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Abstract: In this paper, we present a study on mean square approximate controllability and finite-
dimensional mean exact controllability for the system governed by linear/semilinear infinite-dimensional
stochastic evolution equations. We introduce a stochastic resolvent-like operator and, using this oper-
ator, we formulate a criterion for mean square finite-approximate controllability of linear stochastic
evolution systems. A control is also found that provides finite-dimensional mean exact controllability
in addition to the requirement of approximate mean square controllability. Under the assumption
of approximate mean square controllability of the associated linear stochastic system, we obtain
sufficient conditions for the mean square finite-approximate controllability of a semilinear stochastic
systems with non-Lipschitz drift and diffusion coefficients using the Picard-type iterations. An
application to stochastic heat conduction equations is considered.
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1. Introduction

Stochastic differential equations have been successfully used in recent years in many
applied problems in physics, economics, electricity, mechanics, etc. Many real systems and
biological procedures exhibit some form of dynamic action under random perturbation,
with continuous and discrete properties. In the last few decades, controllability concepts
(approximate/exact approximate/finite-approximate controllability and so on) for different
types of stochastic semilinear evolutionary systems have been studied in many articles
using various methods. We divide scientific articles devoted to stochastic controllability
concepts into groups as follows.

• Linear stochastic systems: Approximate controllability notions for stochastic linear
systems were studied in [1–10]. In [1,2], stochastic Ljapunov methods are used to
give sufficient conditions for these types of stochastic observability and controllability.
In [3,4], the authors study the controllability of linear dynamical systems in the
presence of random perturbations. In [7], with the help of dual equations the duality
between approximate controllability and observability is deduced. In [8,9], necessary
and sufficient conditions, in terms of uniform and strong convergence of a certain
sequence of operators involving the resolvent of the negative of the controllability
operator, are formulated.

• Semilinear stochastic systems: Studies on the approximate controllability concepts of
semilinear/nonlinear stochastic systems have progressed slowly as compared to linear
stochastic systems, see [11–20]. There are several approaches: a resolvent approach
applied together with fixed point methods, integral contractor, sequencing method
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and the monotone technique. Several researchers—Sunahara et al. [11,12], Mahmudov
[9], George [13], Sakthivel and Kim [14], Tand and Zhang [15], Mokkedem and Fu [21],
Ain et al. [22], Anguraj and Ramkumar [23]—have used different methods to study
approximate controllability for several stochastic evolution systems.

• Non-Lipschitz stochastic systems: Approximate controllability of non-Lipschitz stochas-
tic systems was considered in Sing et al. [24], Ren et al. [25], Mahmudov et al. [26].

• Finite-approximate controllability: Simultaneous mean square approximate and finite-
dimensional mean exact controllability, referred to as the finite-approximate mean square
controllability of linear/semilinear stochastic systems in infinite-dimensional spaces, is
studied in [10,27].

As far as we know, no attempts have been made to study the analogue of mean square
finite-approximate controllability for linear stochastic evolution systems as well as for
semilinear stochastic evolution systems with non-Lipschitz coefficients. In contrast, approx-
imate controllability problems for the mean square finite-approximate controllability for
linear/semilinear stochastic systems investigated in this manuscript have not been tackled
in the existing literature. This study explores the mean square approximate controllability
for linear/semilinear stochastic systems with non-Lipschitz drift and diffusion coefficients
and fills this gap in the literature.

Therefore, motivated by the above discussions, we study the mean square finite-approximate
controllability of the following stochastic differential equation:

dz(τ) = [Az(τ) +Bu(τ) + f(τ, z(τ), u(τ))]dτ + g(τ, z(τ), u(τ))dw(τ),

z(0) = z0. (1)

Here, X is a Hilbert space, z : [0, T]×Ω→ X is the state process, u : [0, T]×Ω→ U is
the control process, U is a Hilbert space, A is an infinitesimal generator of C0-semigroup,
B ∈ L(U,X) is a linear continuous operator, f : [0, T]×X× U→ X, g : [0, T]×X× U→ L0

2
are functions to be defined later.

We introduce mean square finite-approximate controllability for Equation (1).

Definition 1. Let M be a subspace of X with finite-dimension. π : X → M is the orthogonal
projection operator. System (1) is said to be mean square approximately controllable if for a given
z0 ∈ X, zT ∈ L2(FT ,X) and ε > 0, there exists a control process uε ∈ L2

F(0, T;U) such that the
solution to (1) satisfies

E‖z(T; uε)− zT‖2 < ε2.

Definition 2. Let M be a subspace of X with finite-dimension. π : X → M is the orthogonal
projection operator. System (1) is said to be exact mean finite-dimensional controllable if for a
given z0 ∈ X, zT ∈ L2(FT ,X), there exists a control process u ∈ L2

F(0, T;U such that the solution
to (1) satisfies

πEz(T; uε) = πEzT .

Definition 3 ([10]). Let M be a subspace of X with finite-dimension. π : X→ M is the orthogonal
projection operator. System (1) is said to be mean square finite-approximately controllable if for a
given z0 ∈ X, zT ∈ L2(FT ,X) and ε > 0, there exists a control process uε ∈ L2

F(0, T;U) such that
the solution to (1) satisfies

E‖z(T; uε)− zT‖2 < ε2, (2)

πEz(T; uε) = πEzT . (3)

Simultaneous exact mean finite-dimensional and approximate mean square control-
lability is referred to as mean square finite-approximate controllability. A control process
uε can be selected such that z(T; uε) satisfies (2) and a finite number of constrains (3).
It is clear that mean square finite-approximate controllability implies both exact mean
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finite-dimensional and approximate mean square controllability. However, the converse is
not obvious.

The following are the main contributions of the paper.

(i) We introduce and study the simultaneous mean exact finite-dimensional and approx-
imate mean square controllability (mean square finite-approximate controllability)
concept for the linear/semilinear infinite-dimensional stochastic systems.

(ii) We prove that the finite-approximate mean square controllability of the stochastic
linear system (4) is equivalent to the mean square approximate controllability of the
system (4). We give an explicit analytical form of the control that provides finite-
dimensional mean square controllability of the linear stochastic system (1) in terms of
stochastic resolvent-like operators.

(iii) We present sufficient conditions for the mean square finite-dimensional controllability
semilinear stochastic differential systems in infinite dimensional Hilbert spaces. We
prove that mean square approximate controllability of the linear part of the stochastic
system implies the mean square finite-approximate controllability of the semilinear
stochastic differential equation with non-Lipschitz coefficients. Our results are new
even for the semilinear stochastic differential equation with Lipschitz coefficients.

The following is how the rest of this paper is structured: In Section 2, we provide
some fundamental notations and definitions, as well as some relevant assumptions. In
Section 3, we show that for a linear stochastic evolution system (5) approximate mean
square controllability on [0, T] is equivalent to finite-approximate controllability in the mean
square sense on [0, T]. Necessary and sufficient conditions are given for a finite-approximate
mean square controllability concept of linear stochastic evolutionary systems in Hilbert
spaces in terms of stochastic resolvent-like operators. In addition, we find an explicit
form of the finitely approximating control in terms of the stochastic resolvent-like operator(
ε(I − πE{·}) + ΠT

0
)−1. In Section 4, by applying the Picard approximation method, we

establish sufficient conditions for the mean square finite-dimensional controllability of (1).
Finally, to illustrate the theoretical findings, we provide numerical examples.

2. Preliminaries

We give notations and some preliminary results needed to present our principal results.

• For any pair X1 and X2 of separable real Hilbert spaces, we denote by L(X1,X2) the
space of bounded (continuous) linear operators from X1 to X2.

• (Fτ)τ≥0 is a normal filtration, (Ω,F, (Fτ)τ≥0,P) is a probability space.
• w(τ) is a Wiener process on (Ω,F,P). The covariance operator Q ∈ L(K, K), with

trQ < ∞ satisfies the following assumption: there exists a basis {ek}k≥1 in K, a
bounded sequence of positive real numbers λk ≥ 0 such that Qek = λkek, k = 1, 2, . . . ,
and a sequence of independent Brownian motions {βk}k≥1 such that

〈w(τ), e〉 =
∞

∑
k=1

√
λk〈ek, e〉βk(τ), e ∈ K, τ ∈ [0, T],

and Fτ = Fw
τ , where Fw

τ is the sigma algebra generated by {w(θ) : 0 ≤ θ ≤ τ}
• K, X and U are separable Hilbert spaces.

• L0
2 = L2

(
Q1/2K;X

)
is the space of all Hilbert–Schmidt operators ψ : Q1/2K → X with

the inner product 〈ψ, φ〉L0
2
=

∞

∑
k=1

(ψQφek, ek)K =tr[ψQφ].

• L2(FT ,X) is the (Hilbert) space of all FT-measurable square integrable functions f :
[0, T]×Ω→ X.

• L2
F(0, T;X) is the Hilbert space of all square integrable and F-adapted processes

f : [0, T]×Ω→ X.
• C

(
0, T; L2(F,X)

)
is the Banach space of continuous maps from [0, T] into L2(F,X)

satisfying the condition sup
{
E‖ϕ(τ)‖2

X : τ ∈ [0, T]
}
< ∞.
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• Zτ = Z(0, τ;X) ⊂ C
(
0, τ; L2(F,X)

)
is a closed subspace consisting of measurable

and F-adapted X-valued processes ϕ ∈ C
(
0, τ; L2(F,X)

)
endowed with the norm

‖ϕ‖τ =

(
sup

0≤s≤τ

E‖ϕ(s)‖2
X

) 1
2

.

• S : X → X is a C0-semigroup generated by A : D(A) ⊂ X → X and B ∈ L(U,X)
such that

sup
0≤τ≤T

‖S(τ)‖L(X) = MS and ‖B‖L(U,X) = MB.

To formulate and prove our main results, we require the following assumptions.

(H1) (f, g) : [0, T]×X× U→ X× L0
2 is a function that satisfies the following conditions:

(a) The function f(·, z, u) : [0, T]→ X is measurable strongly for all (z, u) ∈ X× U

and the function f(τ, ·, ·) : X× U→ X is continuous in (z, u) for each τ ∈ [0, T];
(b) The function g(·, z, u) : [0, T]→ L0

2 is measurable strongly for all (z, u) ∈ L0
2×U

and the function g(τ, ·, ·) : X→ L0
2 is continuous in (z, u) for each τ ∈ [0, T];

(c) For any (z, u) ∈ L2(FT ,X)× L2(FT ,U) and τ ∈ [0, T], there exist non-decreasing
functions F1, F2 : [0, T]× [0, ∞)→ [0, ∞) such that

E‖f(τ, z, u)‖2 +E‖g(τ, z, u)‖2
L0

2
≤ F1

(
τ,E‖z‖2

)
+ F2

(
τ,E‖u‖2

)
.

(H2) The functions F(τ, p) and G(τ, p) are continuous in p for each fixed τ ∈ [0, T] and
locally integrable in τ for each fixed p ∈ [0, ∞). Moreover, the integral equation

p(τ) = p0 + a
∫ τ

0
(F1(s, p(s)) + F2(s, p(s)))ds

admits a solution for all a > 0 and p0 ≥ 0.

(H3) There exist non-decreasing functions H1, H2 : [0, T]× [0, ∞)→ [0, ∞) such that for all
(z1, u1), (z2, u2) ∈ L2(FT ,X)× L2(FT ,U) and τ ∈ [0, T]

E‖f(τ, z1, u1)− f(τ, z2, u2)‖2 +E‖g(τ, z1, u1)− g(τ, z2, u2)‖2
L0

2

≤ H1

(
τ,E‖z1 − z2‖2

)
+ H2

(
τ,E‖u1 − u2‖2

)
.

(H4) The functions H1(τ, p), H2(τ, p) are continuous in p for each fixed τ ∈ [0, T] and
locally integrable with H1(τ, 0) = H2(, 0) = 0. Moreover, if the inequality

r(τ) ≤ b
∫ τ

0
(H1(s, r(s)) + H2(s, r(s)))ds

is satisfied by a nonnegative continuous function r() for τ ∈ [0, T] subject to r(0) = 0
for some b > 0, then r(τ) = 0 for all τ ∈ [0, T].

(AC) The stochastic linear system

z(τ) = T(τ)z0 +
∫ τ

0
T(τ − θ)Bu(θ)dθ +

∫ τ

0
T(τ − θ)σ(θ)dw(θ) (4)

is mean square approximately controllable on [0, T]. Here σ ∈ X2
(
0, T; L0

2
)
.

Remark 1. (i) If H1(t, y) = H2(t, y) = Cy, C > 0, then the functions in the assumption (H3)
become the Lipschitz functions.
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(ii) If H1, H2 are concave and for all (z1, u1), (z2, u2) ∈ X× U

‖f(τ, z1, u1)− f(τ, z2, u2)‖2 + ‖g(τ, z1, u1)− g(τ, z2, u2)‖2
L0

2

≤ H1

(
τ, ‖z1 − z2‖2

)
+ H2

(
τ, ‖u1 − u2‖2

)
,

then the Jensen inequality implies (H3).
(iii) For some concrete examples, see [25].

We present the following definition of mild solutions to (1).

Definition 4 ([28]). Stochastic process z ∈ ZT is said to be a mild solution of (1) if for any
u ∈ L2

F(0, T;U) it satisfies the following stochastic integral equation

z(τ) = T(τ)z0 +
∫ τ

0
T(τ − θ)[Bu(θ) + f(θ, z(θ), u(θ))]dθ

+
∫ τ

0
T(τ − θ)g(θ, z(θ), u(θ))dw(θ).

3. Linear Systems: Finite-Approximate Controllability

In this section, we study the mean square finite-approximate controllability of the
stochastic linear evolution system:{

dz(τ) = [Az(τ) +Bu(τ)]dτ + σ(τ)dw(τ),
z(0) = z0 ∈ X.

(5)

The continuous linear operator LT
0 : L2

F(0, T;U)→ L2(FT ,X) defined by

LT
0 u :=

∫ T

0
T(T − θ)Bu(θ)dθ

is called a controllability operator. Its adjoint is defined by(
LT

0

)∗
ϕ := B∗T∗(T − θ)E{ϕ | Fθ}, ϕ ∈ L2(FT ,X).

The controllability Gramian operator is defined by

ΠT
0 := LT

0

(
LT

0

)∗
=
∫ T

0
T(T − θ)BB∗T∗(T − θ)E{· | Fθ}dθ : L2(FT ,X)→ L2(FT ,X).

The resolvent operator
(
εI + ΠT

0
)−1 is known to be useful in studying the approx-

imate/exact controllability properties of linear and semilinear deterministic/stochastic
evolution systems, see [1,6]. In this regard, a new criterion for finite-approximation control-
lability of a linear stochastic evolutionary system (5) is formulated in terms of a resolvent-
like operator

(
ε(I − πE{·}) + ΠT

0
)−1. We show that for a linear stochastic evolution system

(5) approximate mean square controllability on [0, T] is equivalent to finite-approximate
controllability in the mean square sense on [0, T]. Necessary and sufficient conditions
are given for a finite-approximate mean square controllability concept of linear stochastic
evolutionary systems in Hilbert spaces in terms of stochastic resolvent-like operators. In
addition, we find an explicit form of the finitely approximating control in terms of the
stochastic resolvent-like operator

(
ε(I − πE{·}) + ΠT

0
)−1.

The following two types of operators:
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• Operator ΠT
0 ∈ L

(
L2(FT ,X)

)
is said to be nonnegative if E〈ΠT

0 ϕ, ϕ〉 ≥ 0 for all
ϕ ∈ L2(FT ,X).

• Operator ΠT
0 ∈ L

(
L2(FT ,X)

)
is said to be positive if E〈ΠT

0 ϕ, ϕ〉 > 0 for all ϕ ∈
L2(FT ,X) with ϕ 6= 0.

Firstly, we present two properties on the resolvent operator
(
εI + ΠT

0
)−1.

Lemma 1. Assume that ΠT
0 : L2(FT ,X)→ L2(FT ,X) is a linear positive operator. Then

(a) For any ε > 0, we have E
∥∥∥ε
(
εI + ΠT

0
)−1

πE{·}
∥∥∥2

< 1.

(b) E
∥∥∥ε
(
εI + ΠT

0
)−1

πE{·}
∥∥∥2

is continuous in ε and

γ = max
0≤ε≤1

E
∥∥∥∥ε
(

εI + ΠT
0

)−1
πE{·}

∥∥∥∥2
< 1.

Proof. It is clear that
(
εI + ΠT

0
)−1

πE{·}maps L2(FT ,X) into a finite-dimensional subspace
of X and ∥∥∥∥ε

(
εI + ΠT

0

)−1
πE{·}

∥∥∥∥ ≤ 1.

To show that
∥∥∥ε
(
εI + ΠT

0
)−1

πE{·}
∥∥∥ < 1, in contrast, suppose that there exists a sequence{

hn ∈ L2(FT ,X) : E‖hn‖2 = 1
}

such that

ε
(

εI + ΠT
0

)−1
πE{hn} =: zn, ‖zn‖ → 1 as n→ ∞. (6)

It follows from Equation (6) that {zn} is a sequence of finite-dimensional vectors and

επE{hn} = εzn + ΠT
0 zn and zn → z0 strongly in X. (7)

〈πE{hn}, zn〉 = 〈zn, zn〉+
1
ε

〈
ΠT

0 zn, zn

〉
,

‖zn‖2 < 〈zn, zn〉+
1
ε

〈
ΠT

0 zn, zn

〉
= 〈πE{hn}, zn〉 ≤ ‖πE{hn}‖‖zn‖ ≤ ‖zn‖.

Taking the limit as n→ ∞, we obtain

1 ≤ 1 +
1
ε

〈
ΠT

0 z0, z0

〉
≤ 1,〈

ΠT
0 z0, z0

〉
= 0 =⇒ z0 = 0.

Now, from Equation (7), it follows that ‖zn‖ → 0 as n→ ∞, which is a contradiction. The
lemma is proved.

The next lemma establishes a connection between the stochastic resolvent operator(
εI + ΠT

0
)−1 and the stochastic resolvent-like operator

(
ε(I − πE{·}) + ΠT

0
)−1.

Lemma 2. If ΠT
0 : L2(FT ,X) → L2(FT ,X) is a non-negative linear operator, then the operator

ε(I − πE{·}) + ΠT
0 : L2(FT ,X)→L2(FT ,X) is invertible and

E
∥∥∥∥(ε(I − πE{·}) + ΠT

0

)−1
h
∥∥∥∥2
≤ 1

min(ε, δ)
E‖h‖2, h ∈ L2(FT ,X), (8)
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where δ = min
{〈

πE{·}ΠT
0 πE{ϕ}, ϕ

〉
: ‖πE{ϕ}‖ = 1

}
. Moreover, if ΠT

0 : L2(FT ,X) →
L2(FT ,X) is a linear positive operator then

(
ε(I − πE{·}) + ΠT

0

)−1
=

(
I − ε

(
εI + ΠT

0

)−1
πE{·}

)−1(
εI + ΠT

0

)−1
. (9)

Proof. We write ε(I − π) + ΠT
0 as follows.

ε(I − πE{·}) + ΠT
0 = ε(I − πE{·}) + (I − πE{·})ΠT

0 + πE{·}ΠT
0 .

It is clear that

E
〈

ε(I − πE{·}) + ΠT
0 ϕ, ϕ

〉
= E

〈(
ε(I − πE{·}) + (I − πE{·})ΠT

0

)
ϕ, ϕ

〉
+
〈

πE{·}ΠT
0 ϕ, ϕ

〉
≥


E
〈
πE{·}ΠT

0 πE{·}ϕ, ϕ
〉
, ϕ ∈ M,

E
〈(

ε(I − πE{·}) + (I − πE{·})ΠT
0 (I − πE{·})

)
ϕ, ϕ

〉
, ϕ ∈ X	M

≥ min(ε, δ)E‖ϕ‖2.

It follows that ε(I − πE{·}) + ΠT
0 is invertible and inequality (8) is satisfied. If ΠT

0 :
L2(FT ,X) → L2(FT ,X) is a positive linear operator then by Lemma 1,(

I − ε
(
εI + ΠT

0
)−1

πE{·}
)−1

exists. On the other hand, since
(
εI + ΠT

0
)

is invertible and

ε(I − πE{·}) + ΠT
0 =

(
εI + ΠT

0

)(
I − ε

(
εI + ΠT

0

)−1
πE{·}

)
,

the operator ε(I − πE{·}) + ΠT
0 is boundedly invertible and (9) is satisfied.

Next, we present new criteria for the mean square finite-approximate controllability
of linear stochastic system (5).

Theorem 1. The following assertions are equivalent:

(i) Linear stochastic system (5) is mean square approximately controllable on [0, T];

(ii) ΠT
0 is positive;

(iii) For any h ∈ L2(FT ,X), we have E
∥∥∥ε
(
ε + ΠT

0
)−1h

∥∥∥2
→ 0 as ε→ 0+;

(iv) For any h ∈ L2(FT ,X), we have E
∥∥∥ε
(
ε(I − πE{·}) + ΠT

0
)−1h

∥∥∥2
→ 0 as ε→ 0+;

(v) Linear stochastic system (5) is mean square finite-approximately controllable on [0, T].

Proof. We show that (i)⇐⇒(ii). By definition, system (5) is approximately controllable if
Im LT

0 is dense in L2(FT ,X). Then, we know that(
ker
(

LT
0

)∗)⊥
= Im LT

0 .

Moreover

E
〈

ΠT
0 h, h

〉
= E

∥∥∥(LT
0

)∗
h
∥∥∥2

, h ∈ L2(FT ,X).

It follows that

ΠT
0 > 0⇐⇒ ker

(
LT

0

)∗
= 0⇐⇒ Im LT

0 =
(

ker
(

LT
0

)∗)⊥
=
(

ker
(

LT
0

)∗)⊥
.
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We show that (ii)⇐⇒(iii).
Suppose (iii) fails. Then, for some h ∈ L2(FT ,X), we have

lim
ε→0+

εE
∥∥∥∥(εI + ΠT

0

)−1
h
∥∥∥∥2

= z 6= 0.

Set zε = ε
(
εI + ΠT

0
)−1h. Then,

(
εI + ΠT

0
)
zε = εh, and taking the limit of both sides, we

obtain
ΠT

0 z = 0 =⇒ E
〈

ΠT
0 z, z

〉
= 0

for nonzero z, which contradicts the positivity of ΠT
0 .

Now, assuming that (ii) fails, for some nonzero z ∈ L2(FT ,X), we have

E
〈

ΠT
0 z, z

〉
= E

∥∥∥(LT
0

)∗
z
∥∥∥2

= 0 =⇒ LT
0

(
LT

0

)∗
z = ΠT

0 z = 0.

It follows that (
εI + ΠT

0

)
z = εz =⇒ z = ε

(
εI + ΠT

0

)−1
z

=⇒ lim
ε→0+

εE
∥∥∥∥(εI + ΠT

0

)−1
z
∥∥∥∥2

= z 6= 0,

which leads to a contradiction.
To prove the implication (iii)=⇒(iv), suppose that

lim
ε→0+

E
∥∥∥∥(εI + ΓT

0

)−1
h
∥∥∥∥2

= 0, h ∈ L2(FT ,X).

It follows from (9) that for any h ∈ L2(FT ,X)√
E
∥∥∥ε
(
ε(I − πE{·}) + ΠT

0
)−1h

∥∥∥2

≤
∥∥∥∥∥
(

I − ε
(

εI + ΠT
0

)−1
πE{·}

)−1
∥∥∥∥∥
√
E
∥∥∥ε
(
εI + ΠT

0
)−1h

∥∥∥2

≤ 1

1−
∥∥∥ε
(
εI + ΠT

0
)−1

πE{·}
∥∥∥
√
E
∥∥∥ε
(
εI + ΠT

0
)−1h

∥∥∥2
. (10)

On the other hand, from

ε1

(
ε1 I + ΠT

0

)−1
πE{·} − ε

(
εI + ΠT

0

)−1
πE{·}

= ε1

(
ε1 I + ΠT

0

)−1(
I + ε−1ΠT

0 − I − ε−1
1 ΠT

0

)
ε
(

εI + ΠT
0

)−1
πE{·}

= ε1

(
ε1 I + ΠT

0

)−1(
ε−1ΠT

0 − ε−1
1 ΠT

0

)
ε
(

εI + ΠT
0

)−1
πE{·}

=
(

ε1 I + ΠT
0

)−1(
ε1ΠT

0 − εΠT
0

)(
εI + ΠT

0

)−1
πE{·}

=
(

ε1 I + ΠT
0

)−1
(ε1 − ε)ΠT

0

(
εI + ΠT

0

)−1
πE{·},

it follows that ε
(
εI + ΠT

0
)−1

πE{·} is continuous in ε. Indeed,∥∥∥∥ε1

(
ε1 I + ΠT

0

)−1
πE{·} − ε

(
εI + ΠT

0

)−1
πE{·}

∥∥∥∥ ≤ |ε1 − ε|
ε1

→ 0 as ε1 → ε.
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By (10), the continuity of ε
(
εI + ΠT

0
)−1

πE{·} and Lemma 1, we have

γ = max
0≤ε≤1

∥∥∥∥ε
(

εI + ΠT
0

)−1
πE{·}

∥∥∥∥ < 1,√
E
∥∥∥ε
(
ε(I − πE{·}) + ΠT

0
)−1h

∥∥∥2
≤ 1

1− γ

√
E
∥∥∥ε
(
εI + ΠT

0
)−1h

∥∥∥2
.

Thus, ε
(
ε(I − πE{·}) + ΠT

0
)−1 converges to zero as ε→ 0+ in the strong operator topology.

To prove the equivalence (iii)⇐⇒(v), we take any ε > 0, h ∈ L2(FT ,X), and consider
the functional Jε(·, h) : L2(FT ,X)→ R defined as follows :

Jε(ϕ, h) =
1
2

∫ T

0
E‖B∗T∗(T − θ)E{ϕ | Fθ}‖2dθ

+
ε

2
E〈(I − πE{·})ϕ, ϕ〉 −E〈ϕ, h− T(T)z0〉.

Suppose that (iii) (⇔(ii)) is satisfied. It is obvious that Jε(·, h) is Gateaux differentiable and
J′ε(ϕ, h) = ΠT

0 ϕ + ε(I − πE{·})ϕ− h + T(T)z0 is strictly monotonic. The positivity of ΠT
0

implies that the functional Jε(·, h) is strictly convex. Thus, Jε(·, h) has a unique minimum
and can be calculated as follows:

ΠT
0 ϕ + ε(I − πE{·})ϕ− h + T(T)z0 = 0,

ϕmin = −
(

ε(I − πE{·}) + ΠT
0

)−1
(T(T)z0 − h).

For the control uε(θ) = B∗T∗(T − θ)E{ϕmin | Fθ}

zε(T)− h = T(T)z0 +
∫ T

0
T(T − θ)Bu(θ)dθ − h

= T(T)z0 − h−ΠT
0

(
ε(I − πE{·}) + ΠT

0

)−1
(T(T)z0 − h)

= T(T)z0 − h−
(

ΠT
0 + ε(I − πE{·})− ε(I − πE{·})

)
×
(

ε(I − πE{·}) + ΠT
0

)−1
(T(T)z0 − h)

= ε(I − πE{·})
(

ε(I − πE{·}) + ΠT
0

)−1
(T(T)z0 − h). (11)

Since (iii)⇒(iv), we have

lim
ε→0+

E‖zε(T)− h‖2 = lim
ε→0+

εE
∥∥∥∥(I − πE{·})

(
ε(I − πE{·}) + ΠT

0

)−1
(T(T)z0 − h)

∥∥∥∥2
= 0,

πE{zε(T)− h} = 0,

That is, system (5) is finite-approximately mean square controllable. Thus, (iii) im-
plies (v). The implication (v) ⇒ (iii) is obvious, since mean square finite-approximate
controllability implies the mean square approximate controllability. (iv)⇒(v) follows from
equality (11). Thus, we have

(i)⇔ (ii)⇔ (iii)⇔ (iv)⇒ (v)⇒ (i).

Theorem 2. The (deterministic) system{
z′(τ) = Az(τ) +Bu(τ), u ∈L2(0, T;U)

z(0) = z0 ∈ X.
(12)
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is approximately controllable on every [r, T], 0 ≤ r < T, if and only if the linear stochastic
system (5) is (mean square) approximate controllable on [0, T].

Proof. Suppose that the deterministic system (12) is approximately controllable on every
[r, T]. Then, it is known that

WT
r :=

∫ T

r
T(T − θ)BB∗T∗(T − θ)dθ, 0 ≤ r < T,

is positive. On the other hand, by the martingale representation theorem, for any h ∈
L2(FT ,X), there exists a stochastic process ψ ∈ L2

F(0, T; L0
2) such that

E{h | Fτ} = Eh +
∫ τ

0
ψ(θ)dw(θ);

see, for example, [9]. Using the above representation, we can write ΠT
0 in terms of

matrix WT
r :

ΠT
0 h =

∫ T

0
T(T − θ)BB∗T∗(T − θ)E{h | Fθ}dθ

=
∫ T

0
T(T − θ)BB∗T∗(T − θ)

(
Eh +

∫ θ

0
ψ(r)dw(r)

)
dθ

= WT
0 Eh +

∫ T

0

∫ T

r
T(T − θ)BB∗T∗(T − θ)dθψ(r)dw(r)

= WT
0 Eh +

∫ T

0
WT

r ψ(r)dw(r).

Therefore, for any nonzero h ∈ L2(FT ,X)

E
〈

ΠT
0 h, h

〉
=
〈

WT
0 Eh,Eh

〉
+E

∫ T

0

〈
WT

r ψ(r), ψ(r)
〉

dr > 0.

Thus, the positivity of the operator ΠT
0 = LT

0
(

LT
0
)∗ : L2(FT ,X) → L2(FT ,X) is equiva-

lent to the positivity of WT
r , 0 ≤ r < T. Therefore, by Theorem 1, the stochastic linear

system (5) is approximately mean square controllable on [0, T] if and only if the determinis-
tic counterpart (12) is approximately controllable on any [r, T], 0 ≤ r < T.

4. Semilinear Systems: Mean Square Finite-Approximate Controllability

The proof of the main result of this section is based on the Picard approximation
method. To apply the Picard method, for any ε > 0 we introduce the non-linear operator
Cε : ZT × UT → ZT × UT which is defined as follows

Cε(z, u) =
(
C1

ε ,C2
ε

)
(z, u) = (z, v),

where

z(τ) = C1
ε (z, u) = T(τ)z0 +

∫ τ

0
T(− θ)[Bv(θ) + f(θ, z(θ), u(θ))]dθ

+
∫ τ

0
T(τ − θ)g(θ, z(θ), u(θ))dw(θ),
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v(τ) = C2
ε (z, u) = B∗T∗(T − τ)

(
ε(I − π) + ΓT

0

)−1
(Eh− T(T)z0)

−B∗T∗(T − τ)
∫ τ

0

(
ε(I − π) + ΓT

θ

)−1
T(T − θ)f(θ, z(θ), u(θ))dθ

−B∗T∗(T − τ)
∫ τ

0

(
ε(I − π) + ΓT

θ

)−1
[T(T − θ)g(θ, z(θ), u(θ))− ϕ(θ)]dw(θ),

and ϕ ∈ L2
F(0, T; L0

2) comes from the representation

h = Eh +
∫ T

0
ϕ(θ)dw(θ)

of h ∈ L2(FT ,X).

Lemma 3. Under assumptions (H1)-(H4), the operator Cε is well defined and there exist positive
numbers k1(ε), k2(ε) such that for (z, u) ∈ ZT × UT then

‖Cε(z, u)‖2
τ

≤ k1(ε) + k2(ε)
∫ τ

0
F1

(
θ, sup

0≤r≤θ

E‖z(r)‖2

)
dθ

+ k2(ε)
∫ τ

0
F2

(
θ, sup

0≤r≤θ

E‖u(r)‖2

)
dθ.

Proof. Firstly, we estimate sup0≤θ≤τ E‖v(θ)‖
2 as follows.

E‖v(τ)‖2 = E‖v(τ, z, u)‖2

≤ 4E
∥∥∥∥B∗T∗(T − τ)

(
ε(I − π) + ΓT

0

)−1
(Eh− T(T)z0)

∥∥∥∥2

+ 4E
∥∥∥∥B∗T∗(T − τ)

∫ τ

0

(
ε(I − π) + ΓT

θ

)−1
T(T − θ)f(θ, z(θ), u(θ))dθ

∥∥∥∥2

+ 4E
∥∥∥∥B∗T∗(T − τ)

∫ τ

0

(
ε(I − π) + ΓT

θ

)−1
T(T − θ)g(θ, z(θ), u(θ))dw(θ)

∥∥∥∥2

+ 4E
∥∥∥∥B∗T∗(T − τ)

∫ τ

0

(
ε(I − π) + ΓT

θ

)−1
T(T − θ)ϕ(θ)dw(θ)

∥∥∥∥2

≤ 4
ε2 M2

S M2
BE‖(Eh− T(T)z0)‖2 +

4
ε2 M4

S M2
BE

∫ τ

0
‖ϕ(θ)‖2dθ

+
4
ε2 M4

S M2
BTE

∫ τ

0
‖f(θ, z(θ), u(θ))‖2dθ

+
4
ε2 M4

S M2
BE

∫ τ

0
‖g(θ, z(θ), u(θ))‖2dθ. (13)

Next, we estimate sup0≤θ≤τ E‖z(θ)‖
2 :

E‖z(τ)‖2

≤ 4M2
S‖z0‖2 + 4M2

S M2
BTE

∫ τ

0
‖v(θ)‖2dθ

+ 4M2
S M2

BTE
∫ τ

0
‖f(θ, z(θ), u(θ))‖2dθ

+ 4M2
S M2

BE
∫ τ

0
‖g(θ, z(θ), u(θ))‖2

L0
2
dθ (14)
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Inserting inequality (14) into Equation (13), we obtain

‖Cε(z, u)‖2
τ = sup

0≤θ≤τ

E‖z(θ)‖2 + sup
0≤θ≤τ

E‖v(θ)‖2

≤ 4M2
S‖z0‖2

+ 4M2
S M2

BTE
∫ τ

0
‖f(θ, z(θ), u(θ))‖2dθ + 4M2

S M2
BE

∫ τ

0
‖g(θ, z(θ), u(θ))‖2

L0
2
dθ

+
4
ε2 M2

S M2
BE‖(Eh− T(T)z0)‖2 +

4
ε2 M4

S M2
BE

∫ τ

0
‖ϕ(θ)‖2dθ

+
4
ε2 M4

S M2
BTE

∫ τ

0
‖f(θ, z(θ), u(θ))‖2dθ +

4
ε2 M4

S M2
BE

∫ τ

0
‖g(θ, z(θ), u(θ))‖2dθ

+ 4M2
S M2

BTE
∫ τ

0

(
4
ε2 M2

S M2
BE‖(Eh− T(T)z0)‖2 +

4
ε2 M4

S M2
BE

∫ r

0
‖ϕ(θ)‖2dθ

)
dr

+ 4M2
S M2

BTE
∫ τ

0

(
4
ε2 M4

S M2
BTE

∫ r

0
‖f(θ, z(θ), u(θ))‖2dθ

)
dr

+ 4M2
S M2

BTE
∫ τ

0

(
4
ε2 M4

S M2
BE

∫ r

0
‖g(θ, z(θ), u(θ))‖2

L0
2
dθ

)
dr

≤ k1(ε) + k2(ε)
∫ τ

0
F1

(
θ, sup

0≤r≤θ

E‖z(r)‖2

)
dθ + k2(ε)

∫ τ

0
F2

(
θ, sup

0≤r≤θ

E‖u(r)‖2

)
dθ,

where

k1(ε) := 4M2
S‖z0‖2 +

4
ε2 M2

S M2
BE‖(Eh− T(T)z0)‖2 +

4
ε2 M4

S M2
BE

∫ τ

0
‖ϕ(θ)‖2dθ

+ 4M2
S M2

BTE
∫ τ

0

(
4
ε2 M2

S M2
BE‖(Eh− T(T)z0)‖2 +

4
ε2 M4

S M2
BE

∫ r

0
‖ϕ(θ)‖2dθ

)
dr,

k2(ε) :=
(

4M2
S M2

B +
4
ε2 M4

S M2
B +

16
ε2 M6

S M4
B

)
max(T, 1).

Lemma 4. Under assumptions (H1)–(H4), the operator Cε is well defined and there exist positive
numbers L(ε), k1(ε), k2(ε) such that for (z1, u1), (z2, u2) ∈ ZT × UT , then

‖Cε(z1, u1)− Cε(z2, u2)‖2
τ

≤ L(ε)
∫ τ

0
H1

(
θ, sup

0≤r≤θ

E‖z1(r)− z2(r)‖2

)
dθ

+ L(ε)
∫ τ

0
H2

(
θ, sup

0≤r≤θ

E‖u1(r)− u2(r)‖2

)
dθ,

Proof. It is clear that

‖Cε(z1, u1)− Cε(z2, u2)‖2
τ

= sup
0≤θ≤τ

E‖z1(θ)− z2(θ)‖2 + sup
0≤θ≤τ

E‖v1(θ)− v2(θ)‖2

Firstly, we estimate sup0≤θ≤τ E‖v1(θ)− v2(θ)‖2 as follows.
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E‖v1(τ)− v2(τ)‖2 = E‖v(τ, z1, u1)− v(τ, z2, u2)‖2

≤ 2E
∥∥∥∥B∗T∗(T − τ)

∫ τ

0

(
ε(I − π) + ΓT

θ

)−1
T(T − θ)[f(θ, z1(θ), u1(θ))− f(θ, z2(θ), u2(θ))]dθ

∥∥∥∥2

+ 2E
∥∥∥∥B∗T∗(T − τ)

∫ τ

0

(
ε(I − π) + ΓT

θ

)−1
T(T − θ)[g(θ, z1(θ), u1(θ))− g(θ, z2(θ), u2(θ))]dw(θ)

∥∥∥∥2

≤ 1
ε2 2M2

S M2
B

{
E
∥∥∥∥∫ τ

0
T(T − θ)[f(θ, z1(θ), u1(θ))− f(θ, z2(θ), u2(θ))]dθ

∥∥∥∥2

+ E
∥∥∥∥∫ τ

0
T(T − θ)[g(θ, z1(θ), u1(θ))− g(θ, z2(θ), u2(θ))]dw(θ)

∥∥∥∥2
}

≤ 1
ε2 2M2

S M2
B

{
E
∥∥∥∥∫ τ

0
T(T − θ)[f(θ, z1(θ), u1(θ))− f(θ, z2(θ), u2(θ))]dθ

∥∥∥∥2

+ E
∫ τ

0
‖T(T − θ)‖2‖g(θ, z1(θ), u1(θ))− g(θ, z2(θ), u2(θ))‖2

L0
2
dθ

}
≤ 1

ε2 2M2
S M2

B

{
M2

STE
∫ τ

0
‖f(θ, z1(θ), u1(θ))− f(θ, z2(θ), u2(θ))‖2dθ

+ M2
SE
∫ τ

0
‖g(θ, z1(θ), u1(θ))− g(θ, z2(θ), u2(θ))‖2

L0
2
dθ

}
. (15)

Using assumption (H4), we obtain

E‖v(τ, z1, u1)− v(τ, z2, u2)‖2 ≤ c
∫ τ

0
H1

(
τ,E‖z1(θ)− z2(θ)‖2

)
dθ + c

∫ τ

0
H2

(
τ,E‖u1(θ)− u2(θ)‖2

)
dθ,

where
c =

1
ε2 2M2

S M2
B

[
M2

ST + M2
S

]
.

Next, we estimate sup0≤θ≤τ E‖z1(θ)− z2(θ)‖2 :

E‖z1(τ)− z2(τ)‖2

≤ 3M2
θ M2

BTE
∫

0
‖v1(θ)− v2(θ)‖2dθ

+ 3M2
STE

∫ τ

0
‖f(θ, z1(θ), u1(θ))− f(θ, z2(θ), u2(θ))‖2dθ

+ 3M2
SE
∫ τ

0
‖g(θ, z1(θ), u1(θ))− g(θ, z2(θ), u2(θ))‖2

L0
2
dθ (16)
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Combining inequalities (15) and (16), we obtain

‖Cε(z1, u1)− Cε(z2, u2)‖2
τ

≤ 3M2
STE

∫ τ

0
‖f(θ, z1(θ), u1(θ))− f(θ, z2(θ), u2(θ))‖2dθ

+ 3M2
SE
∫ τ

0
‖g(θ, z1(θ), u1(θ))− g(θ, z2(θ), u2(θ))‖2

L0
2
dθ

+
1
ε2 6M6

S M4
BT2E

∫ τ

0
‖f(θ, z1(θ), u1(θ))− f(θ, z2(θ), u2(θ))‖2dθ

+
1
ε2 6M6

S M4
BE

∫ τ

0
‖g(θ, z1(θ), u1(θ))− g(θ, z2(θ), u2(θ))‖2

L0
2
dθ

≤ L(ε)
∫ τ

0
H1

(
θ, sup

0≤r≤θ

E‖z1(r)− z2(r)‖2

)
dθ

+ L(ε)
∫ τ

0
H2

(
θ, sup

0≤r≤θ

E‖z1(r)− z2(r)‖2

)
dθ.

Lemma 5. Under assumptions (H1)-(H4), the sequence {(zn, un) : n ≥ 0} is bounded in ZT ×UT .

Proof. By Lemma 3, for any n ≥ 0, we have

‖(zn+1, un+1)‖2
τ = ‖Cε(zn, un)‖2

τ

≤ k1(ε) + k2(ε)
∫ τ

0
F1

(
θ, sup

0≤r≤θ

E‖zn(r)‖2

)
dθ

+ k2(ε)
∫ τ

0
F2

(
θ, sup

0≤r≤θ

E‖un(r)‖2

)
dθ.

where k1, k2 are constants independent of n. Let p(τ) be a global solution of the equation

p(τ) = k0 + k2

∫ τ

0
(F1(θ, p(θ)) + F2(θ, p(θ)))dθ

with an initial condition k0 > max
(

k1, ‖z0‖2
T

)
. We will prove by mathematical induction that

‖(zn, un)‖2
τ
≤ p(τ), τ ∈ [0, T]. (17)

For n = 0 inequality (17) holds by definition of p. Suppose that

‖(zm, um)‖2
τ
≤ p(τ), τ ∈ [0, T], m ≥ 0. (18)

Then, by inequality (18) we obtain that

p(τ)− ‖(zm, um)‖2
τ
≥ k2

∫ τ

0

(
F1(θ, p(θ))− F

(
θ, ‖zm‖2

θ

))
dθ

+k2

∫ τ

0

(
F2(θ, p(θ))− F2

(
θ, ‖zm‖2

θ

))
dθ ≥ 0.

It follows that {(zn, un) : n ≥ 0} is bounded in ZT × UT :

sup
n≥0
‖(zn, un)‖2

T
≤ p(T). (19)
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Lemma 6. Under assumptions (H1)-(H4), the sequence {(zn, un) : n ≥ 0} is a Cauchy sequence
in ZT × UT .

Proof. Define

pn(τ) = sup
m≥n
‖zm − zn‖2

τ
,

qn(τ) = sup
m≥n
‖um − un‖2

τ
,

rn(τ) = sup
m≥n
‖(zm, um)− (zn, un)‖2

τ

The functions pn, qn, rn are well defined, uniformly bounded and evidently nondecreasing.
Then, there exist nondecreasing functions p(τ), q(τ), r(τ) such that

lim
n→∞

pn(τ) = p(τ), lim
n→∞

qn(τ) = q(τ), lim
n→∞

rn(τ) = r(τ).

By Lemma 4, we obtain that

‖Cε(zm, um)− Cε(zn, un)‖2
τ

≤ L(ε)
∫ τ

0
H1

(
θ, sup

0≤r≤θ

E‖zm−1(r)− zn−1(r)‖2

)
dθ

+ L(ε)
∫ τ

0
H2

(
θ, sup

0≤r≤θ

E‖um−1(r)− un−1(r)‖2

)
dθ

from which in turn it follows that

r(τ) ≤ rn(τ) = pn(τ) + qn(τ)

≤ L(ε)
∫ τ

0
H1

(
θ, sup

0≤r≤θ

E‖zm−1(r)− zn−1(r)‖2

)
dθ

+ L(ε)
∫ τ

0
H2

(
θ, sup

0≤r≤θ

E‖um−1(r)− un−1(r)‖2

)
dθ

= L(ε)
∫ τ

0
H1(θ, pn−1(θ))dθ + L(ε)

∫ τ

0
X2(θ, qn−1(θ))dθ.

By the Lebesgue dominated convergence theorem, we obtain

r(τ) ≤ p(τ) + q(τ)

≤ L(ε)
∫ τ

0
H1(θ, p(θ))dθ + L(ε)

∫ τ

0
H2(θ, q(θ))dθ.

If follows that

p(τ) + q(τ)

≤ L(ε)
∫ τ

0
H1(θ, p(θ) + q(θ))dθ

+L(ε)
∫ τ

0
H2(θ, p(θ) + q(θ))dθ,

p(0) + q(0) = 0.



Mathematics 2023, 11, 639 16 of 20

By the Bihari inequality, it follows that p(τ) + q(τ) = 0. However,

‖(zm, um)− (zn, un)‖2
τ ≤ pn(T) + qn(T)
→ p(T) + q(T) = 0.

Therefore
lim

n,m→∞
‖(zm, um)− (zn, un)‖2

τ = 0.

Theorem 3. Under assumptions (H1)–(H4), the operator Cε has a unique fixed point in ZT × UT .

Proof. By Lemma 6, (zn, un) is a Cauchy sequence in ZT ×UT . The completeness of ZT ×UT
implies the existence of a process (z, u) ∈ ZT × UT such that

lim
n→∞
‖(z, u)− (zn, un)‖2

T = 0.

Taking the limit

(z, u) = lim
n→∞

(zn+1, un+1) = lim
n→∞

Cε(zn, un) = Cε(z, u),

we see that (z, u) is a fixed point of Cε.
Further, if (z1, u1), (z2, u2) ∈ ZT × UT are two fixed points of Cε, then Lemma 4 would

imply that

‖Cε(z1, u1)− Cε(z2, u2)‖2
τ

≤ L(ε)
∫ τ

0
H1

(
θ, sup

0≤r≤θ

E‖z1(r)− z2(r)‖2

)
dθ

+ L(ε)
∫ τ

0
H2

(
θ, sup

0≤r≤θ

E‖u1(r)− u2(r)‖2

)
dθ.

So, as in the proof of Lemma 6, we obtain that

‖Cε(z1, u1)− Cε(z2, u2)‖2
T = 0.

Therefore, (z1, u1) = (z2, u2) and Cε has a unique fixed point in ZT × UT .

Theorem 4. Let assumptions (H1)–(H4) and (AC) hold. Assume that the operator T(τ), τ > 0
is compact and analytic. Moreover, suppose the functions f and g are uniformly bounded. Then,
system (1) is mean square finite-approximately controllable on [0, T].

Proof. Let (zε, uε) be a fixed point of Cε in ZT × UT . Then

zε(T)− h =

− ε(I − π)
(

ε(I − π) + ΓT
0

)−1
(Eh− T(T)z0)

+ ε(I − π)
∫ T

0

(
ε(I − π) + ΓT

θ

)−1
T(T − θ)f(θ, zε(θ), uε(θ))dθ

+ ε(I − π)
∫ T

0

(
ε(I − π) + ΓT

θ

)−1
[T(T − θ)g(θ, zε(θ), uε(θ))− ϕ(θ)]dw(θ). (20)

Since the functions f and g are uniformly bounded, there exists a constant L > 0 such that

‖f(θ, zε(θ), uε(θ))‖+ ‖g(θ, zε(θ), uε(θ))‖L0
2
≤ L.
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Then, there exists a subsequence still denoted by {f(θ, zε(θ), uε(θ)), g(θ, zε(θ), uε(θ))}which
converges weakly to say (f, g) ∈ X × L0

2. Now, due to compactness, T(θ), θ > 0, it
follows that

T(T − θ)f(θ, zε(θ), uε(θ))→ T(T − θ)f(θ),

T(T − θ)g(θ, zε(θ), uε(θ))→ T(T − θ)g(θ),

in [0, T]×Ω. From equation (20), we have

E‖zε(T)− h‖2

≤ 6E
∥∥∥∥ε(I − π)

(
ε(I − π) + ΓT

0

)−1
(Eh− T(T)z0)

∥∥∥∥2

+ 6E
∫ T

0

∥∥∥∥ε(I − π)
(

ε(I − π) + ΓT
0

)−1
ϕ(θ)

∥∥∥∥2

L0
2

dθ

+ 6E
(∫ T

0

∥∥∥∥ε(I − π)
(

ε(I − π) + ΓT
θ

)−1
∥∥∥∥‖T(T − θ)[f(θ, zε(θ), uε(θ))− f(θ)]‖dθ

)2

+ 6E
(∫ T

0

∥∥∥∥ε(I − π)
(

ε(I − π) + ΓT
θ

)−1
∥∥∥∥‖f(θ)‖dθ

)2

+ 6E
∫ T

0

∥∥∥∥ε(I − π)
(

ε(I − π) + ΓT
θ

)−1
∥∥∥∥2

‖T(T − θ)[g(θ, zε(θ), uε(θ))− g(θ)]‖2
L0

2
dθ

+ 6E
∫ T

0

∥∥∥∥ε(I − π)
(

ε(I − π) + ΓT
θ

)−1
∥∥∥∥2

‖g(θ)‖2
L0

2
dθ.

On the other hand, ε(I − π)
(
ε(I − π) + ΓT

θ

)−1 → 0 strongly as ε → 0+

and
∥∥∥ε(I − π)

(
ε(I − π) + ΓT

θ

)−1
∥∥∥2
≤ 1. Therefore, by the Lebesgue dominated conver-

gence theorem, we can easily obtain that E‖zε(T)− h‖2 → 0 as ε → 0+. This implies the
approximate controllability in the mean square of system (1). Mean exact finite-dimensional
controllability follows from Equation (20):

π(Ezε(T)−Eh) = 0.

5. Applications

Example 1. We consider a system governed by the semilinear heat equation with
lumped control 

∂
∂τ y(τ, θ) =

∂2y(τ, θ)

∂θ2 + χ(α1,α2)(θ)u(τ),

y(τ, 0) = y(τ, π) = 0, 0 < τ < T,
y(0, θ) = y0(θ), 0 ≤ θ ≤ π,

(21)

where χ(α1,α2)(θ) is the characteristic function of (α1, α2) ⊂ (0, π). Let X = L2[0, π], U = R
and A = d2/dθ2 with D(A) = H1

0 [0, π] ∩ H2[0, π]. We define the bounded linear operator
B : R → L2[0, π] by (Bu)(τ) = χ(α1,α2)(θ)u() and the nonlinear operator f is assumed to
be bounded.
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Set M = L2
K[0, π] :=

{
ϕ : ϕ(θ) = ∑K

i=1 αiei(θ), αi ∈ R
}

and denote by π the opera-

tor of the orthogonal projection L2[0, π] onto L2
K[0, π]. A generates a compact analytic

semigroup T(τ) which is defined as follows.

T(τ)h =
∞

∑
n=1

exp
(
−n2π2τ

)
〈h, en〉en,

LT
s u =

∫ T

s
T(T − τ)(Bu)(τ)dτ =

∞

∑
n=1

∫ T

s
exp(−λn(T − τ))

〈
χ(α1,α2)(θ), en

〉
u(τ)dτen,

(
LT

s

)∗
h =

∞

∑
n=1

∫ T

s
exp(−λn(T − τ))

〈
χ(α1,α2)(θ), en

〉
〈h, en〉dτ,

ΓT
s h = LT

s

(
LT

s

)∗
h =

∞

∑
n=1

∫ T

s
exp

(
−2λn(T − τ)α)dτ

〈
χ(α1,α2)(θ), en

〉2
〈h, en〉en,

where en(θ) =
√

2
π sin(nθ), n = 1, 2, . . . is a complete orthonormal set of eigen vectors of

A. Subsequently, we attain

(
ε(I − πM) + ΓT

s

)−1
g =

∞

∑
n=1

1(
ε(I − πM) +

∫ T
s exp(−2λn(T − τ))d

〈
χ(α1,α2)(θ), en

〉2
) 〈g, en〉en

=
K

∑
n=1

1∫ T
s exp(−2λn(T − ))dτ

〈
χ(α1,α2)(θ), en

〉2 〈g, en〉en

+
∞

∑
n=K+1

1(
ε +
∫ T

s exp(−2λn(T − τ))dτ
〈

χ(α1,α2)(θ), en

〉2
) 〈g, en〉en

It is clear that ε
(
ε(I − πM) + ΓT

0
)−1g → 0 as ε → 0+ if

〈
χ(α1,α2)(θ), en

〉
=∫ α2

α1

√
2 sin(nπθ)dθ = −

√
2

nπ cos(nπθ) |α2
α1 6= 0, which holds whenever α1 ± α2 is an irrational

number.
If α1 ± α2 is an irrational number, then the linear determinisitic system (21) is finite-

approximately controllable on every [s, T], 0 ≤ s < T. By Theorem 2, the following linear
stochastic system is mean square finite-approximately controllable on [0, T].

∂
∂τ y(τ, θ) =

∂2y(τ, θ)

∂θ2 + χ(α1,α2)(θ)u(τ) + σ()dw(τ),

y(τ, 0) = y(τ, π) = 0, 0 < τ < T,
y(0, θ) = y0(θ), 0 ≤ θ ≤ π,

where w(τ) denotes a standard real valued Wiener process, σ ∈ χ2(0, T; R) .
Example 2. Consider the following stochastic partial differential equation:{

zτ(τ, θ) = zθθ(τ, θ) +Bµ(τ, θ) + K1(τ, z(τ, θ)) + K2(τ, z(τ, θ))dw(τ), (τ, θ) ∈ [0, T]× [0, π],
z(τ, 0) = z(τ, π) = 0, 0 ≤ τ ≤ 1, z(0, θ) = z0(θ), 0 ≤ θ ≤ π,

(22)

where w(τ) denotes a standard real valued Wiener process on (Ω,F, {Fτ}, P) and z0 ∈
L2(0, π); µ : [0, T]× (0, π)→ (0, T) is continuous in τ; K1, K2 : R× R→ R are continuous.
Let X = U = L2

F(0, T) and define the operator A = d2/dθ2 with D(A) = H1
0 [0, π]∩H2[0, π].

Then, A generates a compact analytic semigroup T(τ) which is defined as follows

T(τ)z =
∞

∑
n=1

e−n2τ(z, en)en, z ∈ X,
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where en(θ) =
√

2
π sin(nθ), n = 1, 2, . . . is a complete orthonormal set of eigen vectors of

A. From these expressions, it follows that {T(τ), τ > 0} is a uniformly bounded compact
analytic semigroup.

Define an infinite-dimensional control space U by U = {u : u = ∑∞
n=2 unen, such that

∑∞
n=2 Eu2

n < ∞} endowed with the norm ‖u||U = (∑∞
n=2 Eu2

n)
1/2. Next, define a continuous

linear mapping B from U into X as follows

Bu(τ, θ) = 2u2(τ)e1(θ) +
∞

∑
n=2

un(τ)en(θ) for u =
∞

∑
n=2

unen ∈ U.

Let z(τ)(θ) = z(τ, θ) and define the bounded linear operator B : U→ X by (Bu)(τ)(z) =
µ(τ, z), 0 ≤ z ≤ π, f(τ, z)(·) = K1(τ, z(·)) and g(τ, z)(·) = K2(τ, z(·)).

The linear deterministic system that corresponds to (22) is approximately control-
lable on every [s, T], 0 ≤ s < T and all conditions of Theorem 4 are satisfied. Hence,
by Theorem 4 the stochastic differential system (22) is finite-approximately controllable
on [0, 1].

6. Conclusions

The main aim of this work was to present:

• Necessary and sufficient conditions for finite-approximate mean square controllability
of linear stochastic evolution systems in infinite-dimensional separable Hilbert spaces
in terms of stochastic resolvent-like operators

(
ε(I − πE{·}) + ΠT

0
)−1. Moreover, we

found an explicit analytical form of the contollability control which, in addition to the
mean square approximate controllability property, ensures finite-dimensional mean
exact controllability.

• The Picard approximation method to show a mean square finite-approximate control-
lability of a semilinear stochastic evolution system under non-Lipschitz conditions
satisfied by the nonlinear drift and diffusion coefficients depending on control.

One can assume that the results of this work apply to a class of problems determined
by various types of first order and second order fractional (impulsive) stochastic evolution
systems, such as Caputo SDEs, Riemann–Liouville-type SDEs, Hadamard-type SDEs,
Sobolev-type fractional SDEs and so on.

On the other hand, many real-world systems can sometimes experience different types
of stochastic perturbations. For example, Poisson jumps are now used to describe various
types of real-world systems. In the future, the same approach could be used for different
types of systems with different stochastic perturbations.
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