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Abstract: In this paper, a new method based on an accurate analytical series solution for free vibration
of triangular isotropic and orthotropic plates is presented. The proposed solution is expressed in
terms of undetermined arbitrary coefficients, which are exactly satisfied by the governing differential
equation in free vibration. The approach used is based on an innovative extension of the superposition
method through the application of a modified system of trigonometric functions. The boundary
conditions for bending displacements and bending rotations on the sides of the triangular plate led to
an infinite system of linear algebraic equations in terms of the undetermined coefficients. Following
this development, the paper then presents an algorithm to solve the boundary value problem for
isotropic and orthotropic triangular plates for any kinematic boundary conditions. Of course, the
boundary conditions with zero displacements and zero rotations on all sides correspond to the case
when the plate is fully clamped all around. The convergence of the proposed method is examined by
numerical simulation applying stringent accuracy requirements to fulfill the prescribed boundary
conditions. Some of the computed numerical results are compared with published results and finally,
the paper draws significant conclusions.

Keywords: isotropic and orthotropic triangular plates; free vibration; natural modes; superposition
method; infinite system of linear equations
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1. Introduction

The problem of free vibration of triangular plates has always been a more challenging
problem than that of the relatively simpler problem of rectangular plates, for which the level
of complexity is certainly less. Engineering structures of triangular shapes can be found in
a wide range of practical applications, but importantly, triangular plate elements can be
successfully used as building blocks to model complex structures accurately, particularly
when applying the finite element method (FEM). Despite the importance of the problem
and the underlying need for its investigation, the first publication with good coverage on
the free vibration of triangular plates appeared only in the second half of the 20th century.
The monograph published by Leissa [1] pointed out that in contrast to a rectangular plate,
the variables in the skew coordinate system as generally encountered in a triangular plate
are problematic and cannot be easily separated, thus making it difficult to obtain the general
solution of the governing differential equation in series form. This could probably be the
main reason why the earlier investigators used a variety of variational methods to solve
the problem of vibration of triangular plates [2–5]. The superposition method developed
by Gorman [6] for the analysis of the free vibration of rectangular plates based on exact
solutions of the governing differential equations in free vibration is known to be one of
the most accurate and reliable approaches to addressing the plate vibration problem. This
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method was later generalized by Gorman himself [7–9] to deal with the free vibration
problem of right triangular plates, particularly when the edges of the plate are simply
supported or clamped [7,8]. He also proposed, in another paper [9], an analytical solution
for the right triangular plate for different boundary conditions with one of the edges of
the plate free. It should be noted that the approach presented by Gorman is in many ways
unique because the solution satisfies the governing differential equation a priori.

Kim and Dickinson [10,11] investigated the flexural vibration of isotropic and or-
thotropic triangular plates based on the Rayleigh–Ritz method, whereas Singh and
Chakraverty [12] proposed the use of orthogonal polynomials in two variables as the basis
function when applying the Rayleigh–Ritz method to arrive at the solution. A modification
of the approach used in [12] can be found in the work of Pradhan and Chakraverty [13].
Based on a variational approach, Leissa and Jabber [14] investigated the free vibration
behavior of triangular plates with completely free edges. A different analytical approach
based on Green’s function was presented by Irie et al. [15] when they studied the fee
vibration problem of isotropic polygonal plates, including triangular ones. Unfortunately,
the convergence of the method they proposed in [15] is slow to achieve sufficiently accurate
and reliable results, and rather unfavorably, their investigation revealed that for triangular
plates, one must take up to 80 terms in the representation of Green’s function to attain
acceptable accuracy. Sakiyama and Huang [16] also used Green’s function method to solve
the free vibration problem of right triangular plates. Interestingly, a numerical method
based on a hybrid form of the Rayleigh–Ritz method together with the Lagrangian multi-
plier method was reported by Liew and Wang [17] for free vibration analysis of triangular
plates with point supports, mixed edges, as well as with some partial internal curved
supports. The free vibration of point-supported isotropic and symmetrically laminated
composite triangular plates has also been investigated by Abrate [18] with the help of the
modified Rayleigh–Ritz method. By contrast, Haldar et al. [19] proposed an FEM approach
based on high-precision triangular plate bending elements for free vibration analysis of
laminated thick composite triangular plates. Pertinently, the free vibration analysis of
isosceles triangular thick plates using the Ritz method was carried out by Cheung and
Zhou [20], amongst others. Zhang and Li [21] presented a hybrid solution method for free
vibration analysis of arbitrarily shaped triangular plates with elastically restrained edges.

A review of recent articles which are devoted to free vibration analysis of triangular
plates shows that investigations in this area are predominantly based on the Rayleigh–Ritz
method or in some forms of its modifications. For instance, Lv and Shi [22] used the
Rayleigh–Ritz method through the application of modified Fourier series for free vibration
analysis of arbitrarily shaped laminated triangular thin plates with elastic boundary condi-
tions. Wang et al. [23] utilized a similar method for free vibration analysis of moderately
thick composite triangular plates under multi-points support boundary conditions. On the
other hand, the effect of thermal gradient on the free vibration of a bidirectional tapered
triangular plate was investigated by Kaur and Khanna [24]. Free vibration analysis of
thin arbitrary-shaped triangular plates under various boundary conditions and internal
supports was carried out by Cai et al. [25], whereas a semi-analytical method for the free
transverse vibration of polygonal isotropic thin plates with arbitrary shapes and elastically
restrained edges was promoted by Zhao et al. [26], who essentially used the Rayleigh–Ritz
method.

In the early seventies, Wittrick and Williams developed the dynamic stiffness method
(DSM) [27], and its solution technique [28], known as the Wittrick–Williams algorithm.
Following their pioneering contributions, the DSM has now proved to be a powerful and
elegant tool in free vibration analysis and no doubt an efficient alternative to FEM. In their
original paper, Wittrick and Williams [27] considered the case of free vibration analysis
of rectangular plates when the two opposite sides of the plate are simply supported. In
subsequent years, the area of applications of the DSM significantly expanded [29–36],
including thin-walled structures, multilayer plates, beam structures, and shells, amongst
others. The DSM uses an exact solution of governing differential equations of motion
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in free vibration of a structural element to describe the deformed shape or the shape
function of the structural element. The building block in DSM is the single frequency-
dependent element matrix which contains both the mass and stiffness properties of the
element, which is in sharp contrast to FEM, which uses separate frequency-independent
mass and stiffness matrices. The rest of the procedures in DSM, such as the assembly
method using coordinate transformation to form the overall dynamic matrix of the final
structure, are similar to that of the FEM, but the solution technique in DSM is different from
the FEM. This is because the DSM leads to a non-linear eigenvalue problem for which the
Wittrick–Williams algorithm [28] is customarily used to compute the natural frequencies,
whereas the FEM generally leads to a linear eigenvalue problem. It should be noted that
the main problem that arises in the development of DSM is the construction of the dynamic
stiffness matrix of a structural element, which relates the boundary forces to boundary
displacements of the element. For plate vibration problems, the original work of Wittrick
and Williams [27], which was restricted to simply supported rectangular plates, has been
significantly advanced in recent years by Banerjee et al. [35] and Papkov and Banerjee [36],
amongst others to cover general cases involving all possible boundary conditions. However,
there does not seem to be any attempt made so far to develop the DSM for triangular
plate elements and, understandably, the task appeared to be too daunting. It is clear
from previous DSM investigations that obtaining the general solution of the governing
differential equation of a structural element in free vibration and imposing appropriate
boundary conditions are the essential preliminary steps and undoubtedly the fundamental
prerequisites towards developing the dynamic stiffness matrix of the element. Such an
endeavor does not give the dynamic stiffness matrix straightaway because significant
additional efforts are needed to relate the amplitudes of forces to those of the displacements
at the boundaries of the element, but nevertheless, it prepares the necessary background for
its dynamic stiffness matrix development. Thus, to investigate the free vibration behavior
of a single structural element for different boundary conditions, the proposed endeavor
is ideally suited and without doubt a significant step forward to dynamic stiffness matrix
development. Within this pretext, this paper gives an accurate method based on the closed-
form analytical solution for free vibration of isosceles triangular isotropic and orthotropic
plates, paving the way for the development of its dynamic stiffness matrix. Representative
results for natural frequencies and mode shapes for isotropic and orthotropic triangular
plates are presented and some results are compared with published results. The paper
closes by drawing significant conclusions.

2. Theory Formulation
2.1. Governing Differential Equation and Boundary Value Problem

Let us consider the free transverse or bending vibration of a uniform isosceles trian-
gular orthotropic plate (see Figure 1). Application of the classical Kirchhoff–Love theory
of a thin orthotropic plate in free transverse or bending vibration leads to the following
governing differential equation for the bending displacement w0(x, y, t) = W(x, y)eiωt, as
described in [1].

D1
∂4W
∂x4 + 2D3

∂4W
∂x2∂y2 + D2

∂4W
∂y4 −Ω4W = 0 (1)

where W is the amplitude of the bending displacement, ω is the circular or angular fre-
quency in rad/s, h is the thickness, ρ is the mass density of the plate, and D1, D2, D3 are
given by:

D1 =
E1h3

12(1− ν12ν21)
; D2 =

E2h3

12(1− ν12ν21)
; D3 =

ν12E2h3

12(1− ν12ν21)
+

G12h3

6
(2)

where E1, E2, G12, and υ12 (or υ21) are the usual elastic constants and major and minor
Poisson’s ratio of the orthotropic plate and Ω4 = ω2ρh is the usual frequency parame-
ter generally used in the analysis. Note that Ω4 is not a non-dimensional quantity and
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Equation (1) applies to any plate of any shape and size with thickness h, but for presen-
tational purposes of results in the particular context of the present paper dealing with
isosceles triangular plate, Ω is non-dimensionalized to Ω by introducing b, which is one of
the sides of the isosceles triangle (AB) shown in Figure 1 to give Ω4

= b4Ω4/D1.
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In order to write the boundary conditions on the sides of the triangle, OA and OB (see
Figure 1), we introduce the following normal vectors:

→
n−(− cos θ;− sin θ);

→
n+(cos θ;− sin θ) (3)

where, as shown in Figure 1, the angle θ connects the sides a and b of the triangle so that:

θ = arcsin
a√

a2 + b2
(4)

The boundary conditions for the amplitudes of bending displacement and the bending
rotation of the plate cross-section on the side AB of the triangular plate of Figure 1, i.e., at
(y = b, x ∈ [−a; a]), can be written as:

W = WAB(x) (5)

∂W
∂y

= φAB(x) (6)

Likewise, on the sides OB and OA of the triangular plate, i.e., at x = ±ky, y ∈ [0; b],
where k = tan θ, can be written as follows:

W = Wn±(y) (7)

∂W
∂n±

= φn±(y) (8)

Now, let the functions on the right-hand sides of Equations (5)–(8) have the following
trigonometric expansions:

WAB(x) =
1

∑
j=0

∞

∑
n=1

W j
nTj
(
αnjx

)
(9)

φAB(x) =
1

∑
j=0

∞

∑
n=1

φ
j
nTj
(
αnjx

)
(10)
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Wn±(y) =
∞

∑
n=1

W±n cos βny (11)

φn±(y) =
∞

∑
n=1

φ±n cos βny (12)

where trigonometric functions which are dependent on the type of symmetry can be
denoted as follows:

Tj(z) = cos
(

π j
2
− z
)
=

{
cos z, j = 0
sin z, j = 1

(13)

The separation constants of Equations (9)–(12) are chosen in the following form:

αnj =
π

a

(
n− 1 +

j
2

)
, βn =

π(n− 1)
b

(14)

It should be noted that the system of trigonometric functions
{

Tj
(
αnjx

)}
provides

expansion of any function f (x) from the space of functions L2[−a; a] with respect to the
following trigonometric series:

f (x) =
1

∑
j=0

∞

∑
n=1

fnjTj
(
αnjx

)
=

∞

∑
n=1

[
fno cos

π(n− 1)x
a

+ fn1 sin
π(2n− 1)x

2a

]

For the expansion of functions of variable y from the functional space L2[0; b], it is
sufficient to take only the symmetrical part, which will not change the representation of the
function in its entirety.

2.2. Construction of General Solution

Following the work described in [35,36], it is now possible to write the general solution
of Equation (1) inside of the rectangular, defined by (x, y) ∈ [−a; a]× [0; b] in the form of
an infinite series with the help of the separation of the variables technique to give:

W = W0 + W1 (15)

where

Wj =
∞

∑
n=1

(Aj
n cosh(pnjy) + Bj

n cosh(pnjy))Tj(αnjx) +
∞

∑
n=1

(Cj
n Hj(qnx) + Dj

nHj(qnx)) cos(βny) (16)

In Equation (15), W0 is the symmetric part of the solution in the direction of the X-axis
and W1 is the corresponding anti-symmetric part in the direction of the X-axis.

It should be noted that Hk are hyperbolic functions that depend on the type of sym-
metry. In particular, H0 = cosh(z) is for the symmetric part of the solution whereas
H1 = sinh(z) is for the anti-symmetric part. The values pnj, pnj, qn, and qn are chosen to be
the roots of the following characteristic equations:

D2 p4 − 2D3α2 p2 + D1α4 −Ω4 = 0 (17)

D1q4 − 2D3 β2q2 + D2β4 −Ω4 = 0 (18)

Based on the general solution represented by Equations (15) and (16), the bending
rotations of the plate cross-section can be derived with help of Equations (6)–(8) as follows:

φx =
1

∑
j=0

{
∞

∑
n=1

(
Aj

n pnjsinh
(

pnjy
)
+ Bj

n pnjsinh
(

pnjy
))

Tj
(
αnjx

)
−

∞

∑
n=1

(
Cj

n Hj(qnx) + Dj
n Hj(qnx)

)
βn sin βny

}
(19)

φn± = ± cos θ
∂W
∂x
− sin θ

∂W
∂y

= ± cos θ ·
1

∑
j=0

{
∞

∑
n=1

(
Aj

n cosh
(

pnjy
)
+ Bj

n cosh
(

pnjy
))

αnjT′ j
(
αnjx

)
+
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∞

∑
n=1

(
Cj

nqn H′ j(qnx) + Dj
nqnH′ j(qnx)

)
cos βny

}
−

sin θ
1

∑
j=0

{
∞

∑
n=1

(
Aj

n pnjsinhpnjy + Bj
n pnjsinhpnjy

)
Tj
(
αnjx

)
−

∞

∑
n=1

(
Cj

n Hj(qnx)+ Dj
nHj(qnx)

)
βn sin βny

}
(20)

2.3. Infinite System of Linear Algebraic Equations

Equations (16) and (19) with the help of the boundary condition expressions given
by Equations (5) and (6) at the side AB of the triangular plate in Figure 1, lead to the two
following functional equations at x ∈ [−a; a]:

1

∑
j=0

{
∞

∑
n=1

(Aj
n cosh(pnjb) + Bj

n cosh(pnjb))Tj(αnjx)−
∞

∑
n=1

(Cj
nHj(qnx) + Dj

nHj(qnx))(−1)n

}
=

1

∑
j=0

∞

∑
n=1

W j
nTj
(
αnjx

)
(21)

1

∑
j=0

∞

∑
n=1

(
Aj

n pnjsinh
(

pnjb
)
+ Bj

n pnjsinh
(

pnjb
))

Tj
(
αnjx

)
=

1

∑
j=0

∞

∑
n=1

φ
j
nTj
(
αnjx

)
(22)

Using the above two equations and considering the completeness and orthogonality
of trigonometric functions, we can write:

∞

∑
n=1

(Aj
n cosh(pnjb) + Bj

n cosh(pnjb))Tj(αnjx)−

∞

∑
n=1

(Cj
n Hj(qnx) + Dj

n Hj(qnx))(−1)n =
∞

∑
n=1

W j
nTj
(
αnjx

)
(23)

Aj
m pmjsinh

(
pmjb

)
+ Bj

m pmjsinh
(

pmjb
)
= φ

j
m, (m = 1, 2, 3, . . . ; j = 0, 1) (24)

The boundary conditions at the sides of triangle OA and OB (respectively denoted
by “−” and “+” in the equations of the corresponding sides x = ±ky, y ∈ [0; b]) give the
following functional equalities:

1

∑
j=0

(±1)j

{
∞

∑
n=1

(
Aj

n cosh pnjy + Bj
n cosh pnjy

)
Tj

(
αnjky

)
+

∞

∑
n=1

(
Cj

n Hj(qnky) + Dj
n Hj(qnky)

)
cos βny

}
=

∞

∑
n=1

W±n cos βny (25)

1

∑
j=0

(±1)j

{
∞

∑
n=1

(
Aj

n
[
cos θ · αnj cosh pnjy T′ j

(
αnjky

)
− sin θ · pnjsinhpnjy Tj

(
αnjky

)]
+

Bj
n

[
cos θ · αnj cosh pnjy T′ j

(
αnjky

)
− sin θ · pnjsinhpnjy Tj

(
αnjky

)]
+

Cj
n[qn cos θ H′ j(qnky) cos βny + βn sin θ Hj(qnky) sin βny

]
+

Dj
n[qn cos θ H′ j(qnky) cos βny + βn sin θ Hj(qnky) sin βny

])}
=

∞

∑
n=1

ϕ±n cos βny (26)

For further transformation of Equations (25) and (26), to achieve a much simpler
representation, we can use the equality of the following form:

1

∑
j=0

(±1)jSj = F± (27)

which can be written in an alternative form as follows:

Sj =
F+ + (±1)jF−

2
(j = 0, 1) (28)
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Then, Equations (25) and (26) allow us to obtain for j = 0, 1 the following expressions:
∞

∑
n=1

(
Aj

n cosh pnjy + Bj
n cosh pnjy

)
Tj

(
αnjky

)
+

∞

∑
n=1

(
Cj

n Hj(qnky) + Dj
n Hj(qnky)

)
cos βny =

∞

∑
n=1

W+
n + (±1)jW+

n
2

cos βny (29)

∞

∑
n=1

{(
Aj

n
(
cos θ · αnj cosh pnjy T′ j

(
αnjky

)
− sin θ · pnjsinhpnjy Tj

(
αnjky

))
+

Bj
n

(
cos θ · αnj cosh pnjy T′ j

(
αnjky

)
− sin θ · pnjsinhpnjy Tj

(
αnjky

))
+

Cj
n
(
qn cos θ H′ j(qnky) cos βny + βn sin θ Hj(qnky) sin βny

)
+

Dj
n
(
qn cos θH′ j(qnky) cos βny + βn sin θ Hj(qnky) sin βny

)}
=

∞

∑
n=1

ϕ+
n + (±1)j ϕ−n

2
cos βny (30)

It is to be noted that analogous to the previous works of the authors [35,36] carried
out in a different context, it can be said that for any component case of the symmetry
represented by j = 0 or j = 1 of Equation (21), advantage can be taken of the similarity of
expansion into Fourier series of cosh t with respect to the system given by cos πnt

T and also

expansion of sinht with respect to the system given by sin π(2n−1)t
2T when t ∈ [−T; T] so

that we can write the following Fourier expansions for the already introduced hyperbolic
functions, as follows:

Hj(qx)
H′ j(qa)

=
δj0

aq
+

2q
a

∞

∑
m=1

(−1)m+jTj(αmjx)
α2

mj + q2
(31)

where δj 0 is the Kronecker delta.
The expansions of functions in the left side of Equations (29) and (30), i.e., cosh py Tj

(
αnjky

)
,

Hj(qky) cos βny, cosh py T′ j
(
αnjky

)
, sinhpy Tj

(
αnjky

)
, H′ j(qky) cos βny, and Hj(qky) sin βny

with respect to the system {cos βny} are not given here for brevity but are presented in
Appendix A.

Substituting the expansion Equation (29) into Equation (21) and expansions given
in Appendix A into Equations (29) and (30), we can rewrite the functional equalities of
Equations (21), (29), and (30) in the form of complete Fourier series. Then, equality of
Fourier coefficients for the basic functions Tj(αmjx) and cos(βmy) makes it possible to
derive the structure of equations of the infinite system by changing the unknown variables
in the following way:

X j
m = (−1)m pmjsinh

(
pmjb

)
Aj

m (32)

Y j
m = (−1)m H′ j(qma)qmCj

m (33)

Y j
m = (−1)mH′ j(qma)qmDj

m (34)

Now, we can see that Bj
m can be expressed from Equation (22) with help of X j

m as:

Bj
m pmjsinh

(
pmjb

)
= φ

j
m − (−1)mX j

m (35)

i.e., the introduced new unknowns allow us to identically satisfy Equation (22).

It should be noted that the bounded values of new unknowns
{

X j
m, Y j

m, Y j
m

}
provide

the convergence of series in the representation of Equation (16) of displacements W and
Equations (19) and (20) for bending rotations.

In essence, if we have taken into account the following asymptotic behavior of the
roots of the characteristic Equations (18) and (19) when n→ ∞:

pnj = Pαnj, pnj = Pαnj, qn = Qβn, qn = Qβn, (36)
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where asymptotic constants P, P, Q, Q can be easily expressed from the corresponding bi-
quadratic equations and always have positive real parts, then we can obtain the following
asymptotic estimates:

(Aj
n cosh(pnjy) + Bj

n cosh(pnjy) =
(−1)nX j

n
αnj

(
e−Pαnj(b−y)

P
− e−Pαnj(b−y)

P

)
+

φ
j
n

Pαnj
e−Pαnj(b−y) (37)

Cj
n Hj(qnx) + Dj

nHj(qnx) =
(−1)n

βn

(
e−Qβn |a−x|

Q
− e−Qβn |a−x|

Q

)
(38)

Consequently, the series in Equations (16), (19), and (20) exponentially decrease inside
of the triangle, which ensures absolute convergence of these series.

Next, the infinite system of equations corresponding to the vibrations of a triangular
plate with prescribed boundary displacements may be written as:

X j
m

(
cothpmjb

pmj
−

cothpmjb

pmj

)
+

2− δj0δm1

a

∞

∑
n=1

(
Y j

n

α2
mj + q2

n
+

Y j
n

α2
mj + q2

n

)
= (−1)m

(
W j

m −φ
j
m

cothpmjb

pmj

)
(39)

∞

∑
n=1

X j
n

 β2
m + p2

nj + k2α2
nj +

δj1(−1)m+n+1kαnj
pnjsinhpnjb

(
β2

m − p2
nj − k2α2

nj

)
((

βm + kαnj
)2

+ p2
nj

)((
βm − kαnj

)2
+ p2

nj

) −

β2
m + p2

nj + k2α2
nj +

δ1j(−1)m+n+1kαnj
pnjsinhpnjb

(
β2

m − p2
nj − k2α2

nj

)
((

βm + kαnj
)2

+ p2
nj

)((
βm − kαnj

)2
+ p2

nj

)
+ k

∞

∑
n=1

(
Y j

n

(
1−

δj1(−1)n+m

H′ j(qna)

)
×

β2
m + β2

n + k2q2
n(

(βm + βn)
2 + k2q2

n

)(
(βm − βn)

2 + k2q2
n

) + Y j
n

(
1−

δj1(−1)n+m

H′ j(qna)

)
β2

m + β2
n + k2q2

n(
(βm + βn)

2 + k2q2
n

)(
(βm − βn)

2 + k2q2
n

)
 =

(−1)mb(1 + δm1)
W+

m + (−1)jW−m
2

−
∞

∑
n=1

β2
m + p2

nj + k2α2
nj +

δ1j(−1)m+n+1kαnj
pnjsinhpnjb

(
β2

m − p2
nj − k2α2

nj

)
((

βm + kαnj
)2

+ p2
nj

)((
βm − kαnj

)2
+ p2

nj

) (−1)n ϕ
j
n (40)

−
∞

∑
n=1

X j
n

(cothpnjb−
δj0(−1)m+n

sinhpnjb

)
β2

m

(
p2

nj + α2
nj

)
+
(

p2
nj − α2

nj

)(
p2

nj + k2α2
nj

)
pnj

((
βm + kαnj

)2
+ p2

nj

)((
βm − kαnj

)2
+ p2

nj

) −
(

cothpnjb−
δj0(−1)m+n

sinhpnjb

)
β2

m

(
p2

nj + α2
nj

)
+
(

p2
nj − α2

nj

)(
p2

nj + k2α2
nj

)
pnj

((
βm + kαnj

)2
+ p2

nj

)((
βm − kαnj

)2
+ p2

nj

)
+

∞

∑
n=1

Y j
n

Hj(qna)
qnH′ j(qna)

(
1−

δj0(−1)n+m

Hj(qna)

)
β2

m
(

β2
n + q2

n
)
+
(
q2

n − β2
n
)(

k2q2
n + β2

n
)(

(βm + βn)
2 + k2q2

n

)(
(βm − βn)

2 + k2q2
n

) +

Y j
n

Hj(qna)
qnH′ j(qna)

(
1−

δj0(−1)n+m

Hj(qna)

)
β2

m
(

β2
n + q2

n
)
+
(
q2

n − β2
n
)(

k2q2
n + β2

n
)(

(βm + βn)
2 + k2q2

n

)(
(βm − βn)

2 + k2q2
n

)
 =

(−1)mb(1 + δm1)
φ+

m + (−1)j
φ−m

2 sin θ
+

∞

∑
n=1

cosh pnjb− bδj0(−1)m+n

pnjsinhpnjb

β2
m

(
p2

nj + α2
nj

)
+
(

p2
nj − α2

nj

)(
p2

nj + k2α2
nj

)
((

βm + kαnj

)2
+ p2

nj

)((
βm − kαnj

)2
+ p2

nj

) (−1)n ϕ
j
n (41)

(m = 1, 2, 3, . . . ; j = 0,1)
It should be noted also that the solution of the infinite system Equations (39)–(41)

allows us to express undetermined coefficients of general solution Aj
n, Bj

n, Cj
n, and Dj

n
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by means of Fourier coefficients of the boundary displacements W j
n, φj

n, W±n , and φ±n .
Consequently, the general solution of Equation (16) may be presented with help of the
values of the boundary displacements.

3. Numerical Results and Discussion

The infinite system of Equations (39)–(41) for the unknown sequence
{

Xm, Ym, Ym
}

can now be written in the canonical form [37] as:

∞

∑
n=1

MmnZn = Bm (m = 1, 2, . . .) (42)

where Mmn are the corresponding coefficients of an infinite system and Bm are free members.
An elegant and accurate numerical way of solving such infinite systems used in this

paper is the “method of reduction”, assuming that coefficients with subscripts higher than
the chosen value of N could be neglected. The infinite system is considered here as the
limiting case of the finite system below:

N

∑
n=1

MmnZR
n = Bm (m = 1, 2, . . . , N) (43)

where the number N of the unknown variables coincide with the number of equations
when the order of the system N is increased. Thus, the values of the ZR

m (m = 1, 2, . . . , N)
providing the solutions of a finite system can be considered as approximate values of the
first unknowns of the infinite system. The convergence of the method of reduction with
N → ∞ can be rigorously proved for the regular and quasi-regular infinite systems [37,38].
However, for other cases, this method is to be used a priori.

Because the solution of Equation (16) exactly satisfies governing differential equation
Equation (1), it can be ascertained that according to the proposed approach, for the case
represented by the characteristic parameters p and q of Equations (17) and (18), the quality
of fulfilling of prescribed boundary conditions at the sides of the triangle is a unique
criterion of efficiency of the method. With this pretext, Table 1 presents the degree of
accuracy when fulfilling the following boundary conditions:

W = 1 and φn = 0 (44)

when the value of the frequency parameter is Ω = 1.0.
For the results shown in Table 1, we used the following parameters for an orthotropic

(epoxy-glass) regular triangular plate with b = 1, θ = π
6 , E1 = 60.7 GPa, G12 = G13 = G23 =

12 GPa, ν12 = 0.23, and ν21 = 0.094, when N is the number of equations and number of
unknowns in the reduced system of Equation (44).

Results in Table 1 show that increasing N leads to better fulfilling of the boundary
conditions of Equation (44). Furthermore, the first eight terms in the representation of the
solution in Equation (16) allow us to fulfill the boundary conditions with a discrepancy of
less than 1%. The greatest discrepancy of the constructed solution is observed at the corner
point of the plate, which was observed by other investigators [7–9] as well, who used a
polygonal-based approach to solve triangular plate vibration problems.

Evidently, the determinant of the reduced linear system of Equation (44) may be
considered a characteristic equation to determine the natural frequencies of a fully clamped
triangular plate. Table 2 shows the fundamental non-dimensional natural frequency for
a fully clamped all-round boundary conditions of an isosceles isotropic triangular plate
using the present theory with N = 24 alongside the published results reported in [1], which
are based on a variational approach. The discrepancy between the two sets of results is
within 0.1%.
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Table 1. Fulfilling the prescribed boundary conditions test for a right triangular epoxy-glass plate.

N = 18

Diaplacement
and rotation

W, φ

l (See Column 1 of the Table)

0 1 2 3 4 5 Prescribed
B.C (exact)

W
(

al
5 , b
)

1.00001 0.99999 1.00001 0.99995 0.99953 1.00092 1

W
(

al
5 , bl

5

)
1.00000 1.00000 1.00000 0.99995 1.00002 1.00092 1

φn+

(
al
5 , bl

5

)
0.00000 −0.00002 0.00005 0.00030 0.00081 0.00913 0

N = 24

Diaplacement
and rotation

W, φ

l (See Column 1 of the Table)

0 1 2 3 4 5 Prescribed
B.C (exact)

W
(

al
5 , b
)

1.00002 1.00000 0.99997 0.99992 1.00005 1.00021 1

W
(

al
5 , bl

5

)
1.00000 1.00000 1.00000 1.00001 1.00002 1.00021 1

φn+

(
al
5 , bl

5

)
0.00000 −0.00002 0.00002 0.00030 0.00089 0.00891 0

Table 2. The fundamental natural frequency parameter Ω1 for an isotropic isosceles triangular plate
with CCC boundary conditions.

Ω1

θ π/12 π/6 π/4

Ref. [1] 13.646 8.626 6.841

Present 13.686 8.618 6.839

For further validation of results, Table 3 gives results for the first five non-dimensional
natural frequencies of an isotropic right triangular plate computed from the current theory
together with the results reported in [12,13], which used the Ritz method using orthogonal
polynomials in two variables as the basis functions. Results from the present theory shown
in Table 3 are astonishingly close to those of [12,13]. The greatest discrepancy is in the fifth
natural frequency, which is less than 0.2%. The natural frequencies from the present theory
are slightly lower than those of [12,13] which considering the energy principles, indirectly
suggest that the results from the present theory are supposedly more accurate.

Table 3. The first five natural frequency parameters Ωi for an isotropic right triangular plate with
clamped edges all around.

Method
Non-Dimensional Natural Frequency (Ωi)

Ω1 Ω2 Ω3 Ω4 Ω5

Present 8.6177 11.9063 11.9061 14.8814 15.3748

Ref [12] 8.6178 11.9075 11.9128 14.9210 15.4150

Ref [13] 8.6166 11.9039 11.9039 14.9137 15.4068

Having established the predictable accuracy of the proposed theory, the first eight
natural frequencies for an isosceles orthotropic glass/epoxy triangular plate (b/a = cot θ,
E1 = 60.7 GPa, G12 = G13 = G23 = 12 GPa, and ν12 = 0.23, ν21 = 0.094) are computed next.
The first eight natural frequencies in non-dimensional form (Ωi) are shown in Table 4 for
the CCC boundary condition of the plate. The CCC boundary condition is chosen because it
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is of particular significance for the future development of this research to dynamic stiffness
formulation for which the Wittrick–Williams algorithm [28], which requires information
about the CCC natural frequencies, is used as a solution technique.

Table 4. The first eight natural frequency parameters Ωi for an isosceles triangular glass/epoxy
plate (E1 = 60.7 GPa, G12 = G13 = G23 = 12 GPa, and ν12 = 0.23, ν21 = 0.094) with CCC boundary
conditions all around.

θ
Non-Dimensional Natural Frequency (Ωi)

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

π/12 12.6923 15.6017 18.6982 19.1273 19.5364 22.3531 25.3006 25.6629

π/6 7.6432 10.3031 10.7894 12.8591 13.6279 13.8966 15.4193 16.2192

π/4 5.8533 7.7661 8.3775 9.6595 10.3058 10.9457 11.5676 12.1677

Comparing the results of Tables 2 and 4, one can see that the natural frequencies of an
orthotropic triangular plate are essentially located below those of the corresponding natural
frequencies of an isotropic triangular plate of the same shape for any value of angle θ. This
is not surprising because a similar, but analogical situation was observed for a rectangular
plate [36]. It should be noted that for all values of angle θ the fundamental (first) natural
frequency is always symmetrical about the Y axe, i.e., when j = 0. Table 4 also shows that
the value of the natural frequency parameter Ωi is decreased when θ is increased.

The final set of results was computed to demonstrate some representative mode
shapes. Figure 2 shows the mode shapes for a right triangular orthotropic plate with CCC
boundary conditions all around. It should be noted that there are no significant differences
in the mode shapes for a special orthotropic material plate and an isotropic material plate,
particularly for the lower-order modes. Nevertheless, with an increasing sequence number
of the mode shapes, one can observe bigger differences and modal interchanges or flip-over
of mode shapes.
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Figure 2. The 1st, 2nd, 3rd, 4th, 5th, and 8th mode shapes of a right triangular glass/epoxy plate with
CCC boundary conditions all around.

4. Conclusions

The application of modified trigonometric basis functions has been proposed to con-
struct a general solution for the free vibration problem of a thin orthotropic triangular
plate. The series solution presented exactly satisfies the governing differential equation in
free vibration whereas part of the boundary conditions is accurately satisfied by a suitable
construction of plate parameters, while the rest of the boundary conditions led to an infinite
system of linear algebraic equations, which depend on the undetermined coefficients of
the series solution. Analysis and solution of an infinite system of linear algebraic equa-
tions presented in this paper made it possible to determine the natural frequencies and
mode shapes of triangular orthotropic plates, comprising different geometric and/or elastic
properties. The theory and numerical results are validated by published results showing
excellent agreement. The proposed theory paves the way for the dynamic stiffness matrix
development of triangular isotropic and orthotropic plates.
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Appendix A

Expansion of some combinations of trigonometric and hyperbolic functions with
respect to the system {cos βny} when y ∈ [0; b]

cosh pyTj
(
αnjky

)
=

2
b

∞

∑
m=1

δj1αnjk
(

p2 + k2α2
nj − β2

m

)
+ (−1)m+n p

(
β2

m + p2 + k2α2
nj

)
sinhpb((

βm + kαnj
)2

+ p2
)((

βm − kαnj
)2

+ p2
) cos βmy

1 + δm1
(A1)

https://rscf.ru/project/22-21-00226/
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Hj(qky) cos βny =
2
b

∞

∑
m=1

(
(−1)m+n H′ j(qa)− δj1

)
qk
(

β2
m + β2

n + k2q2)(
(βm + βn)

2 + k2q2
)(

(βm − βn)
2 + k2q2

) cos βmy
1 + δm1

(A2)

cosh py T′ j
(
αnjky

)
=

2
b

∞

∑
m=1

αnjk
(

p2 + k2α2
nj − β2

m

)(
(−1)m+n cosh pb− δj0

)
((

βm + kαnj
)2

+ p2
)((

βm − kαnj
)2

+ p2
) cos βmy

1 + δm1
(A3)

sinhpyTj
(
αnjky

)
=

2
b

∞

∑
m=1

p
(

β2
m + p2 + k2α2

nj

)(
(−1)m+n cosh pb− δj0

)
((

βm + kαnj
)2

+ p2
)((

βm − kαnj
)2

+ p2
) cos βmy

1 + δm1
(A4)

H′ j(qky) cos βny =
2
b

∞

∑
m=1

(
(−1)m+n Hj(qa)− δj0

)
qk
(

β2
m + β2

n + k2q2)(
(βm + βn)

2 + k2q2
)(

(βm − βn)
2 + k2q2

) cos βmy
1 + δm1

(A5)

Hj(qky) sin βny =
2
b

∞

∑
m=1

(
(−1)m+n Hj(qa)− δj0

)
βn
(

β2
m − β2

n − k2q2)(
(βm + βn)

2 + k2q2
)(

(βm − βn)
2 + k2q2

) cos βmy
1 + δm1

(A6)
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