with early stopping based on loss variation. The batch
size was set to four due to the limited memory of the user environment, which is based
on Nvidia GTX 960 GPU with 4 GB of memory. The input data were normalized to zero
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mean. A set of baseline forecasting models were selected for comparison, including the
ARIMA [14], DeepAR [37], and prophet [38].

4.3. Evaluation Metrics

To evaluate the proposed CNN-LSTM-Transformer, three statistical evaluation metrics
were used, including Root Mean Square Error (RMSE), Average Absolute Percentage Error
(MAPE), and Mean Absolute Error (MAE). The used evaluation metrics can be computed
using Equation (16).

MAE =

(
∑N

i=1|y(i)− ŷ(i)|
)

N

MAPE =

(
∑N

i=1|y(i)− ŷ(i)/y(i)|
)

N

RMSE =

√√√√(
∑N

i=1|y(i)− ŷ(i)/y(i)|2
)

N − 1
(16)

where y(i) is the target solar energy value and ŷ(i) is the predicted solar energy value. N is
the number of samples.

The defined evaluation statistical tests were used to assess the forecasting system’s
efficacy. The variation in assessment measures provides insight into the stability of the
suggested model. The forecasting system deviates significantly from the target power
output if the RMSE is very high when compared to the MAE. The forecasting system has
a modest deviation from the goal power value if the RMSE is approximately equal to
the MAE.

4.4. Results and Discussion

The proposed model was successfully trained and achieved a good loss minima and a
high training accuracy. The curves of the model loss and training accuracy are presented
in Figure 8.
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The achieved results are presented in Table 1. To prove the efficiency of the proposed
model, its performance with the original canonical self-attention was reported. The perfor-
mance of the proposed model highlights the great impact of the probe-sparse self-attention
module. The forecasting performance is further improved when compared to the original
canonical self-attention. The proposed model achieves the lowest RMSE value, which
reflects its high forecasting accuracy. The MAE presents the actual error situation on pre-
diction value. The achieved results prove that the proposed model has a great capability in
predicting solar power prediction.

Table 1. Achieved results compared to baseline forecasting models.

Model MAPE MAE RMSE

CNN-LSTM-Transformer 0.041 0.393 0.344
CNN-LSTM-Transformer * 0.048 0.399 0.378

AB-Net [26] 0.052 0.436 0.486
GRU-CNN [28] 0.053 0.443 0.461

ARIMA [14] 0.073 0.764 0.879
DeepAR [37] 0.051 0.465 0.478
Prophet [38] 0.065 0.524 0.598

CNN-LSTM-Transformer *: proposed model based on the canonical self-attention, CNN-LSTM-Transformer:
proposed model based on probe-sparse self-attention.

Referring to the results presented in Table 1, it can be noticed that the proposed
CNN-LSTM-Transformer model achieves the top inference performance compared to
the baseline models and compared to the variant based on canonical self-attention. This
achievement proves the efficiency of the proposed assumption about query sparsity. It
is very useful for generating more powerful attention feature maps. In addition, the
proposed model outperforms current state-of-the-art forecasting models and provides more
accurate predictions. These results prove the efficiency of combining a CNN, a LSTM, and
a Transformer for solving the solar energy production forecasting problem. An example
of solar power prediction for a time scale of one day comparing our model to current
state-of-the-art models is presented in Figure 9. The proposed mode has the best prediction,
which is closest to the actual value of solar power production.
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4.5. Ablation Study

An ablation study was conducted to show the impact of each component in the
proposed forecasting model. In this study, we focused on evaluating the impact of the
proposed components in the Transformer model.
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Impact of the probe-sparse self-attention mechanism: as shown in Table 1, the pro-
posed probe-sparse self-attention mechanism outperforms the canonical self-attention
mechanism. To avoid the memory efficiency problem, some model setups were reduced,
such as the batch size was reduced to two, the number of heads was reduced to eight, and
the dimension was reduced to 32, while other settings were fixed. Table 2 presents the
achieved results with different input sizes and prediction lengths. It is obvious that our
probe-sparse self-attention mechanism outperforms the canonical self-attention mechanism.
The X in Table 2 refers to the memory failure of the model in our experimental environment.
This ablation study proved the superiority of the proposed probe-sparse self-attention
mechanism when being memory efficient.

Table 2. Ablation study of the probe-sparse self-attention mechanism.

Prediction Length 336 720

Input Size 336 720 1440 720 1440 2880

CNN-LSTM-Transformer
RMSE 0.249 0.225 0.216 0.271 0.261 0.257

MAE 0.393 0.384 0.376 0.435 0.431 0.422

CNN-LSTM-Transformer *
RMSE 0.251 0.234 X 0.285 X X

MAE 0.399 0.398 X 0.442 X X

CNN-LSTM-Transformer *: proposed model based on the canonical self-attention mechanism, CNN-LSTM-
Transformer: proposed model based on probe-sparse self-attention mechanism.

Impact of the distilling operation: to prove the efficiency of the proposed distilling
operation, we eliminated the probe-sparse self-attention mechanism and worked with the
canonical self-attention mechanisms, while keeping other settings fixed. Table 3 presents
the achieved results with and without the distilling operation. The model with the distilling
operation has improved performance. The impact of the distilling operation is shown
especially with longer prediction sequences. The model without the proposed distilling
operation presents memory failure.

Table 3. Ablation study on the distilling operation.

Prediction Length 336 480

Encoder Input 336 480 720 336 480 960

CNN-LSTM-Transformer *
(with distilling)

RMSE 0.249 0.208 0.225 0.197 0.243 0.192

MAE 0.393 0.385 0.384 0.388 0.392 0.377

CNN-LSTM-Transformer *
(without distilling)

RMSE 0.229 0.215 X 0.224 X X

MAE 0.391 0.377 X 0.381 X X

CNN-LSTM-Transformer *: proposed model based on the canonical self-attention mechanism.

Impact of the proposed decoder: in the Transformer, the basic encoder–decoder
structure is very important. We have already presented the impact of the different parts of
the encoder. Here, we demonstrate the potential use of our decoder in obtaining generative
outcomes. To this end, we eliminated the probe-sparse self-attention mechanism and the
distilling operation to show the real impact of the generative decoder. Unlike previously
proposed decoders, which require an alignment of the labels and the outputs during
training and inference, the prediction of our suggested decoder is only based on the time
stamp, which may forecast with offsets. The reported results in Table 4 prove that the
proposed decoder can resist the increase in the offset, while the original decoder fails and
presents memory failure with longer predictions. This demonstrates that the proposed
decoder has a higher capacity in detecting long-range dependency by processing arbitrary
outputs. Besides, it is very efficient in avoiding error accumulation.
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Table 4. Ablation study on the generative decoder.

Prediction Length 336 480

Prediction Offset +0 +12 +24 +0 +48 +96

CNN-LSTM-Transformer *
(with generative decoder)

RMSE 0.207 0.209 0.211 0.198 0.203 0.208

MAE 0.385 0.387 0.393 0.390 0.392 0.401

CNN-LSTM-Transformer *
(without generative decoder)

RMSE 0.209 X X 0.392 X X

MAE 0.393 X X 0.484 X X

CNN-LSTM-Transformer *: proposed model based on the canonical self-attention mechanism.

4.6. Computational Efficiency

To show the efficiency of the proposed model in terms of computational complexity,
a comparison study was performed between the proposed self-attention block and the
original self-attention block of the transformer. Table 5 summarizes the achieved results for
training and inference speed in addition to memory occupation. Based on the achieved
results, the proposed model based on the probe-sparse self-attention mechanism is com-
putationally efficient compared to the original canonical self-attention mechanism. The
proposed model can be used for solar power forecasting to smoothly facilitate power inte-
gration in a grid. The proposed model is able to process large input time series, in addition
to generating long output sequence, without requiring huge amounts of storage memory.
The achieved inference speed allows the generation of reliable predictions in acceptable
time for real-world applications.

Table 5. Computational efficiency of the proposed model compared to the original canonical self-
attention mechanism.

Prediction Length 336

Input Size 48 96 168

CNN-LSTM-Transformer

Train speed (hours) 3.2 5.1 6.3

Inference speed (hours) 0.1 0.13 0.17

Memory (GB) 2.1 2.3 2.5

CNN-LSTM-Transformer *

Train speed (hours) 7.4 8.1 9.3

Inference speed (hours) 0.3 0.38 0.42

Memory 3.5 3.7 3.8

CNN-LSTM-Transformer: proposed model based on probe-sparse self-attention mechanism; CNN-LSTM-
Transformer *: proposed model based on the canonical self-attention mechanism.

5. Conclusions

Predicting photovoltaic power generation is critical for preserving system security and
coordinating resource usage. Building a high-performance forecasting model is possible
through recent advances in Artificial Intelligence techniques. Besides, the availability of
large-scale datasets for historical time series is very important. In this paper, we proposed a
forecasting model by combining a CNN, a LSTM, and a Transformer model. Unlike existing
models, the proposed model presents effective techniques to reduce computational com-
plexity while achieving higher performance. Besides, an effective preprocessing technique,
such as the clustering technique, significantly enhances the performance of the proposed
model. The CNN is employed to extract the spatial features, the LSTM is used to extract
the temporal features, and the Transformer combines the extracted features and generates
predictions based on the encoder–decoder structure. Many contributions were proposed
to take advantage of the Transformer model for solar energy forecasting. The extensive
experimentation proved the efficacy of the proposed model, which outperforms current
state-of-the-art forecasting models. The proposed model achieved the lowest RMSE and
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MAE values of 0.344 and 0.393, respectively, compared to the Transformer-based models,
Deep Learning-based model, and traditional models. The achieved results reflect the high
accuracy of the model in forecasting solar power production. The main limitation is the
complex training process. For future work, the proposed method can be extended for
long-term forecasting, such as days or weeks. In addition, the use of the proposed model
can be extended to forecast energy consumption and solar irradiations.
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Nomenclature

CNN Convolutional Neural Network
LSTM Long Short-Term Memory
AI Artificial Intelligence
DKASC Desert Knowledge Australia Solar Centre
RND Rounding function.
Q Query
K Key
V Value
ARIMA Autoregressive Integrated Moving Average
RMSE Root Mean Square Error
MAPE Average Absolute Percentage Error
MAE Mean Absolute Error
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