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Abstract: Fire accidents occur in every part of the world and cause a large number of casualties
because of the risks involved in manually extinguishing the fire. In most cases, humans cannot
detect and extinguish fire manually. Fire extinguishing robots with sophisticated functionalities
are being rapidly developed nowadays, and most of these systems use fire sensors and detectors.
However, they lack mechanisms for the early detection of fire, in case of casualties. To detect and
prevent such fire accidents in its early stages, a deep learning-based automatic fire extinguishing
mechanism was introduced in this work. Fire detection and human presence in fire locations were
carried out using convolution neural networks (CNNs), configured to operate on the chosen fire
dataset. For fire detection, a custom learning network was formed by tweaking the layer parameters
of CNN for detecting fires with better accuracy. For human detection, Alex-net architecture was
employed to detect the presence of humans in the fire accident zone. We experimented and analyzed
the proposed model using various optimizers, activation functions, and learning rates, based on
the accuracy and loss metrics generated for the chosen fire dataset. The best combination of neural
network parameters was evaluated from the model configured with an Adam optimizer and softmax
activation, driven with a learning rate of 0.001, providing better accuracy for the learning model.
Finally, the experiments were tested using a mobile robotic system by configuring them in automatic
and wireless control modes. In automatic mode, the robot was made to patrol around and monitor
for fire casualties and fire accidents. It automatically extinguished the fire using the learned features
triggered through the developed model.

Keywords: convolution neural networks; fire detection; surveillance; deep learning; computer vision

MSC: 68T01

1. Introduction

Fire accidents are drastically increasing in all parts of the world. This impacts people
in large numbers and also affects the environment. Therefore, there are inevitable risks
involved in industries and other organizations due to fire. With reference to the statistics
reported in [1], fire risk dropped to the 10th rank in 2019 compared with the previous year,
where it was ranked 3rd. In addition to these statistics, fire risks are comparatively high
in private industries. Although there is a drop in ranking compared with other risks, a
risk of fire is inevitable. The oxygen content in the air, the heat emitted from surfaces, and
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sources of fuel are the three main ingredients of most fires. As heat can come from any
hot surfaces, electrical equipment, static electricity, as well as open flames, appropriate
countermeasures are required to resist them. Fuel can be any flammable liquid, gas, wood,
paper, dust, and certain metals. The oxygen requirements are readily available in the air [2].
A fire only needs 16% of oxygen in the atmosphere to ignite, whereas humans need about
21% oxygen in the air in order to breath. Once a fire has started, it can be stopped if any
one of these three elements is eliminated [3]. This brings up probable solutions for fire
prevention and shows the importance of keeping these three ingredients under control [4].
Hazardous fire accidents are happening in textile industries, chemical industries, forests,
and even in subways. Subway fire accidents also occur all around the world and the
number of accidents keep increasing over the year [5]. All fire accidents are severe life
hazards and cause long-term effects in some cases. Extinguishing a fire after it spreads
over a large area is a very tedious task and consumes too much time to extinguish the fire
completely. Early fire detection is the only feasible solution to address such issues. Among
the numerous fire detection techniques, most fire detection systems are implemented based
on sensors to detect the fire [6]. Sensor-based fire detection systems require close proximity
to detect the fire and cannot be used over a large area. Deep learning (DL) is excessively
deployed in most of the domains [7], including natural language processing and image
processing [8,9]. DL techniques are characterized by their capability to learn from data,
creating a mathematical model with the provided data with identity recognition [10] as one
of its crucial applications. DL models exhibit high accuracy of detection in all applications.
Therefore, we used DL techniques to detect fire by building a convolutional neural network
(CNN) model [6].

A DL approach, along with spatial and temporal features, were considered for fire and
smoke detection through surveillance cameras in [11]. Here, region-based CNN was used
for extracting local and global features to reduce false positives in fire and smoke detection.
In another similar work [12], DL models were used in video-based fire detection using
region-based CNN and LSTM models. Their method interpreted the dynamic behavior
of fire and smoke through the temporal changes in their features. The experiments were
well-performed over long- and short-range videos, thereby significantly reducing false
alarms. Later on, Govil et al. [13] used remote cameras to monitor and detect wildfires
using a DL approach. In addition, they used cloud-based task management in handling a
stream of images from ground-based and terrestrial cameras. The complexity of the DL is
described in detail in [14,15].

Salameh et al. [16] surveyed the usage of IoT-based systems for fire and gas leakage
detection applications, particularly focusing on wireless sensor networks. In [17], the au-
thors experimented with fire smoke detection in aircraft cargo for fire and non-fire aerosol
identification. Further, they distinguished between black and white smoke based on asym-
metry ratios. Oil storage tank monitoring with an IoT-based framework, presented in [18],
focused on the detection of smoke and fire, as well as monitored temperature. Further, it
also assisted with real-time surveillance to alert industrial authorities to prevent accidents.

1.1. Research Gap and Motivation

Although many studies have been conducted on the use of DL techniques for disaster
management [19], studies on fire detection using robotic systems with onboard sensors are
rather scarce. Few studies were found to address fire disasters through a genetic algorithm
approach [20]. In addition, the growing interest in DL techniques and their applications
for fire detection needs to be explored by addressing their potential and challenges. To
better estimate the prediction accuracy for fire accidents, we need to explore the inherent
capabilities of DL frameworks and their properties and impact on the accidents [21].
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In this paper, the investigations were carried out using a fire dataset collected from
the Kaggle benchmark dataset [22], named outdoor-fire and non-fire images for computer
vision tasks (Version 1) to analyze and predict the occurrence of fires in a specific environ-
ment. The collected dataset was composed of 3638 images. Moreover, deep neural network
implementation was performed by introducing various activation functions, optimizers,
and learning rates that were applied to the collected dataset [23].

1.2. Objectives and Goal of the Study

Based on an in-depth analysis of the literature, it was revealed that many studies have
used DL techniques for fire-extinguishing applications. However, none of these studies
explored a fire accident scenario with automated extinguishing nor employed robotic
systems for maneuvering across the environment for the detection and extinguishing of
the fire. This work provides the following set of outcomes, with primary focus on the DL
technique for fire detection tasks and initiating extinguishing operations:

• Fire detection is carried out using a CNN model configured to operate on the chosen
fire dataset.

• A DL-based framework is developed and trained to automatically classify the fire scenarios.
• Human detection is carried out using Alex-net with a pre-trained set of data from the

fire datasets with a human involved during fire accidents.
• A mobile robotic system with onboard sensors is employed for detecting the fire.

The remaining sections of this article are as follows: Section 2 provides a description
of the proposed CNN for fire and human detection. Section 3 presents and compares the
results obtained using different optimizers, activation layers, and learning rates. Finally,
our conclusions are provided in Section 4, along with future research directions.

2. Proposed Framework

This section is dedicated to presenting the proposed framework for the automated
fire extinguishing system and further discussions on the overall functional modules of the
system.

2.1. Learning-Based Automated Fire Extinguishing System

The overall functional block diagram of the proposed system is shown in Figure 1.
Initially, the system is in patrol mode around the suspicious fire-prone area. The data acqui-
sition unit collects the data (image/video sequences) to be assessed for fire and humans in
the environment. The processing unit is configured to access the neural network via a cloud
service. The corresponding neural network model predicts the output scenario and sends
back the predicted output to the processing unit, which in turn operates corresponding
actuation and alert systems [24]. The main focus of this work was to analyze a fire detection
model with various metrics. Alex-net architecture has shown great results for human
detection [25]. Therefore, human detection was performed using the predefined Alex-net
model, utilizing a transfer learning framework, and further analysis was performed on the
proposed neural network model for fire detection.

2.2. Fire Detection Model

Deep CNN methods are extensively applied in the fire detection and classification
process. A large number of CNN models have been built with their own advantages and
limitations over the last decade, during which most research was focused on fundamental
DL models.

Our proposed framework for fire detection using the CNN model was driven by a
pre-processed sequence of images from the fire dataset and tested using a portion of the
dataset to evaluate its performance. Further, during the testing phase, the fire images
acquired from the camera mounted on the robotic system were fed to the CNN model to
decide the actuation subsystem for extinguishing the fire [26].
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Figure 1. Overall functional block diagram of learning-based automated fire extinguishing system.

2.2.1. Description of the Dataset

The dataset of outdoor-fire and non-fire images for computer vision tasks (Version1)
was created by a team of experts during the NASA Space Apps Challenge in 2018 [22], with
the goal of using them in a benchmark dataset to develop a model that could recognize
the fires in these scenarios. The chosen dataset with 999 images (755 fire and 244 non-fire)
was augmented with a few more images, so that the final dataset comprised 3638 images
(2528 fire, 737 non-fire, and 373 smoke) collected under different environmental conditions,
such as heavy smoke. Further, the non-fire images consisted of natural images with trees,
rivers, people, animals, roads, and waterfalls. Few studies have used this dataset among
the research community [27,28] for fire detection applications. Some of the sample images
in the training set are shown in Figure 2.

In the pre-processing stage, in order to classify the fire and non-fire images in the
dataset, a histogram of the images was taken, which was meant to eliminate noise and other
residual features. Further, based on the intensity of the background content in the images,
redundant background features were eliminated. Subsequently, image enhancement was
performed on the background-separated images. As a final stage input to the CNN model,
object representation tasks were performed to identify the fire pattern in the images.

Figure 2. Sample fire and non-fire images in the training dataset [22].

2.2.2. Proposed CNN Architecture

The CNN architecture used here is similar to the architecture used in [29], with
important tweaks in the layers and filter size to suit the input pre-processed fire dataset,
and is shown in Figure 3. This developed model included three convolution layers, two
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pooling layers, and two dense layers. The input color image (RGB), shaped to 150 × 150 × 3
in size, was applied to the first convolution layer, which had 32 filters with a kernel size of
3 × 3. The size of the kernel depends on the stride and slide, considering the size of the
input image as W × W × D. Further, in a spatial dimension of F kernels, P padding, and S
strides, the output volume could be computed as shown in Equation (1).

Wo =
W − F + 2P

S
+ 1 (1)

This would produce an output of size Wo × Wo × Do. The resulting (148 × 148) feature
maps were passed through the MaxPooling layer with strides (2,2). For the MaxPooling
layer, strides S and kernel size F could be specified based on the depth of the number of
activation maps D. Equation (2) specifies the output dimension of the image, after passing
through the MaxPool layer.

Po =
(Wo − F

S
+ 1

)
× D (2)

The resultant 74 × 74 feature maps were passed through the second convolutional
layer, which had 64 filters with the same 3 × 3 kernel size. Further, this was applied to
a MaxPooling layer of the same specifications used in the first MaxPooling layer. The
resultant 36 × 36 feature maps were passed on to the last convolutional layer. Finally,
for the last convolutional layer, fully connected layers were included for performing the
classification tasks. In the fully connected layer, all the inputs had separable weights for
each of the output units. The final output layer consisted of two neurons engaged in
classifying the fire and non-fire images.

32
Conv2D

32
MaxPooling2D

64
Conv2D

64
MaxPooling2D

64
Conv2D

73984
Flatten

73984
Dropout

64
Dense

2
Dense

Figure 3. CNN architecture for fire detection [30].

3. Analysis of Results and Discussion

This section discusses the experimental results of our proposed CNN model with
various metrics. The metrics used to analyze the model included different optimizers,
activation functions, and learning rates, which are elaborated on in the subsequent sections.
All the metrics were evaluated by experimenting with the model for 100 epochs. The rest
of this section elaborates on the various metrics used in the proposed model.

3.1. Optimizer Analysis

Optimizers are algorithms used to change the attributes of neural network such as
weights and learning rates to reduce losses. Various optimizers are available for neural net-
works that could be used, based on the data and demands of the users [31]. The optimizers
used for the analysis of the proposed network were Adam, Adamax, Nadam, RMSprop,
and Sgd. Adam is an optimizer for CNN, developed to overcome the disadvantages of the
stochastic gradient descent [32], which was first published in 2014 and presented at the
machine learning conference ICLR in 2015.

The performance evaluation of the developed model was analyzed with an appropriate
choice of optimizer. Based on the choice of each optimizer, the corresponding observations
in performance were discussed for each of the models, as follows:

Adam optimizer: With the choice of the Adam optimizer for analysis, Figure 4a shows a
plot with the number of epochs vs accuracy (%) observed for 100 epochs. It is observed that
an accuracy of approximately 90% was achieved at the 13th epoch in the training phase.
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However, up to 85 epochs, there were a few distortions observed, which considerably
affects the accuracy. After the 85th epoch, the training accuracy was saturated and only less
deviation from training to validation accuracy was observed. Figure 4b shows the number
of epochs vs. loss (%) graph. Similar to the accuracy plot, minimum loss was achieved in
a fewer number of epochs. However, there were more distortions up to the 85th epoch.
Further, the loss was also saturated and deviations from training loss to validation loss
were minimized.
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(b) Number of Epochs vs. Loss (%)
Figure 4. Accuracy and loss graph on training and validation data of Adam optimizer.

Adamax: Adamax is one of the variants of Adam based on the infinity norm feature [33].
The crucial advantage of Adamax is that it is less sensitive to hyperparameters such as
learning rate. Figure 5a shows the observed accuracy with a plot showing the number of
epochs vs. accuracy (%) for 100 epochs of the Adamax optimizer. Figure 5b shows the
observed loss with a plot of the number of epochs vs. loss (%) for 100 epochs of the Adamax
optimizer. While using the Adamax optimizer, the accuracy and loss were more or less
saturated in fewer epochs with negligible deviations. The average percentage of accuracy
and loss was also similar to Adam. However, the Adam optimizer was chosen for further
analysis because the change in learning rate may not have produced notable changes in the
results, as it was less sensitive to its hyperparameters [34].
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Figure 5. Accuracy and loss graph on training and validation data of Adamax optimizer.

Nadam: This is an acronym for Nesterov and Adam and was developed by modifying
Adam’s momentum concept by incorporating the Nesterov momentum, which is the
significant advantage of NAG (Nesterov’s accelerated gradient) [35]. Nadam works better
for complex models; however, its prediction time is larger than the time taken for prediction
using Adam [36]. Figure 6a,b shows the epochs vs. accuracy and loss graph for 100 epochs
of the Nadam optimizer. In our case, the accuracy and loss were not saturated until 100
epochs. The deviations between the training and validation accuracy were permissible;
however, loss variation was high.
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Figure 6. Accuracy and loss graph on training and validation data of Nadam optimizer.

RMSprop: RMSprop is an unpublished, adaptive learning rate algorithm; however, [37]
shows its popularity until 2017 and it remains popular now. It uses the magnitude of recent
gradients to normalize the gradients. Figure 7a shows a plot of the number of epochs vs.
accuracy (%) based on the observation of 100 epochs of the RMSprop optimizer. Figure 7b
shows a plot of the number of epochs vs. accuracy (%) observed for 100 epochs of the
RMSprop optimizer. Unfortunately, both accuracy and loss were not saturated up to
100 epochs.
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Figure 7. Accuracy and loss graph on training and validation data of RMSprop optimizer.

SGD: Stochastic gradient descent (SGD) is a simple, classical method that calculates
the gradient of each weight on the network [38]. This method is very slow compared with
other optimizers; nevertheless, it is good for shallow networks. Figure 8a shows a plot
with the number of epochs vs. accuracy (%) observed for the SGD optimizer. Figure 8b
shows the performance observations for the losses incurred in the SGD optimizer. The
maximum range of accuracy was achieved gradually (epoch 50) compared with the other
optimizers used for the analysis. Minimum loss was also obtained compared with another
optimizers. SGD produced better accuracy and loss characteristics. However, due to its
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slow convergence rate, SGD is not commonly used nowadays as numerous advanced
optimization algorithms have evolved.

70

75

80

85

90

95

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

A
cc

u
ra

cy
 

Epochs 

SGD - Epochs vs Accuracy 

Accuracy

Validation_Accuracy

(a) Number of Epochs vs. Accuracy (%)

0

10

20

30

40

50

60

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

L
os

s 

Epochs 

SGD - Epochs vs Loss 

Loss

Validation_Loss

(b) Number of Epochs vs. Loss (%)
Figure 8. Accuracy and loss graph on training and validation data of SGD optimizer.

We further compared the average accuracy and loss values of each optimizer by
taking the average of values generated for all epochs. Table 1 shows the performance
of the developed model with various optimizers, tabulated with the average accuracy,
validation accuracy, and validation losses. It was observed that the losses in Adamax were
significantly lower than in the other variants.
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Table 1. Comparison with various optimizers.

Optimizer Accuracy (%) Validation Accuracy (%) Loss (%) Validation Loss (%)

Adam 89.6463 89.3862 11.0794 12.8375
Adamax 89.7150 89.3163 10.8713 12.8152
Nadam 89.5313 89.2661 11.4997 13.3637

RMSprop 89.5390 89.2379 12.2243 17.0270
SGD 88.1809 89.0939 15.2573 12.7738

Although Adam and Adamax produced nearly the same accuracy (as shown in
Table 1), the Adam Optimizer was used for further analysis due to having the best ac-
curacy among the different optimizers, considering their validation accuracy and time.

3.2. Activation Layer Analysis

The activation function is a node that is placed at the end or in between the neural
networks, which decides whether the neuron will fire or not. Different activation functions
can be used for different purposes [39]. Different activation functions produce different
results based on their operations. Sigmoid, Softmax, and Softplus activation functions
were used here to analyze our neural network. The Sigmoid function is mathematically
expressed, as shown in Equation (3):

S(x) =
1

1 + e−x (3)

where S(x) is the sigmoid function and e is Euler’s number.
The sigmoid function exists between 0 and 1. Therefore, it is especially used for

models where the output prediction falls under ranges of probabilities. Figure 9a,b shows
the number of epochs vs. accuracy (%) and loss graph for 100 epochs of the Adam optimizer
using the Sigmoid activation function. From the graph, high accuracy and minimum loss
were achieved in a fewer number of epochs, and accuracy and loss were saturated.

72

74

76

78

80

82

84

86

88

90

92

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

A
cc

u
ra

cy
 

Epochs 

Sigmoid - Epochs vs Accuracy 

Accuracy

Validation_Accuracy

(a) Number of Epochs vs. Accuracy (%)
Figure 9. Cont.



Mathematics 2023, 11, 608 12 of 18

0

5

10

15

20

25

30

35

40

45

50

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

L
os

s 

Epochs 

Sigmoid - Epochs vs Loss 

Loss

Validation_Loss

(b) Number of Epochs vs. Loss (%)
Figure 9. Accuracy and loss graph on training and validation data of Adam optimizer with Sigmoid
activation function.

Softmax is used as the activation function for multi-class classification problems where
class membership is required for more than two class labels. Although it can be used as an
activation function in the hidden layers of networks, it is less commonly used. Here, the
Softmax layer was used at the end of our neural network model. Figure 10a,b shows the
number of epochs vs. accuracy (%) and loss graph for 100 epochs of the Adam optimizer
using the Softmax activation function.
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Figure 10. Accuracy and loss graph on training and validation data of Adam optimizer with Softmax
activation function.

The Softplus function is mathematically expressed as shown in Equation (4),

f (x) = ln(1 + ex) (4)

It is an alternative to traditional activation functions and is less commonly used.
Figure 11 shows the number of epochs vs. accuracy (%) and loss graph for 100 epochs of
the Adam optimizer using the Softplus activation function.
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Figure 11. Accuracy and loss graph on training and validation data of Adam optimizer with Softplus
activation function.

The average accuracy and loss were calculated and tabulated below for the previously
discussed activation functions. Table 2 shows the accuracy, validation accuracy, loss, and
validation loss for the various activation layers used.

Table 2. Comparison chart for various activation layers of Adam optimizer.

Activation
Function

Accuracy
(%)

Validation
Accuracy (%) Loss (%) Validation Loss (%)

Sigmoid 89.6257 89.2181 11.2117 13.8817
Softmax 89.6462 89.3862 11.0794 12.8375
Softplus 88.3582 88.4686 18.0761 19.6317

As shown in Table 2, Softmax produced better accuracy than the other activation
layers. It is also the most commonly used activation function at the end of neural networks.
The Adam optimizer and Softmax activation function were used for further analysis.

3.3. Learning Rate Analysis

The learning rate or step size is the number of weights that are updated during
the training phase. Usually, it lies in a range of 0 to 1. This hyperparameter controls
how quickly the model learns a problem. A smaller learning rate requires more epochs,
whereas a larger learning rate requires fewer epochs. A larger learning rate may cause the
model to converge too quickly, whereas a very small learning rate may also have negative
effects [40]. Therefore, learning rate is the most important hyperparameter and should be
carefully selected. Table 3 shows the comparative analysis on the performance of the model
considering different learning rates of Adam optimizer and Softmax activation.
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Table 3. Comparison with different learning rates of Adam optimizer and Softmax activation layer.

Learning Rate Accuracy (%) Validation
Accuracy (%) Loss (%) Validation Loss (%)

0.01 88.3164 88.7505 14.6927 14.9022
0.001 89.6462 89.3862 11.0794 12.8375

0.0001 89.5501 89.3503 11.4771 11.9575

The learning rates of 0.01, 0.001 (default), and 0.0001 were used for analysis. Table 4
shows the accuracy, validation accuracy, loss, and validation loss for the various learning
rates of the model, along with the precision, recall, and F1-score statistics observed with
the choice of the Adam optimizer and Softmax activation layer for the network. Figure 12
shows the confusion matrix representing the comparison among the predicted fire, non-fire,
and smoke images in the dataset.

Table 4. Comparison with different learning rates of Adam optimizer and Softmax activation layer.

Learning
Rate

Accuracy
(%)

Validation
Accuracy (%) Loss (%) Validation

Loss (%) Precision Recall F1-Score

0.01 88.3164 88.7505 14.6927 14.9022 0.89 0.88 0.87
0.001 89.6462 89.3862 11.0794 12.8375 0.91 0.90 0.85
0.0001 89.5501 89.3503 11.4771 11.9575 0.90 0.89 0.86

Figure 12. Confusion matrix representation for the CNN model with Adam optimizer and Softmax
Activation layer.

As shown in Table 4, the learning rate of 0.001 produced better results than the
others. Usually, a lower learning rate produces better results, but needs a large number
of epochs. The best learning rate is based on the number of epochs used for training. In
our case (for 100 epochs), the default learning rate of 0.001 for Adam produced the highest
accuracy. Generally, it is obvious that a large dataset could have significant improvements
in classification accuracy with reduced error. However, with the dataset chosen, with a
small set of data on fire, non-fire, and smoke images, it was evident from the results that
high error rates were observed. However, if the model involved larger standard datasets
on fire and non-fire images, it could drastically enhance the classification accuracy and
thereby reduce the higher error rates.
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4. Conclusions and Future Work

Deep learning frameworks have been under the spotlight in recent years because
of their flexibility and suitability for classification tasks. DL frameworks learn useful
representations of features directly from the input image, text, audio, or video data using
neural networks. In this article, fire detection was carried out using the proposed CNN
architecture, which consisted of six layers. We experimented and analyzed the neural
network using various optimizers, activation functions, and learning rates. From our results,
the best optimizer, activation function, and learning rate for this neural network were
observed, based on accuracy and loss metrics generated for both training and validation.
Further, the robotic system was configured for navigation in autonomous and manual
mode toward the fire zone and for actuation of the extinguishing unit based on the learned
features triggered through the developed model. It was evident from the experimental
results that the Adam optimizer with Softmax activation, driven with a learning rate of
0.001, provided enhanced accuracy compared with the other parameters tested. In addition,
the chosen dataset investigated with the aforementioned configuration provided a better
accuracy of 89.64% compared with the other techniques. Even though the system imposes
limitations and concerns regarding its applicability in real-world scenarios due to its high
error rates, consideration of larger datasets will enhance the accuracy of the system.

In future studies, we plan to devise a robust DL architecture for combined fire and
human detection, resulting in a single model that can detect both humans and fire for
saving the lives of humans while also extinguishing fires.
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