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Abstract: (1) Background: Transmembrane proteins (TMPs) act as gateways connecting the intra- and
extra-biomembrane environments, exchanging material and signals crossing the biofilm. Relevant
evidence shows that corresponding interactions mostly happen on the TMPs’ surface. Therefore,
knowledge of the relative distance among surface residues is critically helpful in discovering the
potential local structural characters and setting the foundation for the protein’s interaction with other
molecules. However, the prediction of fine-grained distances among residues with sequences remains
challenging; (2) Methods: In this study, we proposed a deep-learning method called TMP-SurResD,
which capitalized on the combination of the Residual Block (RB) and Squeeze-and-Excitation (SE) for
simultaneously predicting the relative distance of functional surface residues based on sequences’
information; (3) Results: The comprehensive evaluation demonstrated that TMP-SurResD could
successfully capture the relative distance between residues, with a Pearson Correlation Coefficient
(PCC) of 0.7105 and 0.6999 on the validation and independent sets, respectively. In addition, TMP-
SurResD outperformed other methods when applied to TMPs surface residue contact prediction,
and the maximum Matthews Correlation Coefficient (MCC) reached 0.602 by setting a threshold to
the predicted distance of 10; (4) Conclusions: TMP-SurResD can serve as a useful tool in supporting
a sequence-based local structural feature construction and exploring the function and biological
mechanisms of structure determination in TMPs, which can thus significantly facilitate the research
direction of molecular drug action, target design, and disease treatment.

Keywords: transmembrane protein; distances among residues; co-evolution; residual network

MSC: 92-08

1. Introduction

Transmembrane proteins (TMPs) are the intermediary between the two sides of bi-
ological membranes [1]. Cells use TMPs to transduce signals into cells, transport ions
and molecules, bind the cell to a surface or substrate, and catalyze reactions [2]. They are
also widely involved in various human diseases and are undoubtedly the primary drug
target resource [3,4]. The evidence pointing toward TMPs’ surface is highly related to
such different physiologic functions because they form the structural preferences of their
binding pocket for drugs or other biological molecules [5], and corresponding interactions
mostly happen on TMPs’ surface [6] which are mediated by highly conserved residues in
adjacent [7,8].

The interaction involves residues on the surface that are close to each other in the
spatial conformation but may separate on the protein sequence [9]. Accurate knowledge of
the relative distance between surface residues of TMPs is a meaningful study for biological
problems such as functional annotation, structural modeling, and drug discovery [10].
However, the number of TMPs with determinate experimental structures in the RCSB
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PDB [11] is less than 2% [12] and the accuracy of predicted structures by AlphaFold [13] has
yet to be verified. Therefore, it is still more difficult to be engaged in relevant TMP research
directly from the perspective of structures at present. Fortunately, the sequence data of
TMPs have emerged in large quantities with the development of high-throughput sequenc-
ing technology. It is necessary to develop a predictor based on sequences for calculating
the relative distance of residues to meet the needs of local structure research in this context.
Limited by prior knowledge and calculation methods, many previous researchers were
interested in the studies of residue contact [14,15], while little attention was paid to residue
distances [16]. Nevertheless, the contact-based prediction has gradually reached the per-
formance ceiling. It cannot wholly reflect the relative position information of residues
in a stable spatial conformation, such as chiral molecules and dihedral angles. Recently,
some new methods have been proposed to predict the inter-residue distance [17–19] as a
crucial intermediate step to achieving the overall goal of effectively optimizing protein fold-
ing from the sequence [20–22], but unanimously by simplifying the residue distance into
residue contact. However, what we are interested in is often different from the distances
between all residues on the whole sequence and the relative positions of residues in local
regions in a specific task because enough guidance can be provided for local structural
feature extraction or other downstream work.

In this study, a regression-based distance prediction method is proposed, named TMP-
SurResD, which adopts the improved residual network to capture the delicate geometric
relationship between residue pairs and thus could predict the continuous and relative
distance of functional surface residues rapidly and satisfactorily. Some feature profiles
of TMPs based on their primary sequences firstly were constructed, including sequence
coding, evolutionary conservation, coevolution information derived by sequence alignment,
and relative solvent accessibility. Next, we designed a multi-channel feature extractor to
learn the latent information from these physicochemical and biochemical profiles based
on the combination of the Residual Block (RB) [23] and Squeeze-and-Excitation (SE) [24].
The RB learned features by integrating spatial and channel information, and the SE focused
on the relationship between channels, aiming to discover the importance of different
channel features automatically. TMP-SurResD exploited this integration block to extract
local and global information fully.

Furthermore, the distance matrix is normalized to reduce the training error caused by
the wide range of maximum residual distance distribution. The sequence-based features
extracted were input into the model through different combinations to explore the contribu-
tion of additional features and combinations. Finally, we demonstrated that TMP-SurResD
significantly outperformed other state-of-the-art methods through a comprehensive evalua-
tion of an independent test data set and could accurately identify residue distances based on
sequence-based input information. The rich and multi-level supervision information gave
TMP-SurResD a highly fitting ability. Moreover, we hope this study will set the groundwork
for this important topic and suggest future directions and applications. TMP-SurResD
is freely accessible at https://github.com/NENUBioCompute/TMP-ResDistancePre (ac-
cessed on 3 January 2023).

2. Materials and Methods

The TMP-SurResD’s pipeline is shown in Figure 1, where Figure 1a shows the collec-
tion and preprocessing of the benchmark datasets, Figure 1b illustrates the details about
extracting the four features, Figure 1c describes how features in different dimensions are
combined, and the details about deep learning model are shown in Figure 1d.

https://github.com/NENUBioCompute/TMP-ResDistancePre
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Figure 1. The workflow and architecture of TMP-SurResD.

2.1. Benchmark Dataset

6509 TMP complexes were downloaded from PDBTM (version: 2021-10-01) [25].
Biopython was then used to parse 33,458 redundant protein sequences and 3D coordinates
of Cα atoms for each residue from PDB files. The protein chains containing multiple
identifier alignments that cannot be identified were removed, and we retained the sequences
composed of 20 standard amino acids in a particular order. We also removed the chains
whose length was less than 30 residues or the long sequence over 1000. Since short
sequences may not fold into a representative structure, long sequences bring training
difficulties to the model. After data pre-processing, CD-HIT [26] was utilized to eliminate
the same structures with a 30% sequence identity cut-off to maintain low homology among
sequences, resulting in 887 α-TMP chains left. We denoted the remaining chains as SurTotal.

The whole sequence features are used as the model’s input to retain the information
distributed on the original sequences as entirely as possible and make them have biological
significance. Furthermore, to evaluate the effectiveness of TMP-SurResD, the protein
sequences were randomly divided into a training set (SurTrain) of 532 TMP sequences,
a validation set (SurValid) of 177, and an independent test set (SurTest) of 178 in a 6:2:2 ratio
and their sequence distribution length is consistent. SurTrain, SurValid, and SurTest are
used to train the model weights, determine the learning rate and test the final performance
of the network, respectively [27].

2.2. Protein Sequence Descriptors

Previous residue contact prediction relies mainly on information derived from se-
quences [18]. We can also obtain a great many derivative features from sequences for
reference, such as physicochemical properties [28], amino acid composition [29], and sec-
ondary structure [30]. However, not all features positively promote the prediction of
residues distances, and some features have the opposite effect. In this study, we finally
extracted four features to characterize the structure of TMPs from different perspectives:
sequence coding, evolutionary conservation, coevolution information, and relative sol-
vent accessibility.

2.2.1. Sequence Encoding

The one-hot encoding (OH) scheme is popular since deep learning models require
grid-like input with numbers [31]. Simultaneously, protein sequences encoded with OH
have been successfully applied to the related task of protein structure prediction [32].
A sequence is transformed into a sparse matrix of size L× N [33], where L represents the
sequence length, and N denotes 20 amino acid types.
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2.2.2. Evolutionary Conservation

Evolutionary conservation (EC) employed in many bioinformatics problems is identi-
fied by aligning the amino acid sequences of proteins with the same function from different
taxa (orthologs), which ca n help to determine the folding patterns of spatial structures
and infer potential functional surfaces of protein molecules. Highly conserved regions in
a protein during evolution are always functional regions [34]. Here we employed HH-
blits [35] to generate the suffix ‘.hhm’ files by searching against the uniprot20_2016_02
database with three iterations and a 0.01 E-value cut-off. Eventually, for a given TMP
sequence, the EC feature extracted from the ‘.hhm’ file is a 30-dimension matrix, with each
column representing a profile and each row representing a residue. It must be normalized
using the Formula (1) to distribute it evenly in [0, 1] to avoid the deviation of the extensive
distribution of each value ranging from 0 to 9999. An HHM represents this feature.

f (x) =
1

1 + e−
x

200
(1)

2.2.3. Co-Evolutionary Information

The co-evolutionary pressure to maintain a stable protein structure gives rise to corre-
lated mutations between contacting residue pairs. The coevolution among residues can be
observed using multiple sequence alignments (MSAs generated by DeepMSA [36]) of the
protein family and can be used to predict residue-residue distance. Currently, the state-of-
the-art methods for residue distance prediction all utilize co-evolutionary patterns directly
or indirectly. The indirect strategy is to construct MSA for the targeisrotein sequence [37]
and then extract the potential patterns of residue pairs in the MSA. The application, CCM-
Pred [38], was chosen to disentangle direct couplings for all residue pairs of each TMP
from mere correlations between MSA columns. Among them, CCMPred applies the Potts
statistical models [39] that can distinguish direct couplings between pairs of columns in
multiple sequence alignments from merely correlated pairs to obtain the covariance matrix,
thereby obtaining the L× L co-evolutionary coupling information, and this feature will be
referred to as CCM.

2.2.4. Relative Solution Accessibility

Solvent-exposed residues can interact directly with other biomolecules. Specifically,
the hydrophobic residues buried in the structure and the hydrophilic residues exposed in
the solvent reach an equilibrium to form a hydrophobic effect, and the hydrophobic force
makes the polypeptide chain overcome the entropy factor in the solvent and enter a folded
state [40]. The relative solvent accessible surface area (rASA) is generated by dividing the
accessible location of each residue molecule by the maximum accessible surface area of
the protein. TMP-SSurface2 [5] is efficient in predicting the surface of TMPs, which took
one-hot coding and position-specific scoring matrix (PSSM) [41] as input. Based on the
predicted value, residues were divided into two categories. A value less than 0.2 indicates
that the residue is exposed to the solvent. Otherwise, it is buried internally. Consequently,
a matrix of size L× 1 is obtained.

2.3. The Representation of Residue Distance

From the perspective of data input and output format, the problem of TMP residue
distance prediction is analogized to the monocular image depth prediction in three-
dimensional (3D) perception [42,43]. The purpose of these is considered as the regression
problem of disparity maps. Monocular image depth prediction is to obtain the geomet-
ric features of 3D scenes from two-dimensional (2D) images [44]. The input volume has
dimensions H ×W × D (height, width, and depth, respectively), and the output is the
depth information of size H ×W [45]. Similarly, the residue distance prediction input is
L× L×N, which outputs a distance map of L× L. Image depth prediction usually involves



Mathematics 2023, 11, 642 5 of 16

three channels (red, green, and blue), while the difference is that there are more features in
the latter, such as 56 or 441 channels [42] or even more.

2.3.1. Feature Combination

Dimension transformation is usually required when the feature dimensions are incon-
sistent in the feature processing stage. Taking the combination of one-hot coding, HHM,
and CCM as an example, the specific methods of combining them to adapt to the model
input are shown in Formulas (2) to (4). Firstly, the two features are horizontally stacked to
convert an OHH. Further, a single residue feature is obtained through the outer concatenate
operation and then reshaped into a 3D residue pairs feature OHHP. Finally, it is stacked
horizontally with the remaining CCM in depth.

OHH = hstack(OH, HHM) (2)

OHHP[i, j, :] = reshape(concat(OHH[i, :], OHH[:, j])) (3)

OCC[i, j, :] = concat(OHP[i, j, :], CCM[i, j, :]) (4)

2.3.2. Label Matrix Generation

To label the training samples, we extracted the coordinates of Cα on the residue
backbone from the PDB files and calculated the spatial distance between Cα-Cα using
Equation (5).

|AiBj| =
√
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2 (5)

Since we are interested in the surface residues on TMP, the feature of rASA was used
to filtrate out the surface residues. A particular way is that atom files with the coordinates
of Cα were associated with rASA files via PDB identifications. Each Cα atom in the PDB file
was traversed, and if the rASA value of the residue was less than 0.2, it failed to participate
in the distance calculation. Because the statistical analysis found that the maximum value
of the distance value distribution range was 30 to 200, we took advantage of Equation (6) to
normalize each value to be between 0 and 1, where Min and Max were assigned the values
0 and 200, respectively.

x′ =
x−Min

Max−Min
=

x
200

(6)

2.4. Deep Learning Model Details
2.4.1. Model Design

As shown in Figure 2a, the network adopts the serial integration technique, which
consists of 12 SEB-RB blocks of the same structure and a full convolutional neural network
(FCNN) [46] stacked sequentially. The input = L× L× N first goes through a convolutional
layer with a convolution kernel size = 3× 3 and stride = 1, where N varies according to the
features. For example, when OH is used, N is 40; when OH and CCM are composed, N is
41× (40 + 1); when all features (OH+HHM+CCM) are combined, N is 101× (40 + 60 + 1).
The filters are set to 64, which can reduce the dimension of the number of channels.
The latent representation of the data then goes through 12 SEB-RB blocks and enters three
convolutional neural layers for decoding operations. The last three filters are set to 64, 32,
16, and 1, respectively. Finally, the relative distance matrix of L× L is output after being
activated by ReLU [47].
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Figure 2. Details of the TMP-SurResD framework. (a) The network used by TMP-SurResD. The fea-
ture vectors are L× L× N propagated through 12 SEB-RB blocks and a fully convolutional neural
network. In the last output, the matrix of L× L corresponds to the predicted distance between all
surface residues; (b) Basic block (SEB-RB) used in the network. (c) Model training process.

The SEB-RB block, as mentioned above, is composed of the squeeze-and-excitation
block (SEB) [24] and the residual block (RB) [48], where the SEB is embedded in the
learning branch of the RB. Incredibly, two original fully connected layers in the SEB were
replaced with two 2D convolution layers, and the average pooling layer and sigmoid
layer were retained in the latter part of SEB-RB. Pooling and dense layers are not used
in our framework. Therefore, TMP-SurResD can allow sequences of arbitrary length as
input. Figure 2b shows the details of the SEB-RB block, and mathematics is defined as the
Formula (7). SEB-RB block has such an advantage that it can not only extract features by
fusing spatial and channel information but also improve model expression ability from
a channel perspective, realizing the extraction of potential interaction patterns between
residue pairs in input data from all aspects.

Xo = F(Xi, {Wi}) + Xi (7)

where Xi and Xo denote the inputs and outputs of this block; Wi and F represent the
weights and residual maps to be learned, respectively.
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2.4.2. Model Training

TMP-SurResD was developed using the high-performance deep-learning framework
Pytorch [49] based on Python 3.6. It statistically took about 20 h to train 100 epochs without
using any data and model parallel. During model training, as shown in Figure 2c, batch size
and the learning rate were set to 1 and 0.002 in our experiment, respectively. SmoothL1Loss
is used to calculate the loss value. Compared with L1-Loss and L2-Loss alone, it has the
advantages of making the model more robust to outliers and controlling the magnitude of
gradients. Using Adamax [50] to update the network weights is based on the infinite norm
and has all the advantages of Adam [50]. TMP-SurResD stopped training when the loss
value on SurValid had not changed for 20 consecutive epochs and selected the evaluation
indicator corresponding to the output of the last epoch. Finally, Pearson product-moment
Correlation Coefficient (PCC) [51] was used to evaluate the overall predictive performance
of our model.

2.5. Performance Metrics

The prediction of the distance among residues is a typical regression problem. In re-
gression problems, the effect of regression is usually viewed from two different perspec-
tives: (1) whether the correct value is predicted; (2) whether enough information is fitted.
From these two perspectives, PCC, mean absolute error (MAE), and mean square error
(MSE) were used to measure the performance of TMP-SurResD. The formulas are defined
in (8) to (10).

MAE =
1
n ∑n

i=1 |yi − xi| (8)

MSE =
1
n ∑n

i=1 (yi − xi)
2 (9)

PCC =
∑n

i=1 (xi − x̄)(yi − ȳ)√[
∑n

i=1 (xi − x̄)2
][

∑n
i=1 (yi − ȳ)2

] (10)

Assume that the real distance of all residue pairs on a TMP sequence of length L is
X = [x1, x2, . . . xn−1, xn], and the predicted distance is Y = [y1, y2, . . . , yn−1, yn]. Where N
is equal to L2, xiand yi denote the observed and predicted distances between any pair of
residues severally; x̄ and ȳ represent the average values of X and Y, respectively.

3. Results
3.1. Characteristic Validity Analysis

It is well known that the upper limit of deep learning performance is determined by
the model structure’s complexity and the input characteristics’ validity [5]. The aggregation
of residues will change the average action field and become a driving force for protein fold-
ing and structural stability [52]. Many residues interact with each other, and the two-body
interactions between residues do not exist independently but are often dependent on the
surrounding environment [53]. However, inputting the two target residues’ eigenvectors
may lack direct biological significance in the prediction model. In addition, in the absence
of enough TMP training samples to fit the weight parameters, it is not optimal to take
all features as the input simultaneously. Therefore, it is significant to explore the valid-
ity of features combination. As can be seen from Table 1, each feature contains valuable
information about the distances of surface residues. When OH and HHM are combined
with CCM respectively, the model can achieve excellent predictive performance on Sur-
Valid. It is due to CCM revealing a relationship pattern about two residues close to each
other in spatial structure always tend to co-evolve, which possesses highly evolutionary
information. It demonstrated that residues are spatially close together, providing the most
potent interaction.
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Table 1. Prediction performance based on individual input features and their various combinations 1.

Features TraMAE TraMSE TraPCC ValMAE ValMSE ValPCC

OH 0.0358 0.1254 0.7920 0.0759 0.0102 0.2016
HHM 0.0637 0.0079 0.3378 0.0645 0.0081 0.3321
CCM 0.0387 0.0036 0.7706 0.0447 0.0049 0.7315

OH+HHM 0.0602 0.0067 0.3483 0.0698 0.0089 0.3256
OH+CCM 0.0306 0.0018 0.8586 0.0566 0.0067 0.5888

HHM+CCM 0.0472 0.0048 0.6983 0.0506 0.0062 0.6825
OH+HHM+CCM 0.0422 0.0038 0.7253 0.0504 0.0059 0.6864

1 Here, we tested the performance of the single feature and multiple feature combinations. To study the
contribution of different features, our network structure was initially set to eight SEB-RB blocks. The abbreviation
OH in the table represents the one-hot encoding of a single residue; HHM and CCM stand for evolutionarily
conservative and co-evolution, respectively. TraMAE, TraMSE, TraPCC, ValMAE, ValMSE, and ValPCC
respectively represent MAE, MSE, and PCC on SurTrain and SurValid.

3.2. Network Structure Analysis

When designing deep learning models, the layers and filter numbers of the network
will usually be taken into account simultaneously to achieve a balance of network because
both strategies increase the number of parameters that can be learned, expanding the
network’s fitting power. By referring to other research and considering the time-computing
resources, the only parameter in our work to be adjusted is the number of convolutional
layers. Using this approach can generally roughly search for the local optimal model.
Table 2 shows how many SEB-RB blocks affect the performance of TMP-SurResD. Since the
residue distance prediction problem has more complex input characteristics, the contexts
fed into the proposed deep learning model rely on the depth of the network. Furthermore,
the prediction accuracy would be directly influenced by its value. The training time
increases as the network layer becomes profound, but the model’s prediction performance
decreases gradually. A reversal occurs when blocks are 17. As can be seen, the PCC on
SurValid is the largest when SEB-RB blocks are set to 12. We also observe that when SEB-RB
blocks are 17, the performance is the same as 12, but the former takes statistically 10 hours
longer than the latter. Therefore, from careful consideration of training parameters, time,
and performance, TMP-SurResD comprises 12 SEB-RB blocks and a fully convolutional
neural network containing three convolutional layers.

Table 2. Effect of the number of SEB-RB blocks 1.

SEB-RB Blocks TraMAE TraMSE TraPCC ValMAE ValMSE ValPCC

5 0.0925 0.0163 0.1757 0.0921 0.0137 0.2166
6 0.0470 0.0048 0.6965 0.0492 0.0055 0.6877
7 0.0482 0.0051 0.6932 0.0490 0.0054 0.6837
8 0.0472 0.0048 0.6983 0.0506 0.0062 0.6825
9 0.0471 0.0047 0.6972 0.0493 0.0058 0.6980

10 0.0483 0.0051 0.6932 0.0484 0.0054 0.6884
11 0.0463 0.0047 0.7091 0.0474 0.0052 0.7013
12 0.0447 0.0045 0.7222 0.0483 0.0052 0.7105
13 0.0458 0.0046 0.7173 0.0480 0.0055 0.6973
14 0.0433 0.0041 0.7243 0.0481 0.0055 0.6991
15 0.0470 0.0048 0.7030 0.0481 0.0054 0.6942
16 0.0449 0.0044 0.7225 0.0489 0.0056 0.6997
17 0.0425 0.0040 0.7335 0.0464 0.0052 0.7104

1 See Figure 2b for details about SEB-RB blocks. The initial value of the network structure is 5. Keeping the
number of FCNN layers the same, we stacked the SEB-RB block sequentially.
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Similarly, the final FCNN plays the role of channel dimensionality reduction, so it is
also an important parameter. We successively tried different values to find the best convolu-
tional layers of FCNN. As seen in Table 3, when the number of layers changes, the model’s
prediction accuracy will immediately be affected, and three layers (i.e., The kernel sizes
are all three and the output channels are 32, 16, and 1, respectively) are best. However,
the model’s prediction accuracy may not grow as the convolutional layers increase.

Table 3. Effect of FCNN layers on model performance when the SEB-RB blocks are 12.

Layers TraMAE TraMSE TraPCC ValMAE ValMSE ValPCC

1 0.0438 0.0042 0.7170 0.0478 0.0054 0.6911
2 0.0474 0.0048 0.6952 0.0509 0.0062 0.6726
3 0.0447 0.0045 0.7222 0.0483 0.0052 0.7105
4 0.0456 0.0046 0.7161 0.0470 0.0054 0.7061

When designing the network model, selecting the appropriate activation function for
different problems highly impacts the model’s performance. The rectified linear activation
function (ReLU) is a non-linear function that can learn complex relationships from the
training data. Exponential Linear Unit (ELU) is another activated function based on ReLU
that has an extra α constant that defines function smoothness when inputs are negative. ELU
and ReLU are the most popular activation functions commonly used in neural networks,
especially in convolutional neural networks (CNNs) and multilayer perceptrons. Here
we compared the impact of these two activation functions on the model performance.
As presented in Table 4, ReLU worked better than ELU.

Table 4. Effect of different activation functions on model performance.

Function TraMAE TraMSE TraPCC ValMAE ValMSE ValPCC

ELU 0.0502 0.0054 0.6628 0.0504 0.0056 0.6602
ReLU 0.0447 0.0045 0.7222 0.0483 0.0052 0.7105

3.3. Model Performance Analysis

After the above parameters tuning, TMP-SurResD ultimately comprises 12 SEB-RB
blocks and three layers of FCNN, and the input feature is ‘HHM+CCM’. To verify the stabil-
ity of TMP-SurResD, we plotted the fitting curve of the model during training, as shown
in Figure 3, ensuring that the experimental results are believable and compelling rather
than some highly excellent abnormal results. With the continuous advance of the training
epoch, the model keeps learning and updating, and the PCC and Loss on the SurTrain and
SurValid do not show abnormal changes, indicating that the model designed is relatively
stable and can effectively prevent it from falling into local optimum. At the same time, its
evaluation indicator changes rapidly and tends to be stable after the end of 40 training
epochs. TMP-SurResD converges quickly, saving calculation costs and model training time.
In addition, TMP-SurResD does not overfit during the training process and can maintain a
very stable state after rapid convergence, ensuring the generalization ability.

A good predictor would not only be highly fit on the training set but should also be
able to make correct predictions about unknown data. Therefore, we tested TMP-SurResD
on SurTest containing 178 samples to verify the generalization ability and robustness.
Especially, SurTest is consistent with the sequence length distribution of the training set
and the validation set without any overlap. Table 5 demonstrates that TMP-SurResD has
significantly excellent generalization ability and robustness. When three types of combina-
tions (‘CCM’, ‘HHM+CCM’, and ‘OH+HHM+CCM’) are inputs, the PCC is 0.7238, 0.6999,
and 0.6878, respectively. These results indicate that TMP-SurResD has good generaliza-
tion ability.
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Figure 3. The changes of Loss, MAE, and PCC on SurTrain and SurValid, respectively.

Table 5. Performance of TMP-SurResD on TestSur.

Features MAE MSE PCC

CCM 0.0473 0.0054 0.7238
HHM+CCM 0.0504 0.0055 0.6999

OH+HHM+CCM 0.0522 0.0063 0.6878

3.4. The Setting of Residue-Residue Distances Threshold

Previous studies mainly focused on residue contact [14,15,45,54–67], but the latent
structure information is relatively insufficient than the distance among residues. As we all
know, residue contacts are often obtained by setting thresholds. Therefore, it is meaningful
to explore the results obtained from TMP-SurResD to select the appropriate distance
threshold. For 178 test data, we plotted the relationship between the predicted and actual
values as shown in Figure 4 (Only six samples are listed here). It can be seen from the
figure that the distance of the surface residues predicted is larger than the actual distance.
It is reasonable because the relative distance is concerned rather than individual residue
pair distance.

Here, we took the chain E of TMP 3DIN as an example of a case study to demonstrate
the effectiveness of TMP-SurResD further. 3DIN_E containing 65 residues [68] is an essential
part of the protein-translocation complex formed by the SecY channel and the SecA ATPase
in Escherichia coli. It could be folded with very high accuracy. Figure 5 compares the
TMP-SurResD predicted relative distances and real distances. As shown in the figures,
the overall trend of the relative distances has been appropriately captured. However,
compared with the true value, the predicted value is generally more significant, which can
be easily seen from the color depth in the left and right pictures.

On this basis, we set the distance threshold. As seen from Table 6, when the threshold
is set to 10, the higher precision is 0.9676, which illustrates that the prediction ability of
TMP-SurResD is relatively good. The recall is 0.4065, representing the probability of being
correctly predicted in contact residue pairs. F1-score is 0.5576, which is a comprehensive
evaluation index to improve precision and recall as much as possible while minimizing the
difference between them. The Matthews Correlation Coefficient (MCC) is 0.602, a reliable
metric for dichotomies, as the model’s predictive performance is comprehensively consid-
ered from true positives, true negatives, false positives, and false negatives. The above
results show that when the overall distance between the surface residues is too large,
the threshold we set is too high.
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Figure 4. The relationship between the predicted value obtained by TMP-SurResD and the surface
residue distance value calculated by coordinates. The black line indicates the fit between the true
value and the predicted value; the green scatter demonstrates that the predicted value is larger than
the true value.

Figure 5. The prediction of TMP-SurResD on a TMP (PDB ID: 3DIN, chain E). Comparison of
the native distance map (a) and the predicted distance map by TMP-SurResD (b). The horizontal
and vertical coordinates indicate the number of residues, and the darker the color, the closer the
residues are. Especially the dark horizontal bars in the figure indicate non-surface residues that are
not interesting.
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Table 6. The ability of TMP-SurResD to predict residue contacts by setting different thresholds of
predicted values 1.

Threshold ACC Precision Recall F1 MCC

5.5 0.9825 0.9055 0.1725 0.2755 0.3667
6 0.9777 0.9434 0.1837 0.2950 0.3887

6.5 0.9737 0.9607 0.1951 0.3128 0.4066
7 0.9725 0.9666 0.2219 0.3483 0.4372

7.5 0.9728 0.9682 0.2658 0.4021 0.4814
8 0.9736 0.9656 0.3221 0.4654 0.5313

8.5 0.9728 0.9619 0.3631 0.5089 0.5651
9 0.9697 0.9620 0.3794 0.5274 0.5788

9.5 0.9684 0.9655 0.4039 0.5534 0.5997
10 0.9645 0.9676 0.4065 0.5576 0.6020

10.5 0.9594 0.9674 0.3973 0.5498 0.5940
11 0.9546 0.9647 0.3895 0.5422 0.5859

1 Here, classification evaluation metrics such as ACC, Precision, Recall, F1, and MCC are employed to evaluate
the residue contact prediction ability of TMP-SurResD. We take 5.5 as the initial value and successively increase
the threshold value with the step size of 0.5.

3.5. Comparison with Residue Contact Prediction Models

Previous residue contact models utilized the distance threshold 8 to define residue
contacts, so eight is also used in our study for a fair comparison. Table 7 indicates that TMP-
SurResD has an excellent residue contact prediction ability compared with PSICOV [69],
Freecontact [60], and DEEPCON [45]. From the perspective of input, the four comparison
methods directly utilized MSAs. However, the correct residue contact prediction cannot be
made because TMPs need many homologous sequences. Furthermore, from the ’Precision’
and ’Recall’ columns, precision reflects the discrimination ability of the model to negative
samples, and recall reveals the identification ability to positive samples. It can be seen from
the results that all predictors can correctly judge negative samples in surface residue pairs.
Nevertheless, TMP-SurResD can accurately determine the positive samples, although recall
is only 0.3221. The F1 score of 0.4654 indicates that TMP-SurResD is relatively stable.
To summarize, the residue contact obtained by setting an appropriate threshold is superior
to other comparison methods.

Table 7. Comparison of TMP-SurResD and other residue contact prediction methods based on surface
residue 1.

Model ProNum ACC Precision Recall F1 MCC

PSICOV 128 0.0011 0.9062 0.0011 0.0022 0.0000
Freecontact 178 0.0612 0.9831 0.0612 0.0959 0.0000
DEEPCON 178 0.0024 0.9944 0.0024 0.0047 0.0000

TMP-SurResD 178 0.9736 0.9656 0.3221 0.4654 0.5313
1 Results of TMP-SurResD with a distance threshold of 8 were compared with other protein residue contact
predictors on SurTest. The ’Model’ column lists the various methods used for comparison; the corresponding
indicators (ACC, Precision, Recall, F1, and MCC) are taken advantage of to evaluate the predictor; the column
’ProNum’ denotes the number of protein sequences correctly predicted by these methods.

4. Discussion

Interactions between amino acid residues on polypeptide chains and surrounding
media play a decisive role in stable tertiary structure folding. From a macro perspective,
the spatial protein structure shows that multiple residues are very close to each other in
space through interaction forces. Accurate knowledge of the spatial distance between pairs
of residues can add more constraints to guide high-quality protein structure prediction.
Studies have shown that surface residues directly related to function and structure can
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assist in obtaining the high-quality tertiary structure of proteins. We focused on predicting
TMP residue distance using the deep learning method successfully applied to hydro-soluble
protein residue contact prediction. Furthermore, the deep learning model, TMP-SurResD,
was proposed to fill the research gap and provide references for future research.

In the absence of sufficient TMP training samples to fit the weight parameters, it is
not optimal to simultaneously use all the features as inputs to the model. The combination
of coevolution and evolutionary conservation played a crucial role in predicting surface
residue distance and transmembrane residue distance. The results demonstrated that our
proposed model showed good robustness and generalization ability in both training and
test sets. It performed better than other water-soluble protein classification models in
classification evaluation indexes.

At the same time, we found some shortcomings. Currently, the number of known TMP
structures is limited, and many TMP sequences still need help finding sufficient homology
information to generate co-evolutionary characteristics. When little information about an
unknown protein structure is known, or the homologous sequence of the target protein
cannot be found, the accuracy of residue distance prediction is relatively low, and even the
auxiliary protein structure prediction has the opposite effect. TMP-SurResD still fails to
predict TMPs accurately with the short homologous sequences. Therefore, how to achieve
the end-to-end prediction of sequence to structure without using any homologous sequence
information and other complex manual features is still an urgent problem to be solved.
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et al. The RCSB Protein Data Bank: Redesigned web site and web services. Nucleic Acids Res. 2011, 39, D392–D401. [CrossRef]
[PubMed]

12. Wang, H.; Yang, Y.; Yu, J.; Wang, X.; Zhao, D.; Xu, D.; Sun, P. DMCTOP: Topology Prediction of Alpha-Helical Transmembrane
Protein Based on Deep Multi-Scale Convolutional Neural Network. In Proceedings of the 2019 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 18–21 November 2019; pp. 36–43.

13. Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Zídek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; et al.
Highly accurate protein structure prediction for the human proteome. Nature 2021, 596, 590–596. [CrossRef] [PubMed]

14. Hönigschmid, P.; Frishman, D. Accurate prediction of helix interactions and residue contacts in membrane proteins. J. Struct.
Biol. 2016, 194, 112–123. [CrossRef] [PubMed]

https://www.python.org/
https://bitbucket.org/soedinglab/ccmpred
http://doi.org/10.1155/2021/2327832
http://www.ncbi.nlm.nih.gov/pubmed/34721655
http://dx.doi.org/10.1146/annurev-bioeng-092115-025322
http://www.ncbi.nlm.nih.gov/pubmed/26863923
http://dx.doi.org/10.1093/bib/bbaa132
http://www.ncbi.nlm.nih.gov/pubmed/32672331
http://dx.doi.org/10.7150/thno.60350
http://dx.doi.org/10.3389/fgene.2021.656140
http://dx.doi.org/10.3390/ijms20133120
http://dx.doi.org/10.1186/1472-6807-5-11
http://dx.doi.org/10.1371/journal.pcbi.1005324
http://dx.doi.org/10.3389/fgene.2022.887491
http://dx.doi.org/10.3389/fgene.2019.00542
http://dx.doi.org/10.1093/nar/gkq1021
http://www.ncbi.nlm.nih.gov/pubmed/21036868
http://dx.doi.org/10.1038/s41586-021-03828-1
http://www.ncbi.nlm.nih.gov/pubmed/34293799
http://dx.doi.org/10.1016/j.jsb.2016.02.005
http://www.ncbi.nlm.nih.gov/pubmed/26851352


Mathematics 2023, 11, 642 15 of 16

15. Yang, J.; Shen, H.B. MemBrain-contact 2.0: A new two-stage machine learning model for the prediction enhancement of
transmembrane protein residue contacts in the full chain. Bioinformatics 2018, 34, 230–238. [CrossRef] [PubMed]
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