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Abstract: The key objective of the current work is to examine the behavior of the nonlinear fractional
Riccati differential equation associated with the Caputo–Prabhakar derivative. An efficient computa-
tional scheme, that is, a mixture of homotopy analysis technique and sumudu transform, is used to
solve the nonlinear fractional Riccati differential equation. The convergence and uniqueness analysis
for the solution of the implemented technique is shown. In addition, the numerical consequences are
demonstrated in the form of graphical representations to verify the reliability of the applied method
in obtaining the solution to the mathematical model with Prabhakar-type memory.
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1. Introduction

A special branch of mathematical sciences, which involves the study and applica-
tions of integrals and derivatives of arbitrary order, is known as fractional calculus (FC);
moreover, we can say that it generalizes the concept of an integer order derivative to an
arbitrary order derivative. The idea of FC is not new; however, in the last three decades,
many researchers and mathematicians have shown interest in the study of FC because of
its applications in almost every field of real life. FC provides a remarkable contribution
to mathematical modeling by converting physical problems into mathematical models
and giving approximate and efficient solutions to the problems [1–4]. Mathematicians and
researchers have developed many fractional derivatives, including the Riemann–Liouville
derivative, the Grünwald–Letnikov derivative, the Caputo derivative of arbitrary order,
etc. To describe some real-world problems, one can use other derivatives of arbitrary
order, for example, the Prabhakar, Caputo–Prabhakar, Hilfer–Prabhakar, and many other
derivatives [5–7].

In this work, we consider the Riccati differential equation, named after the Italian
nobleman Count Jacopo Francesco Riccati (1676–1754), in the form

C1(t)
du(t)

dt
+ C2(t)u(t) + C3(t)u2(t) = ψ(t), a ≤ t ≤ b, (1)

with initial guess u(0) = c, where C1(t), C2(t), C3(t), and ψ(t) are continuous and real-
valued functions. The Riccati differential equation has many applications in the field
of applied sciences, engineering, and real-world problems, such as pattern formation in
dynamic gases, control theory, diffusion problems, network synthesis, river flows, invariant
embedding, and econometric models. Hence, to produce more efficient and approximate
results, many studies have been conducted, with many analytical and numerical methods
emerging. These include a new homotopy perturbation technique proposed by Khan
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et al. [8]; the modified variation iteration method (MVIM) applied by Geng [9]; and a
fractional variational iteration approach employed by Merdan [10] to determine the solution
to the Riccati differential equation of arbitrary order. In addition, Sakar et al. [11] presented
an iterative reproducing kernel Hilbert space technique to study the Riccati differential
equation of non-integer order; Ghomanjani et al. [12] presented the approximate solution of
the quadratic Riccati differential equation by employing the Bezier curves technique; Eldien
et al. [13] used the concept of the Chebyshev polynomial to obtain the solution of the Riccati
differential equation; Rasdee et al. [14] introduced a three point clock multistep technique
in backward difference form; Ranjbar et al. [15] implemented an enhanced homotopy
perturbation technique; Liu et al. [16] employed a technique based on the quadrature
rule and Laplace transform; and Tan et al. [17] used the homotopy analysis approach to
determine the solution to the Riccati differential equation of quadratic type.

In this work, we apply an efficient analytical method associated with sumudu trans-
form (ST) and the homotopy analysis technique, namely the homotopy analysis sumudu
transform method (HASTM) [18] to determine the approximate analytical solution to the
nonlinear fractional Riccati differential (FRD) equation. The FRD equation associated with
the Prabhakar derivative in the Caputo sense is given by

C1(t)CDλ
α,µ,w,0+u(t) + C2(t)u(t) + C3(t)u2(t) = ψ(t), (2)

where CDλ
α,µ,w,0+u(t) narrates the fractional order derivative in the Caputo–Prabhakar

sense. For µ = 1 and λ = 0, Equation (2) reduces to Equation (1).
The reason for using this method is not only that it handles the nonlinear terms very

easily by using He’s polynomial but also that it involves an auxiliary parameter } that
controls the convergence of obtained HASTM solution. This article is organized as follows:
some basic concepts of the Caputo–Prabhakar derivative and ST are described in Section 2.
The elementary plan of the applied technique is given in Section 3. The convergence
and the uniqueness of the FRD equation is analyzed in Section 4. The solution to some
FRD equations using HASTM is given in Section 5. The numerical results, graphical
representations, and comparison of the results obtained by the applied technique with
previous techniques are presented in Section 6. Section 7 contains some concluding remarks.

2. Some Preliminary Definitions

Here, we discuss some definitions and results related to the fractional operator [19–25].

Definition 1. Let g(t)∈L1[a, b], where −∞≤ a< t< b≤∞, be a locally integrable real-valued
function; then, the Riemann–Liouville (RL) derivative of arbitrary order µ is presented as [1]

Dµ
a+ g(t)=

1
Γ(m−µ)

dm

dtm

∫ t

a
(t−τ)m−1−µg(τ)dτ, (3)

where m−1 < µ≤m, and m∈N.

Definition 2. For µ>0 and g∈ACm[a, b], the Caputo derivative of arbitrary order µ is given
as [1]

C
a D

µ
t g(t) =

1
Γ(m− µ)

∫ t

a
(t− τ)m−1−µ dm

dtm g(τ)dτ. (4)

Here, m ∈ N, and ACm[a, b] represents the space of the real-valued function g(t), which
possesses a continuous derivative up to order m− 1 on [a, b], such that gm−1(t) belongs to the space
of the absolutely continuous functions [a, b], defined as follows

ACm[a, b] =
{

g : [a, b] −→ R :
dm−1

dtm−1 g(t) ∈ AC[a, b]
}

. (5)
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Definition 3. The Indian mathematician T.L. Prabhakar introduced a three-parameter Mittag–
Leffler function known as the Prabhakar function, which is defined as [19,21]

Eλ
α,µ(t) =

∞

∑
k=0

(λ)k
Γ(αk + µ)

tk

k!
, (6)

where α, µ, λ ∈ C, R(α) > 0, and (λ)k denotes the Pochhammer symbol.

Definition 4. Suppose that g(t) ∈ L1[a, b], where −∞ ≤ a < t < b ≤ ∞; then, the Prabhakar
integral is given as [19,21,22]

Eλ
α,µ,w,a+ g(t) =

∫ t

a
(t− τ)µ−1Eλ

α,µ
(
w(t− τ)α)g(τ)dτ,

=
(

eλ
α,µ(•; w) ∗ g

)
, (7)

i.e., we can say that the Prabhakar integral is a convolution of functions g(t) and eλ
α,µ(t; w), where

eλ
α,µ(t; w) = tµ−1Eλ

α,µ(wtα) for α, µ, w, λ ∈ C, with R(α), R(µ) > 0.

Definition 5. Let g ∈ L1[a, b], −∞ ≤ a < t < b ≤ ∞ , and
(

eλ
α,µ(•; w) ∗ g

)
∈ Wm,1(a, b);

then, the Prabhakar derivative in the RL sense is defined as [21,23]

Dλ
α,µ,w,a+ g(t) =

dm

dtm E−λ
α,m−µ,w,a+ g(t), (8)

where µ, w, λ, α ∈ C, R(α), R(µ) > 0, m− 1 < µ ≤ m, m ∈ N, and Wm,1[a, b] is the Sobolev
space given as

Wm,1[a, b] =
{

g ∈ L1[a, b] :
dm

dtm g ∈ L1[a, b]
}

. (9)

Definition 6. Let g ∈ ACm[a, b], 0 ≤ a < t < b ≤ ∞, and α, µ, w, λ ∈ C, with R(α), R(µ) >
0. Then the Caputo–Prabhakar derivative of arbitrary order µ is given as [20,21,23,24]

CDλ
α,µ,w,a+ g(t) =

∫ t

a
(t− τ)m−µ−1E−λ

α,m−µ

(
w(t− τ)α)g(m)(τ)dτ, (10)

= E−λ
α,m−µ,w,a+

dm

dtm g(t), m− 1 < µ ≤ m. (11)

It is also known as the regularized Prabhakar derivative. For λ = 0, the Caputo–Prabhakar
derivative becomes the Caputo derivative [21] as E0

α,µ(t) =
1

Γ(µ) .

Definition 7. Consider a set of functions B defined as

B =
{

g(t) : ∃C, η1, η2 > 0, |g(t)| < Ce|t|/ηj , i f t ∈ (−1)j × [0, ∞)
}

. (12)

Watugala [26] defined ST over the set of functions B, as

S[g(t)](s) = G(s) =
∫ ∞

0

1
s

e−t/sg(t)dt, s ∈ (−η1, η2). (13)

The detailed properties of the ST can be found in [27,28]. The ST of the Caputo–Prabhakar deriva-
tive [29] is

S
[

CDλ
α,µ,w,a+ g(t)

]
(s) = s−µ(1− wsα)λ[G(s)− g

(
a+
)]

. (14)
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3. Fundamental Description of HASTM

To give a fundamental description of the applied analytical technique, we assume a
nonlinear differential equation of fractional order

CDλ
α,µ,w,0+u(t) + Ru(t) + Nu(t) = ψ(t), m− 1 < µ ≤ m, m ∈ N, (15)

where u(t) is a function of t, CDλ
α,µ,w,0+ represents the Caputo–Prabhakar derivative of

arbitrary order µ, m ∈ N, R is the bounded linear operator of t, the general nonlinear
operator is represented by N, which is Lipschitz continuous, and ψ(t) is a source term.
Implementing the ST operator on Equation (15), we obtain

S
[

CDλ
α,µ,w,0+u

]
+ S[Ru + Nu] = S[ψ(t)]. (16)

On using the differentiation properties of the ST, we obtain the following equation

s−µ(1− wsα)λS[u]− s−µ(1− wsα)λu(0) + S[Ru + Nu] = S[ψ(t)]. (17)

On simplifying Equation (17), we obtain the subsequent equation

S[u]− u(0) + sµ(1− wsα)−λ[S[Ru + Nu]− S[ψ(t)]] = 0. (18)

According to Equation (18), the nonlinear operator is given as

N[ζ(t; q)] = S[ζ(t; q)]− ζ(t; q)(0)

+ sµ(1− wsα)−λ[S[Rζ(t; q) + Nζ(t; q)]− S[ψ(t)]], (19)

where ζ(t; q) represents a function of t and q, q is an embedding parameter such that
0 ≤ q ≤ 1, and the homotopy can be written as

(1− q)S[ζ(t; q)− u0] = }N[u(t)], (20)

where S represents the ST operator, u0(t) is an initial approximation of u(t), ζ(t; q) is an
unknown function, and } is a nonzero auxiliary parameter. Moreover, it may be clarified
that, by substituting the values of the embedding parameter q = 0 as well as q = 1, it gives

ζ(t; 0) = u0(t), ζ(t; 1) = u(t), (21)

appropriately. So, we can say that as q varies from 0 to 1, the solution of ζ(t; q) varies from
the initial approximation u0(t) to the solution u(t). The Taylor’s series expansion of the
function ζ(t; q) is given as follows

ζ(t; q) = u0(t) +
∞

∑
k=1

uk(t)qk, (22)

where

uk(t) =
1
k!

∂k

∂qk {ζ(t; q)}|q=0. (23)

If the initial guess u0(t) and the convergence control parameter } are described appropri-
ately, then Equation (22) converges at q = 1; then, we obtain the subsequent equation

u(t) = u0(t) +
∞

∑
k=1

uk(t). (24)
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The solution given by Equation (24) interprets one of the solutions of the considered
nonlinear fractional differential equation. By utilizing Equation (24) and Equation (20), the
governing equation can be obtained as

−→u k = {u1(t), u2(t), u3(t), . . . , uk(t)}. (25)

Now, we differentiate Equation (20) k-times with respect to q and then divide it by k!; then,
we substitute q = 0, which gives the subsequent equation

S[uk(t)− χkuk−1(t)] = }Rk
(−→u k−1

)
. (26)

Applying the inverse ST operator on Equation (26), we acquire the subsequent result

uk(t) = χkuk−1(t) + }S−1[Rk
(−→u k−1

)]
, (27)

where χk is given as

χk =

{
0, k ≤ 1
1, k > 1,

(28)

and we demonstrate the value ofRk
(−→u k−1

)
in an improved manner as

Rk
(−→u k−1

)
= S[uk−1(t)]− (1− χk)sµ(1− wsα)−λ

[
s−µ(1− wsα)λu(0) + S[ψ(t)]

]

+ sµ(1− wsα)−λS[Ruk−1 + Pk−1]. (29)

In Equation (29), Pk represents the homotopy polynomial [30] and is given as

Pk =
1

Γ(k)

[
∂k

∂qk Nζ(t; q)

]
q=0

, (30)

and
ζ(t; q) = ζ0 + qζ1 + q2ζ2 + . . . . (31)

Using Equation (29) in Equation (27), we obtain

uk(t) = (χk + })uk−1(t)

−}(1− χk)S−1
[
sµ(1− wsα)−λ

{
s−µ(1− wsα)λ u(0) + S[ψ(t)]

}]
+ }S−1

[
sµ(1− wsα)−λS[Ruk−1 + Pk−1]

]
. (32)

Consequently, by using Equation (32), several components of uk(t) for k ≥ 1 can be
determined, and the solution is provided by the successive equation as

u(t) =
∞

∑
k=0

uk(t). (33)

4. The Convergence and Uniqueness Analysis of the FRD Equation

In this part, we check the uniqueness and convergence of the obtained results.

Theorem 1. (Uniqueness Theorem) The solution of the FRD Equation (2) attained by the HASTM
is unique, while 0 < p < 1, where p = (1 + h̄) + h̄[|C2|+ |C3|(A + B)]V.

Proof. The outcome of FRD Equation (2)
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CDλ
α,µ,w,0+u(t)− C2(t)u(t) + C3(t)u2(t) = ψ(t), 0 < µ ≤ 1 (34)

using the HASTM is given as

u(t) =
∞

∑
k=0

uk(t), (35)

where

uk(t) = (χk + h̄)uk−1(t)− h̄(1− χk)S−1
[
sµ(1− wsα)−λ

{
s−µ(1− wsα)λu(0) + S(ψ(t))

}]
+ h̄S−1

[
sµ(1− wsα)−λS{ C2uk−1 + C3Pk−1}

]
. (36)

If possible, let u and u∗ be two different solutions of the FRD Equation (33) such that
|u(t)| ≤ A and |u∗(t)| ≤ B; then, utilizing Equation (35), we obtain

|u− u∗| =
∣∣∣(χk + h̄)(u− u∗) + h̄S−1

[
sµ(1− wsα)−λS

{
C2(u− u∗)− C3(u2 − u∗2)

}]∣∣∣. (37)

Next, on implementing the convolution property of the ST, we obtain

|u− u∗| ≤ (1 + h̄)|u− u∗|+ h̄
∫ t

0

(
C2|u− u∗|+ C3

∣∣∣u2 − u∗2
∣∣∣)(t− τ)µ−1Eλ

α,µ(w(t− τ)α)dτ (38)

≤ (1 + h̄)|u− u∗|+ h̄
∫ t

0
[C2|u− u∗|+ C3|(u + u∗)(u− u∗)|](t− τ)µ−1Eλ

α,µ{w(t− τ)α}dτ. (39)

Now, making use of the mean value theorem [31,32], we obtain

|u− u∗| ≤ (1 + h̄)|u− u∗|+ h̄(C2|u− u∗|+ C3(A + B)|u− u∗|)V. (40)

On simplifying the above equation, we obtain the subsequent relation

|u− u∗| ≤ p|u− u∗|, (41)

where p = (1 + h̄) + h̄[|C2|+ |C3|(A + B)]V, which implies that (1− p)|u− u∗| ≤ 0. Here,
0 < p < 1.

Hence, we can conclude that |u− u∗| = 0, which implies that u = u∗.
Thus, the solution is unique.

Theorem 2. (Convergence Theorem). We assume that F is a Banach space, and there is a nonlinear
mapping H : F → F; we also consider that

‖H(x)− H(y)‖ ≤ p‖x− y‖ ∀ x, y ∈ F. (42)

Now, by Banach’s fixed point theory, we know that H has a fixed point. Moreover, the sequence
generated by the HASTM solution with an arbitrary selection of x0, y0 ∈ F converges to the fixed
point of H, and

‖uk − um‖ ≤
pm

1− p
‖u1 − u0‖ ∀ x, y ∈ F. (43)

Proof. We assume that (H[J]), ‖.‖) is a Banach space of all continuous functions on I with
the norm denoted by ‖h(t)‖ = maxt∈J |h(t)|.

Now, we prove that {un} is a Cauchy sequence in the Banach space.
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‖uk − um‖ = max
t∈J

∣∣∣(1 + h̄)(uk−1 − um−1) + h̄S−1
{

sµ(1− wsα)−λS[C2(uk−1 − um−1)+

C3

(
u2

k−1 − u2
m−1

)]}∣∣∣.
‖uk − um‖ ≤ max

t∈J

[
(1 + h̄)|uk−1 − um−1|+ h̄S−1

{
sµ(1− wsα)−λS(|C2(uk−1 − um−1)|+∣∣∣C3

(
u2

k−1 − u2
m−1

)∣∣∣)}].
Now, on implementing the convolution theorem for the ST, we obtain

‖uk − um‖ ≤ max
t∈J

[(1 + h̄)|uk−1 − um−1|+

h̄
∫ t

0

[
C2|uk−1 − um−1|+ C3

∣∣∣u2
k−1 − u2

m−1

∣∣∣](t− τ)µ−1Eλ
α,µ{w(t− τ)α}dτ

]
.

Next, on using the mean value theorem [31,32], we obtain

‖uk − um‖ ≤ max
t∈J

[(1 + h̄)|uk−1 − um−1|+ h̄{C2|uk−1 − um−1|+ C3(A + B)|uk−1 − um−1|}V].

‖uk − um‖ ≤ p‖uk−1 − um−1‖.

Now, setting k = m + 1, it gives

‖um+1 − um‖ ≤ p‖um − um−1‖ ≤ p2‖um−1 − um−2‖ ≤ ... ≤ pm‖u1 − u0‖

On using the triangular inequality, we have

‖uk − um‖ ≤ ‖um+1 − um‖+ ‖um+2 − um+1‖+ ... + ‖uk − uk−1‖
≤ [pm + pm+1 + ... + pk−1]‖u1 − u0‖
≤ pm[1 + p + p2 + ... + pk−m−1]‖u1 − u0‖

≤ pm

[
1− pk−m−1

1− p

]
‖u1 − u0‖.

As 0 < p < 1, 1− pk−m−1 < 1; then, we obtain

‖uk − um‖ ≤
pm

1− p
‖u1 − u0‖. (44)

As ‖u1 − u0‖ < ∞, k→ ∞; then, ‖uk − um‖ → 0. It shows that the sequence {um} is a
Cauchy sequence. Hence, it is convergent in H[J].

5. Solution to the Fractional Riccati Equation

In this section, we discuss three examples [8,10,33,34] to show the efficiency of the
applied technique.

Example 1. The nonlinear FRD equation associated with the Caputo–Prabhakar derivative is given
by [10,34]

CDλ
α,µ,w,0+u(t)− 2u(t) + u2(t)− 1 = 0, 0 < µ ≤ 1, (45)

with initial guess u(0) = 0.
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Employing the ST operator on Equation (44) and additionally utilizing the initial guess, we obtain

S[u(t)]− 0− sµ(1− wsα)−λ − sµ(1− wsα)−λS
[
2u(t)− u2(t)

]
= 0. (46)

Now, the nonlinear operator is given by

N[ζ(t; q)] = S[ζ(t; q)]− sµ(1− wsα)−λ − sµ(1− wsα)−λS
[
2ζ(t; q)− ζ2(t; q)

]
. (47)

Hence, we can defineR(−→u k−1) for the discussed problem as follows

R
(−→u k−1

)
= S[uk−1(t)]− (1− χk)sµ(1− wsα)−λ − sµ(1− wsα)−λS[2uk−1 − Ak−1]. (48)

The deformation equation of the kth order is expressed in the subsequent manner as

S[uk(t)− χkuk−1(t)] = }Rk
(−→u k−1

)
. (49)

Next, on implementing the inverse ST operator on Equation (49), we obtain

uk(t) = χkuk−1(t) + }S−1[Rk
(−→u k−1

)]
. (50)

Now, on utilizing the initial guess u0(0) = 0 and the recursive formula given by Equation (48), we
obtain the subsequent equation

uk = χkuk−1(t) + }uk−1(t)− }(1− χk)S−1
[
sµ(1− wsα)−λ

]

− }S−1
[
sµ(1− wsα)−λS{2uk−1 − Ak−1}

]
. (51)

Substituting k = 1 into Equation (51), we obtain

u1(t) = −}tµEλ
α,µ+1(wtα). (52)

Hence, by following the same procedure, the remaining components uk, k ≥ 0 can be readily
obtained. Consequently, we can determine the subsequent series solution

u(t) = lim
N→∞

N

∑
k=0

uk(t) . (53)

The exact solution [10] of the standard form of the Riccati Equation (34) is presented by

u(t) = 1 +
√

2 tanh

(
√

2t +
1
2

log

(√
2− 1√
2 + 1

) )
. (54)

Example 2. The nonlinear FRD equation associated with the Caputo–Prabhakar derivative is given
by [8,34]

CDλ
α,µ,w,0+u(t) + u(t)− u2(t) = 0, 0 < µ ≤ 1, (55)

with the initial guess u(0) = 1
2 .

Employing the ST operator on Equation (55) and additionally utilizing the initial guess, we
obtain

S[u(t)]− 1
2
+ sµ(1− wsα)−λS

[
u(t)− u2(t)

]
= 0. (56)

Now, the nonlinear operator is given by

N[ζ(t; q)] = S[ζ(t; q)]− 1
2
+ sµ(1− wsα)−λS

[
ζ(t; q)− ζ2(t; q)

]
. (57)
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Thus, we define theR(−→u k−1) for the discussed problem as follows

Rk
(−→u k−1

)
= S

[−→u k−1
]
− (1− χk)u(0) + sµ(1− wsα)−λS[uk−1 − Ak−1]. (58)

The deformation equation of the kth order is expressed in the subsequent manner as

S[uk(t)− χkuk−1(t)] = }Rk
(−→u k−1

)
, (59)

Next, on implementing the inverse ST operator on Equation (59), we obtain

uk(t) = χkuk−1(t) + }S−1[Rk
(−→u k−1

)]
. (60)

Now, on utilizing the initial guess u0(0) = 1
2 and the recursive formula given by Equation (58), we

obtain the subsequent equation

uk(t) = χkuk−1(t) + }uk−1(t)−
}
2
(1− χk) + }S−1

[
sµ(1− wsα)−λS{uk−1 − Ak−1}

]
. (61)

Substituting k = 1 into Equation (61), we obtain

u1(t) =
}
4

tµEλ
α,µ+1(wtα). (62)

Hence, by following the same procedure, the remaining components uk, k ≥ 0 can be readily
obtained. Consequently, we can determine the subsequent series solution

u(t) = lim
N→∞

N

∑
k=0

uk(t) . (63)

The exact solution [8] of the standard form of the Riccati Equation (55) is given by

u(t) =
e−t

1 + e−t . (64)

Example 3. The nonlinear FRD equation associated with the Caputo–Prabhakar derivative is given
by [10,33]

CDλ
α,µ,w,0+u(t) + u2(t)− 1 = 0, 0 < µ ≤ 1, (65)

with the initial guess u(0) = 0.
Employing the ST operator on Equation (65) and additionally utilizing the initial guess, we

obtain
S[u(t)]− sµ(1− wsα)−λ + sµ(1− wsα)−λS

[
u2(t)

]
= 0. (66)

Now, the nonlinear operator is given by

N[ζ(t; q)] = S[ζ(t; q)]− sµ(1− wsα)−λ + sµ(1− wsα)−λS
[
ζ2(t; q)

]
. (67)

Thus, we can defineR
−→
(uk−1) for the discussed problem as follows

Rk
(−→u k−1

)
= S[uk−1(t)]− (1− χk)sµ(1− wsα)−λ + sµ(1− wsα)−λS[Ak−1]. (68)

The deformation equation of kth order is expressed in subsequent manner as

S[uk(t)− χkuk−1(t)] = }Rk
(−→u k−1

)
. (69)

Next, on implementing the inverse ST operator on Equation (69), we obtain
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uk(t) = χkuk−1(t) + }S−1[Rk
(−→u k−1

)]
. (70)

Now, on utilizing the initial guess u0(0) = 0 and the recursive formula given by Equation (68), we
obtain the subsequent equation

uk(t) = (χk + })uk−1(t)

− }(1− χk)S−1
[
sµ(1− wsα)−λ

]
+ S−1

[
sµ(1− wsα)−λS{Ak−1}

]
. (71)

Substituting k = 1 into Equation (71), we obtain

u1(t) = −}tµEλ
α,µ+1(wtα). (72)

Hence, by following the same procedure, the remaining components uk, k ≥ 0 can be readily
obtained. Consequently, we can determine the subsequent series solution

u(t) = lim
N→∞

N

∑
k=0

uk(t) . (73)

The exact solution [10] of the standard form of the Riccati equation (65) is given by

u(t) =
e2t − 1
e2t + 1

. (74)

6. Numerical Outcomes

Here, we perform numerical simulations by utilizing the applied method, i.e., the
HASTM for the solution to the FRD equation at µ = 0.95, µ = 0.90, µ = 0.85, and
additionally for µ = 1. The results of this numerical simulation are provided in the
form of Tables 1–3 and Figures 1–9. The comparative study of the results obtained by
the implemented method, the exact solution, and other methods are shown in Tables
1–3. Figure 1 (for Example 1), Figure 4 (for Example 2), and Figure 7 (for Example 3)
represent the solution to u(t) obtained using the HASTM and the exact solution for µ = 1.
These figures show that the solution obtained by the implemented method was quite
close to exact solution. Figure 2 (for Example 1), Figure 5 (for Example 2), and Figure 8
(for Example 3) are plotted to show the variation in the approximate solutions of u(t) for
µ = 0.85, µ = 0.90, µ = 0.95, and µ = 1. From these figures, we can observe that by
slightly changing in the value of µ, the graphs maintain their shapes but shift a bit from
their positions. Thus, it is noticeable that the solution profiles significantly depend upon the
order of the Caputo–Prabhakar operator. Figure 3 (for Example 1), Figure 6 (for Example
2), and Figure 9 (for Example 3) show the }-curves for various values of µ. In this method,
the convergence of the obtained solution was handled by }.

Table 1. Comparative analysis of the numerical results for u(t) at } = −1 and µ = 1 for Example 1.

t Exact Solution HASTM
Variation in
Parameters
Method [32]

Homotopy
Perturbation
Method [32]

Error of HASTM

0.0 0.000000 0.000000 0.000000 0.000000 0

0.2 0.2419767992 0.2426666667 0.2419499764 0.2419648204 6.8986 × 10−4

0.4 0.5678121656 0.5813333333 0.5673979034 0.5681149562 1.3521 × 10−2

0.6 0.9535662155 1.032000000 0.9525886597 0.9582588343 7.8434 × 10−2

0.8 1.346363655 1.610666667 1.345789984 1.365239549 2.6430 × 10−1

1.0 1.689498390 2.333333333 1.688651308 1.723809524 6.4383 × 10−1
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Table 2. Comparative analysis of the numerical results for u(t) at } = −1 and µ = 1 for Example 2.

t Exact Solution HASTM Solution
New Homotopy

Perturbation
Method [8]

Trignometric
Transform

Method [33]
Error of HASTM

0.0 0.5000000000 0.5000000000 0.5000000000 0.500000 0

0.2 0.4501660027 0.4501666667 0.4501653361 0.450065 6.640 × 10−7

0.4 0.4013123399 0.4013333333 0.412910065 0.401178 2.099 × 10−5

0.6 0.3543436938 0.3545000000 0.3541816941 0.354203 1.563 × 10−4

0.8 0.3100255189 0.3106666667 0.3093428632 0.309897 6.411 × 10−4

1.0 0.2689414214 0.2708333333 0.2668582870 0.268837 1.892 × 10−3

Table 3. Comparative analysis of the numerical results for u(t) at } = −1 and µ = 1 for Example 3.

t Exact Solution HASTM
Solution

Fractional
Variational

Iteration
Method [10]

Modified
Homotopy

Perturbation
Method [10]

Trignometric
Transform

Method [33]

Error of
HASTM

0.0 0 0 0 0 0 0

0.2 0.1973753203 0.1973333333 0.197375 0.197375 0.197773 04.1987 × 10−5

0.4 0.3799489622 0.3786666667 0.380005 0.379944 0.380422 1.28229 × 10−3

0.6 0.5370495670 0.5280000000 0.537923 0.536857 0.537449 9.0496 × 10−3

0.8 0.6640367702 0.6293333333 0.669695 0.661706 0.664037 3.4703 × 10−2

1.0 0.7615941560 0.6666666667 0.784126 0.746032 0.761671 9.4927 × 10−2

Figure 1. Plot of u(t) with respect to t for µ = 1.
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Figure 2. Response of u(t) with respect to t for distinct values of µ.

Figure 3. }}}-curve of u(t) at t = 0.01 for various values of µ.
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Figure 4. Plot of u(t) with respect to t for µ = 1.

Figure 5. Response of u(t) with respect to t for distinct values of µ.
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Figure 6. }}}-curve of u(t) at t = 0.01 for various values of µ.

Figure 7. Plot of u(t) with respect to t for µ = 1.
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Figure 8. Response of u(t) with respect to t for distinct values of µ.

Figure 9. }}}-curve of u(t) at t = 0.01 for various values of µ.

7. Conclusions

In this paper, we successfully implemented the HASTM to obtain the approximate
solution to the FRD equations. The outcomes of the discussed examples using the HASTM
were compared with other methods and the exact solution. The error analysis shown in the
table illustrated the accuracy and potential of the implemented technique. The convergence
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of the obtained solutions was controlled by utilizing the auxiliary parameter h̄. Hence, we
can conclude that the applied technique is accurate and efficient in solving this type of
problems in the field of mathematical modeling. This research work is beneficial to the
fields of stochastic control, transmission lines, control theory, river flows, and many more.
It opens new avenues in these areas.
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